SYSMAC CS Series
CS1G/H-CPULI-EV1
CS1G/H-CPULIH
CS1D-CPULIH

SYSMAC CJ Series
CJ1G-CPUL]
CJ1G/H-CPULIH
CJ1M-CPUL[]

Programmable Controllers

INSTRUCTIONS
REFERENCE MANUAL

OMRON

SYSMAC CS Series
CS1G/H-CPULI-EV1
CS1G/H-CPULIH
CS1D-CPULH
SYSMAC CJ Series

CJ1G-CPULIL]
CJ1G/H-CPULILIH
CJ1M-CPULI]

Programmable Controllers

Instructions Reference Manual

Revised September 2002

Notice:

OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this manual. Always heed
the information provided with them. Failure to heed precautions can result in injury to people or dam-
age to property.

&DANGER Indicates an imminently hazardous situation which, if not avoided, will result in death or
serious injury.

AWARNING Indicates a potentially hazardous situation which, if not avoided, could result in death or
serious injury.

&Caution Indicates a potentially hazardous situation which, if not avoided, may result in minor or
moderate injury, or property damage.

OMRON Product References

All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers to
an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON products, often means
“word” and is abbreviated “Wd” in documentation in this sense.

The abbreviation “PLC” means Programmable Controller. “PC” is used, however, in some Program-
ming Device displays to mean Programmable Controller.

Visual Aids

The following headings appear in the left column of the manual to help you locate different types of
information.

Note Indicates information of particular interest for efficient and convenient opera-
tion of the product.

1,2,3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

[J OMRON, 1999

All rights reserved. No part of this publication may be reproduced, stored in aretrieval system, or transmitted, in any form, or
by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of
OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is con-
stantly striving to improve its high-quality products, the information contained in this manual is subject to change without
notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no responsibility
for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in
this publication.

Vi

TABLE OF CONTENTS

PRECAUTIONS. Xi
1 Intended AUdIENCE oot e Xii
2 General PreCaltionsot Xii
3 Safety PreCautions.ot Xii
4 Operating Environment PreCautions.t i et Xiv
5 Application PreCautionso Xiv
6 Conformanceto EC DIreCtiVES.ot XiX

SECTION 1

INntroduction
1-1 Generd Instruction CharaCteristiCs.o oottt 2
1-2 Instruction Execution Checks.o 12

SECTION 2

Summary of Instructions., 15
2-1 Instruction Classificationsby Function.o i 16
2-2 InsStruction FUNCLIONS. oo 24
2-3 Alphabetical List of Instructionsby Mnemonic. o i, 101
2-4 Ligtof Ingtructionsby FunctionCode. i 116

SECTION 3

INSLFUCLIONS . . .o e e e 129
3-1 Notation and Layout of Instruction Descriptionst 137
3-2 Instruction Upgradesand New Instructions 140
3-3 Sequence lnput INSITUCLIONSt e e 142
3-4 Sequence OULPUL INSEIUCLIONSo .ot e e 166
3-5 Sequence Control INSLFUCLIONS oot e e e 186
3-6 Timer and Counter INSIIUCHIONS.o oottt 205
3-7 Comparison INStrUCHIONS oot 246
3-8 DataMovement INSIrUCtIONS. oottt e 279
3-9 DataShift INStruCtionSo 308
3-10 Increment/Decrement INSIIUCtIONS oottt 356
3-11 Symbol Math INStruCtions.o o 372
3-12 Conversion INStrUCLIONS. oottt e e e 428
3-13 LOGQICINSITUCLIONS\ ottt e e e e e e e e 474
3-14 Special Math INSIFUCLIONSo 491
3-15 Floating-point Math INSruCtionst e 515
3-16 Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJIM, or CS1D Only). ... 570
3-17 Table DataProcessing INStrUCtioNS.o e it e 617
3-18 DataControl INSITUCHIONS o oottt e e e e e 675
3-19 SUDIOULINES . . o v ottt e e e e e 720
3-20 Interrupt Control INSLrUCtIONSo oot 744

Vii

viii

TABLE OF CONTENTS

3-21 High-speed Counter/Pulse Output INStructions.o oo 769
3-22 StEP INSLIUCLIONS . .. oottt e et e e e e e e 807
3-23 Basicl/OUNIt INSIIUCLIONSo e e e e e 825
3-24 Serial CommunicationS INSIIUCLIONS oo 842
3-25 Network INStrUCLIONSo e 867
3-26 FileMemory INStrUCtionSot 897
3-27 Display Instructions: DISPLAY MESSAGE: MSG(046)o oo i 913
3-28 CloCK INSIIUCHIONS . . . oo et e e 916
3-29 Debugging INStrUCLIONS oo 930
3-30 Failure DiagnosiSINSIrUCLIONS. oo 934
3-31 Other INSITUCLIONS oo e e e e e e 959
3-32 Block Programming INStructions.o 978
3-33 Text String Processing INSrUCtioNS. . .. oo v vt 1012
3-34 Task Control INSErUCHIONS.ot e e e e 1045
SECTION 4
I nstruction Execution Timesand Number of Steps. 1053
4-1 CS-seriesInstruction Execution Timesand Number of Steps. 1055
4-2 CJlseriesInstruction Execution Timesand Number of Steps. 1083
INAEX. . .o 1111
Revison Historyo i 1119

About this Manual:

This manual describes the ladder diagram programming instructions of the CPU Units for CS/CJ-
series Programmable Controllers (PLCs). The CS Series and CJ Series are subdivided as shown in

the following table.

Unit

CS Series

CJ Series

CPU Units

CS1-H CPU Units: CS1H-CPULIH
CS1G-CPULIH

CJ1-H CPU Units: CJ1H-CPULIH
CJ1G-CPULIH

CS1H-CPULIL-EV1
CS1G-CPULIL-EV1

CS1D CPU Units: CS1D-CPULILH

CS1 CPU Units:

CJ1 CPU Units: CJ1G-CPULIL-EV1
CJ1IM CPU Units: CJ1M-CPULIL]

Basic 1/0 Units

CS-series Basic /O Units

CJ-series Basic I/O Units

Special I/O Units

CS-series Special /0 Units

CJ-series Special I/0 Units

CPU Bus Units

CS-series CPU Bus Units

CJ-series CPU Bus Units

Power Supply Units

CS-series Power Supply Units

CJ-series Power Supply Units

Please read this manual and all related manuals listed in the table on the next page and be sure you
understand information provided before attempting to program or use CS/CJ-series CPU Units in a

PLC System.

Section 1 introduces the CS/CJ-series PLCs in terms of the instruction set that they support.

Section 2 provides various lists of instructions that can be used for reference.

Section 3 individually describes the instructions in the CS/CJ-series instruction set.

Section 4 provides instruction execution times and the number of steps for each CS/CJ-series instruc-

tion.

About thisManual, Continued

Name Cat. No. Contents
SYSMAC CS/CJ Series W340 | Describes the ladder diagram programming
CS1G/H-CPULILI-EV1, CS1G/H-CPULICIH, CS1D- instructions supported by CS/CJ-series PLCs.
CPULIIH, CIIM-CPULIL], CJ1G-CPULIL], CI1G/H- (This manual)
CPULIH
Programmable Controllers Instructions Reference Manual
SYSMAC CS/CJ Series W394 | This manual describes programming and other
CS1G/H-CPULII-EV1, CS1G/H-CPULIH, CS1D- methods to use the functions of the CS/CJ-series
CPULIH, CJ1M-CPULIL], CJ1G-CPULI], CI1G/H- PLCs.
CPULICIH
Programmable Controllers Programming Manual
SYSMAC CS Series W339 Provides an outlines of and describes the design,
CS1G/H-CPULIC-EV1, CS1G/H-CPULIH installation, maintenance, and other basic opera-
Programmable Controllers Operation Manual tions for the CS-series PLCs.
SYSMAC CJ Series W393 | Provides an outlines of and describes the design,
CJ1IM-CPULIL], CJ1G-CPULIL], CI1G/H-CPULILIH installation, maintenance, and other basic opera-
Programmable Controllers Operation Manual tions for the CJ-series PLCs.
SYSMAC CJ Series W395 Describes the functions of the built-in 1/O for
CJ1M-CPU22/23 CJ1M CPU Units.
Built-in 1/0O Functions Operation Manual
SYSMAC CS Series W405 Provides an outline of and describes the design,
CS1D-CPULIH CPU Units installation, maintenance, and other basic opera-
CS1D-DPL1 Duplex Unit tions for a Duplex System based on CS1D CPU
CS1D-PA207R Power Supply Unit Units.
Duplex System Operation Manual
SYSMAC CS/CJ Series W341 | Provides information on how to program and
CQM1H-PROO01-E, C200H-PRO27-E, CQM1-PROO01-E operate CS/CJ-series PLCs using a Programming
Programming Consoles Operation Manual Console.
SYSMAC CS/CJ Series W342 | Describes the C-series (Host Link) and FINS
CS1G/H-CPULIL-EV1, CS1G/H-CPULILIH, CI1M- communications commands used with CS/CJ-
CPULIL], CJ1G-CPULIL], CJ1G/H-CPULILIH, CS1W- series PLCs.
SCB21/41, CS1W-SCU21, CJ1W-SCU41
Communications Commands Reference Manual
SYSMAC WS02-CXPLILI-E W361 Provide information on how to use the CX-Pro-
CX-Programmer User Manual Version 3.0 grammer, a programming device that supports
SYSMAC WS02-CXP[1 J-E W362 the CS/CJ-series PLCs, and the CX-Net con-
CX-Server User Manual tained within CX-Programmer.
SYSMAC CS/CJ Series W336 Describes the use of Serial Communications Unit

CS1W-SCB21-V1/41-V1, CS1W-SCU21-V1, CJIW-SCU41
Serial Communications Boards/Units Operation Manual

and Boards to perform serial communications
with external devices, including the usage of stan-
dard system protocols for OMRON products.

SYSMAC WS02-PSTC1-E W344 Describes the use of the CX-Protocol to create

CX-Protocol Operation Manual protocol macros as communications sequences
to communicate with external devices.

SYSMAC CS/CJ Series W343 Describes the installation and operation of CJ1W-

CJIW-ETNO1/ENT11, CJ1IW-ETN11 Ethernet Unit
Operation Manual

ETNO1, CJIW-ENT11, and CJ1IW-ETN11 Ether-
net Units.

&WARNING Failure to read and understand the information provided in this manual may result in per-
sonal injury or death, damage to the product, or product failure. Please read each section
in its entirety and be sure you understand the information provided in the section and
related sections before attempting any of the procedures or operations given.

PRECAUTIONS

This section provides genera precautions for using the CS/CJ-series Programmable Controllers (PLCs) and related

devices.

The information contained in this section is important for the safe and reliable application of Programmable
Controllers. You must read this section and understand the information contained before attempting to set up or

operatea PLC system.

O OB~ WDN B

6-1
6-2
6-3
6-4

Intended AUTIENCEttt
General Precaltionst
Safety Precautions.o
Operating Environment Precautions.
Application Precautionst
Conformanceto EC Directives.ot

ApplicableDirectives.
CONCEPLS . . ot
Conformanceto EC Directives.coviiiinennn...
Relay Output Noise Reduction Methods

Xii
Xii
Xii
Xiv
Xiv
XiX
XiX
XiX
XiX
XX

Xi

I ntended Audience

1

2

3

Xii

Intended Audience

This manual is intended for the following personnel, who must also have
knowledge of electrical systems (an electrical engineer or the equivalent).

* Personnel in charge of installing FA systems.
* Personnel in charge of designing FA systems.
* Personnel in charge of managing FA systems and facilities.

General Precautions

/\ WARNING

The user must operate the product according to the performance specifica-
tions described in the operation manuals.

Before using the product under conditions which are not described in the
manual or applying the product to nuclear control systems, railroad systems,
aviation systems, vehicles, combustion systems, medical equipment, amuse-
ment machines, safety equipment, and other systems, machines, and equip-
ment that may have a serious influence on lives and property if used
improperly, consult your OMRON representative.

Make sure that the ratings and performance characteristics of the product are
sufficient for the systems, machines, and equipment, and be sure to provide
the systems, machines, and equipment with double safety mechanisms.

This manual provides information for programming and operating the Unit. Be
sure to read this manual before attempting to use the Unit and keep this man-
ual close at hand for reference during operation.

It is extremely important that a PLC and all PLC Units be used for the speci-
fied purpose and under the specified conditions, especially in applications that
can directly or indirectly affect human life. You must consult with your OMRON
representative before applying a PLC System to the above-mentioned appli-
cations.

Safety Precautions

/\ WARNING

/\ WARNING

The CPU Unit refreshes 1/0 even when the program is stopped (i.e., even in
PROGRAM mode). Confirm safety thoroughly in advance before changing the
status of any part of memory allocated to 1/0O Units, Special I1/0O Units, or CPU
Bus Units. Any changes to the data allocated to any Unit may result in unex-
pected operation of the loads connected to the Unit. Any of the following oper-
ation may result in changes to memory status.

* Transferring I/O memory data to the CPU Unit from a Programming
Device.

» Changing present values in memory from a Programming Device.
* Force-setting/-resetting bits from a Programming Device.

» Transferring 1/0 memory files from a Memory Card or EM file memory to
the CPU Unit.

* Transferring I/O memory from a host computer or from another PLC on a
network.

Do not attempt to take any Unit apart while the power is being supplied. Doing
so may result in electric shock.

Safety Precautions

3

/\ WARNING
/\ WARNING
/\ WARNING

/\ WARNING

& Caution

& Caution

& Caution

& Caution

& Caution

Do not touch any of the terminals or terminal blocks while the power is being
supplied. Doing so may result in electric shock.

Do not attempt to disassemble, repair, or modify any Units. Any attempt to do
so may result in malfunction, fire, or electric shock.

Do not touch the Power Supply Unit while power is being supplied or immedi-
ately after power has been turned OFF. Doing so may result in electric shock.

Provide safety measures in external circuits (i.e., not in the Programmable
Controller), including the following items, to ensure safety in the system if an
abnormality occurs due to malfunction of the PLC or another external factor
affecting the PLC operation. Not doing so may result in serious accidents.

» Emergency stop circuits, interlock circuits, limit circuits, and similar safety
measures must be provided in external control circuits.

» The PLC will turn OFF all outputs when its self-diagnosis function detects
any error or when a severe failure alarm (FALS) instruction is executed.
As a countermeasure for such errors, external safety measures must be
provided to ensure safety in the system.

» The PLC outputs may remain ON or OFF due to deposition or burning of
the output relays or destruction of the output transistors. As a counter-
measure for such problems, external safety measures must be provided
to ensure safety in the system.

* When the 24-V-DC output (service power supply to the PLC) is over-
loaded or short-circuited, the voltage may drop and result in the outputs
being turned OFF. As a countermeasure for such problems, external
safety measures must be provided to ensure safety in the system.

Confirm safety before transferring data files stored in the file memory (Mem-
ory Card or EM file memory) to the I/O area (CIO) of the CPU Unit using a
peripheral tool. Otherwise, the devices connected to the output unit may mal-
function regardless of the operation mode of the CPU Unit.

Execute online edit only after confirming that no adverse effects will be
caused by extending the cycle time. Otherwise, the input signals may not be
readable.

The CS1-H, CJ1-H, CJ1M, and CS1D CPU Units automatically back up the
user program and parameter data to flash memory when these are written to
the CPU Unit. I/O memory (including the DM, EM, and HR Areas), however, is
not written to flash memory. The DM, EM, and HR Areas can be held during
power interruptions with a battery. If there is a battery error, the contents of
these areas may not be accurate after a power interruption. If the contents of
the DM, EM, and HR Areas are used to control external outputs, prevent inap-
propriate outputs from being made whenever the Battery Error Flag (A40204)
is ON.

Confirm safety at the destination node before transferring a program to
another node or changing contents of the /O memory area. Doing either of
these without confirming safety may result in injury.

Tighten the screws on the terminal block of the AC Power Supply Unit to the

torque specified in the operation manual. The loose screws may result in
burning or malfunction.

Xiii

Operating Environment Precautions 4

&Caution Do not touch the Power Supply Unit when power is being supplied or immedi-
ately after the power supply is turned OFF. The Power Supply Unit will be hot
and you may be burned.

4 Operating Environment Precautions

&Caution Do not operate the control system in the following locations:

* Locations subject to direct sunlight.

* Locations subject to temperatures or humidity outside the range specified
in the specifications.

* Locations subject to condensation as the result of severe changes in tem-
perature.

* Locations subject to corrosive or flammable gases.

* Locations subject to dust (especially iron dust) or salts.

* Locations subject to exposure to water, oil, or chemicals.
* Locations subject to shock or vibration.

&Caution Take appropriate and sufficient countermeasures when installing systems in
the following locations:

* Locations subject to static electricity or other forms of noise.
» Locations subject to strong electromagnetic fields.

» Locations subject to possible exposure to radioactivity.

* Locations close to power supplies.

&Caution The operating environment of the PLC System can have a large effect on the
longevity and reliability of the system. Improper operating environments can
lead to malfunction, failure, and other unforeseeable problems with the PLC
System. Be sure that the operating environment is within the specified condi-
tions at installation and remains within the specified conditions during the life
of the system.

5 Application Precautions

Observe the following precautions when using the PLC System.

* You must use the CX-Programmer (programming software that runs on
Windows) if you need to program more than one task. A Programming
Console can be used to program only one cyclic task plus interrupt tasks.
A Programming Console can, however, be used to edit multitask pro-
grams originally created with the CX-Programmer.

* There are restrictions in the areas and addresses that can be accessed in
I/O memory of the CS-series CS1 CPU Units when using the C200H Spe-
cial I/0O Units in combination with the following functions.

» There are restrictions in data transfer with the CPU Unit when pro-
gramming transfers inside an ASCII Unit using the PLC READ, PLC
WRITE, and similar commands.

* There are restrictions in data transfer with the CPU Unit for allocated
bits and DM area specifications (areas and addresses for source and
destination specifications).

Xiv

Application Precautions 5

» The DeviceNet (CompoBus/D) output area for a DeviceNet (Compo-
Bus/D) Master Unit (CIO 0050 to CIO 0099) overlaps with the I/O bit
area (CIO 0000 to CIO 0319). Do not use automatic allocations for I/O
in any system where allocations to the DeviceNet system will overlap
with allocations to I/O Units. Instead, use a Programming Device or the
CX-Programmer to manually allocate 1/0O for the DeviceNet devices,
being sure that the same words and bits are not allocated more than
once, and transfer the resulting I/O table to the CPU Unit. If DeviceNet
communications are attempted when the same bits are allocated to
both DeviceNet devices and I/O Units (which can occur even if auto-
matic allocation is used), the DeviceNet devices and I/O Units may
both exhibit faulty operation.

Special bits and flags for PLC Link Units (CIO 0247 to CIO 0250) over-
lap with the 1/O bit area (CIO 0000 to CIO 0319). Do not use automatic
allocations for 1/0 in any system where allocations to the 1/0 Units will
overlap with allocations to 1/0O Units. Instead, use a Programming De-
vice or the CX-Programmer to manually allocate 1/0 to I/O Units, being
sure that the special bits and flags for PLC Link Units are not used, and
transfer the resulting I/O table to the CPU Unit. If operation is attempt-
ed when the special bits and flags for PLC Link Units are also allocated
to 1/0 Units (which can occur even if automatic allocation is used), the
PLC Link Units and 1/O Units may both exhibit faulty operation.

AWARNING Always heed these precautions. Failure to abide by the following precautions
could lead to serious or possibly fatal injury.

* Always connect to a ground of 100 Q or less when installing the Units. Not
connecting to a ground of 100 Q or less may result in electric shock.

» A ground of 100 Q or less must be installed when shorting the GR and LG
terminals on the Power Supply Unit.

 Always turn OFF the power supply to the PLC before attempting any of
the following. Not turning OFF the power supply may result in malfunction
or electric shock.

» Mounting or dismounting Power Supply Units, I/O Units, CPU Units, In-
ner Boards, or any other Units.

» Assembling the Units.

» Setting DIP switches or rotary switches.

» Connecting cables or wiring the system.

» Connecting or disconnecting the connectors.

&Caution Failure to abide by the following precautions could lead to faulty operation of
the PLC or the system, or could damage the PLC or PLC Units. Always heed
these precautions.

» The user program and parameter area data in the CS1-H, CS1D, CJ1-H,
and CJ1M CPU Units are backed up in the built-in flash memory. The
BKUP indicator will light on the front of the CPU Unit when the backup
operation is in progress. Do not turn OFF the power supply to the CPU
Unit when the BKUP indicator is lit. The data will not be backed up if
power is turned OFF.

XV

Application Precautions

5

XVi

* CS1-H, CS1D, CJ1, CJ1-H, and CJ1M CPU Units are shipped with the
battery installed and the time already set on the internal clock. It is not
necessary to clear memory or set the clock before application, as it is for
the CS-series CS1 CPU Units.

When using a CS-series CS1 CPU Unit for the first time, install the
CS1W-BAT1 Battery provided with the Unit and clear all memory areas
from a Programming Device before starting to program. When using the
internal clock, turn ON power after installing the battery and set the clock
from a Programming Device or using the DATE(735) instruction. The clock
will not start until the time has been set.

When the CPU Unit is shipped from the factory, the PLC Setup is set so
that the CPU Unit will start in the operating mode set on the Programming
Console mode switch. When a Programming Console is not connected, a
CS-series CS1 CPU Unit will start in PROGRAM mode, but a CS1-H,
CS1D, CJ1, CJ1-H, or CJ1M CPU Unit will start in RUN mode and opera-
tion will begin immediately. Do not advertently or inadvertently allow oper-
ation to start without confirming that it is safe.

When creating an AUTOEXEC.IOM file from a Programming Device (a
Programming Console or the CX-Programmer) to automatically transfer
data at startup, set the first write address to D20000 and be sure that the
size of data written does not exceed the size of the DM Area. When the
data file is read from the Memory Card at startup, data will be written in
the CPU Unit starting at D20000 even if another address was set when
the AUTOEXEC.IOM file was created. Also, if the DM Area is exceeded
(which is possible when the CX-Programmer is used), the remaining data
will be written to the EM Area.

Always turn ON power to the PLC before turning ON power to the control
system. If the PLC power supply is turned ON after the control power sup-
ply, temporary errors may result in control system signals because the
output terminals on DC Output Units and other Units will momentarily turn
ON when power is turned ON to the PLC.

Fail-safe measures must be taken by the customer to ensure safety in the
event that outputs from Output Units remain ON as a result of internal cir-
cuit failures, which can occur in relays, transistors, and other elements.

Fail-safe measures must be taken by the customer to ensure safety in the
event of incorrect, missing, or abnormal signals caused by broken signal
lines, momentary power interruptions, or other causes.

Interlock circuits, limit circuits, and similar safety measures in external cir-
cuits (i.e., not in the Programmable Controller) must be provided by the
customer.

Do not turn OFF the power supply to the PLC when data is being trans-
ferred. In particular, do not turn OFF the power supply when reading or
writing a Memory Card. Also, do not remove the Memory Card when the
BUSY indicator is lit. To remove a Memory Card, first press the memory
card power supply switch and then wait for the BUSY indicator to go out
before removing the Memory Card.

If the I/O Hold Bit is turned ON, the outputs from the PLC will not be
turned OFF and will maintain their previous status when the PLC is
switched from RUN or MONITOR mode to PROGRAM mode. Make sure
that the external loads will not produce dangerous conditions when this
occurs. (When operation stops for a fatal error, including those produced
with the FALS(007) instruction, all outputs from Output Unit will be turned
OFF and only the internal output status will be maintained.)

Application Precautions

5

* The contents of the DM, EM, and HR Areas in the CPU Unit are backed
up by a Battery. If the Battery voltage drops, this data may be lost. Provide
countermeasures in the program using the Battery Error Flag (A40204) to
re-initialize data or take other actions if the Battery voltage drops.

When supplying power at 200 to 240 V AC with a CS-series PLC, always
remove the metal jumper from the voltage selector terminals on the Power
Supply Unit (except for Power Supply Units with wide-range specifica-
tions). The product will be destroyed if 200 to 240 V AC is supplied while
the metal jumper is attached.

 Always use the power supply voltages specified in the operation manuals.
An incorrect voltage may result in malfunction or burning.

Take appropriate measures to ensure that the specified power with the
rated voltage and frequency is supplied. Be particularly careful in places
where the power supply is unstable. An incorrect power supply may result
in malfunction.

Install external breakers and take other safety measures against short-cir-
cuiting in external wiring. Insufficient safety measures against short-cir-
cuiting may result in burning.

Do not apply voltages to the Input Units in excess of the rated input volt-
age. Excess voltages may result in burning.

Do not apply voltages or connect loads to the Output Units in excess of
the maximum switching capacity. Excess voltage or loads may result in
burning.

Disconnect the functional ground terminal when performing withstand
voltage tests. Not disconnecting the functional ground terminal may result
in burning.

Install the Units properly as specified in the operation manuals. Improper
installation of the Units may result in malfunction.

» With CS-series PLCs, be sure that all the Unit and Backplane mounting
screws are tightened to the torque specified in the relevant manuals.
Incorrect tightening torque may result in malfunction.

Be sure that all terminal screws, and cable connector screws are tight-
ened to the torque specified in the relevant manuals. Incorrect tightening
torque may result in malfunction.

Leave the label attached to the Unit when wiring. Removing the label may
result in malfunction if foreign matter enters the Unit.

Remove the label after the completion of wiring to ensure proper heat dis-
sipation. Leaving the label attached may result in malfunction.

Use crimp terminals for wiring. Do not connect bare stranded wires

directly to terminals. Connection of bare stranded wires may result in
burning.

Wire all connections correctly.

Double-check all wiring and switch settings before turning ON the power
supply. Incorrect wiring may result in burning.

* Mount Units only after checking terminal blocks and connectors com-
pletely.

Be sure that the terminal blocks, Memory Units, expansion cables, and
other items with locking devices are properly locked into place. Improper
locking may result in malfunction.

XVii

Application Precautions

5

XVili

» Check switch settings, the contents of the DM Area, and other prepara-
tions before starting operation. Starting operation without the proper set-
tings or data may result in an unexpected operation.

» Check the user program for proper execution before actually running it on
the Unit. Not checking the program may result in an unexpected opera-
tion.

Confirm that no adverse effect will occur in the system before attempting
any of the following. Not doing so may result in an unexpected operation.

» Changing the operating mode of the PLC.
* Force-setting/force-resetting any bit in memory.
¢ Changing the present value of any word or any set value in memory.

» Resume operation only after transferring to the new CPU Unit the con-
tents of the DM Area, HR Area, and other data required for resuming
operation. Not doing so may result in an unexpected operation.

Do not pull on the cables or bend the cables beyond their natural limit.
Doing either of these may break the cables.

» Do not place objects on top of the cables or other wiring lines. Doing so
may break the cables.

» Do not use commercially available RS-232C personal computer cables.
Always use the special cables listed in this manual or make cables
according to manual specifications. Using commercially available cables
may damage the external devices or CPU Unit.

» Never connect pin 6 (5-V power supply) on the RS-232C port on the CPU
Unit to any device other than an NT-ALOO1 or CJ1W-CIF11 Adapter.The
external device or the CPU Unit may be damaged.

When replacing parts, be sure to confirm that the rating of a new part is
correct. Not doing so may result in malfunction or burning.

Before touching a Unit, be sure to first touch a grounded metallic object in
order to discharge any static build-up. Not doing so may result in malfunc-
tion or damage.

When transporting or storing circuit boards, cover them in antistatic mate-
rial to protect them from static electricity and maintain the proper storage
temperature.

Do not touch circuit boards or the components mounted to them with your
bare hands. There are sharp leads and other parts on the boards that
may cause injury if handled improperly.

» Do not short the battery terminals or charge, disassemble, heat, or incin-
erate the battery. Do not subject the battery to strong shocks. Doing any
of these may result in leakage, rupture, heat generation, or ignition of the
battery. Dispose of any battery that has been dropped on the floor or oth-
erwise subjected to excessive shock. Batteries that have been subjected
to shock may leak if they are used.

UL standards required that batteries be replaced only by experienced
technicians. Do not allow unqualified persons to replace batteries.

» With a CJ-series PLC, the sliders on the tops and bottoms of the Power
Supply Unit, CPU Unit, 1/0O Units, Special I/O Units, and CPU Bus Units
must be completely locked (until they click into place). The Unit may not
operate properly if the sliders are not locked in place.

» With a CJ-series PLC, always connect the End Plate to the Unit on the
right end of the PLC. The PLC will not operate properly without the End
Plate

Conformanceto EC Directives 6

» Unexpected operation may result if inappropriate data link tables or
parameters are set. Even if appropriate data link tables and parameters
have been set, confirm that the controlled system will not be adversely
affected before starting or stopping data links.

» CPU Bus Units will be restarted when routing tables are transferred from
a Programming Device to the CPU Unit. Restarting these Units is required
to read and enable the new routing tables. Confirm that the system will
not be adversely affected before allowing the CPU Bus Units to be reset.

6 Conformance to EC Directives

6-1 Applicable Directives

6-2 Concepts

Note

* EMC Directives
» Low Voltage Directive

EMC Directives

OMRON devices that comply with EC Directives also conform to the related
EMC standards so that they can be more easily built into other devices or the
overall machine. The actual products have been checked for conformity to
EMC standards (see the following note). Whether the products conform to the
standards in the system used by the customer, however, must be checked by
the customer.

EMC-related performance of the OMRON devices that comply with EC Direc-
tives will vary depending on the configuration, wiring, and other conditions of
the equipment or control panel on which the OMRON devices are installed.
The customer must, therefore, perform the final check to confirm that devices
and the overall machine conform to EMC standards.

Applicable EMC (Electromagnetic Compatibility) standards are as follows:

EMS (Electromagnetic Susceptibility): EN61131-2 (CS-series)/
EN61000-6-2 (CJ-series)
EMI (Electromagnetic Interference): EN50081-2
(Radiated emission: 10-m regulations)

Low Voltage Directive

Always ensure that devices operating at voltages of 50 to 1,000 V AC and 75
to 1,500 V DC meet the required safety standards for the PLC (EN61131-2).

6-3 Conformance to EC Directives

1,2,3...

The CS/CJ-series PLCs comply with EC Directives. To ensure that the
machine or device in which the CS/CJ-series PLC is used complies with EC
Directives, the PLC must be installed as follows:

1. The CS/CJ-series PLC must be installed within a control panel.

2. You must use reinforced insulation or double insulation for the DC power
supplies used for the communications power supply and 1/O power sup-
plies.

3. CS/CJ-series PLCs complying with EC Directives also conform to the
Common Emission Standard (EN50081-2). Radiated emission character-
istics (10-m regulations) may vary depending on the configuration of the
control panel used, other devices connected to the control panel, wiring,

XiX

Conformance to EC Directives 6

6-4

Countermeasures

Countermeasure Exam

and other conditions. You must therefore confirm that the overall machine
or equipment complies with EC Directives.

Relay Output Noise Reduction Methods

The CS/CJ-series PLCs conforms to the Common Emission Standards
(EN50081-2) of the EMC Directives. However, noise generated by relay out-
put switching may not satisfy these Standards. In such a case, a noise filter
must be connected to the load side or other appropriate countermeasures
must be provided external to the PLC.

Countermeasures taken to satisfy the standards vary depending on the
devices on the load side, wiring, configuration of machines, etc. Following are
examples of countermeasures for reducing the generated noise.

(Refer to EN50081-2 for more details.)

Countermeasures are not required if the frequency of load switching for the
whole system with the PLC included is less than 5 times per minute.

Countermeasures are required if the frequency of load switching for the whole
system with the PLC included is more than 5 times per minute.

les

When switching an inductive load, connect an surge protector, diodes, etc., in
parallel with the load or contact as shown below.

Inductive
load

is a time lag between the moment the
circuit is opened and the moment the
load is reset.

If the supply voltage is 24 or 48 V,
insert the surge protector in parallel
with the load. If the supply voltage is
100 to 200V, insert the surge protector
between the contacts.

Circuit Current Characteristic Required element
AC DC
CR method Yes Yes If the load is a relay or solenoid, there | The capacitance of the capacitor must

be 1 to 0.5 pF per contact current of

1 A and resistance of the resistor must
be 0.5to 1 Q per contact voltage of 1 V.
These values, however, vary with the
load and the characteristics of the
relay. Decide these values from experi-
ments, and take into consideration that
the capacitance suppresses spark dis-
charge when the contacts are sepa-
rated and the resistance limits the
current that flows into the load when
the circuit is closed again.

The dielectric strength of the capacitor
must be 200 to 300 V. If the circuit is an
AC circuit, use a capacitor with no
polarity.

XX

Conformanceto EC Directives

Characteristic

Required element

The diode connected in parallel with
the load changes energy accumulated
by the coil into a current, which then
flows into the coil so that the current
will be converted into Joule heat by the
resistance of the inductive load.

This time lag, between the moment the
circuit is opened and the moment the
load is reset, caused by this method is
longer than that caused by the CR
method.

The reversed dielectric strength value
of the diode must be at least 10 times
as large as the circuit voltage value.
The forward current of the diode must
be the same as or larger than the load
current.

The reversed dielectric strength value
of the diode may be two to three times
larger than the supply voltage if the
surge protector is applied to electronic
circuits with low circuit voltages.

Circuit Current
AC DC
Diode method No Yes
o
2
[T sz
Power £9o
supply
Yes Yes

Varistor method

Inductive
load

The varistor method prevents the impo-
sition of high voltage between the con-
tacts by using the constant voltage
characteristic of the varistor. There is
time lag between the moment the cir-
cuitis opened and the moment the load
is reset.

If the supply voltage is 24 or 48 V,
insert the varistor in parallel with the
load. If the supply voltage is 100 to
200 V, insert the varistor between the
contacts.

When switching a load with a high inrush current such as an incandescent
lamp, suppress the inrush current as shown below.

Countermeasure 1

ouT .

COM

Providing a dark current of
approx. one-third of the rated
value through an incandescent
lamp

Countermeasure 2

R
ouT

+

COM

Providing a limiting resistor

XXi

Conformance to EC Directives

XXii

SECTION 1
| ntroduction

This section provides information on general instruction characteristics as well as the errors that can occur during
instruction execution.

1-1 General Instruction Characteristics., 2
1-1-1 Program Capatityot 2
1-1-2 Differentiated Instructions 3
1-1-3 Instruction Variationst 4
1-1-4 Instruction Location and Execution Conditions. 5
1-1-5 Inputting DatainOperands. 5
1-1-6 DataFormats. e 10
1-2 Instruction ExecutionChecks. i 12
1-2-1 ErrorsOccurring at Instruction Execution 12
1-2-2 Fatal Errors (Program Errors).o 12

General Instruction Characteristics Section 1-1

1-1 General Instruction Characteristics

1-1-1 Program Capacity

The program capacity tells the size of the user program area in the CPU Unit
and is expressed as the number of program steps. The number of steps
required in the user program area for each of the CS/CJ-series instructions
varies from 1 to 7 steps, depending upon the instruction and the operands

used with it.

CS Series

The following tables show the maximum number of steps that can be pro-

grammed in each CS-series CPU Unit.

* CS1-H CPU Units

Model Program capacity I/O points
CS1H-CPU67H 250K steps 5,120
CS1H-CPU66H 120K steps
CS1H-CPU65H 60K steps
CS1H-CPU64H 30K steps
CS1H-CPUG3H 20K steps
CS1G-CPU45H 60K steps
CS1G-CPU44H 30K steps 1,280
CS1G-CPU43H 20K steps 960
CS1G-CPU42H 10K steps

» CS1 CPU Units

Model Program capacity I/O points
CS1H-CPU67-E 250K steps 5,120
CS1H-CPU66-E 120K steps
CS1H-CPU65-E 60K steps
CS1H-CPU64-E 30K steps
CS1H-CPUG3-E 20K steps
CS1G-CPU45-E 60K steps
CS1G-CPU44-E 30K steps 1,280
CS1G-CPU43-E 20K steps 960
CS1G-CPU42-E 10K steps

» CS1D CPU Units

Model Program capacity I/0 points
CS1D-CPU67H 250K steps 5,120
CS1D-CPU65H 60K steps

CJ Series

The following tables show the maximum number of steps that can be pro-

grammed in each CJ-series CPU Unit.

* CJ1-H CPU Units

Model

Program capacity

I/O points

CJ1G-CPU44H

30K steps

CJ1H-CPU66H 120K steps 2,560
CJ1H-CPUG5H 60K steps
CJ1G-CPU45H 60K steps 1,280

General Instruction Characteristics Section 1-1
Model Program capacity I/0 points
CJ1G-CPU43H 20K steps 960
CJ1G-CPU42H 10K steps
» CJ1 CPU Units
Model Program capacity I/O points
CJ1G-CPU45 60K steps 1,280
CJ1G-CPU44 30K steps
* CJ1IM CPU Units
Model Program capacity I/O points
CJ1M-CPU23 20K steps 640
CJ1IM-CPU22 10K steps 320
CJ1M-CPU13 20K steps 640
CJ1M-CPU12 10K steps 320

1-1-2

Note

Differentiated

Program capacity for CS/CJ-series PLCs is measured in steps, whereas pro-
gram capacity for previous OMRON PLCs, such as the C-series and CV-
series PLCs, was measured in words. Basically speaking, 1 step is equivalent
to 1 word. The amount of memory required for each instruction, however, is
different for some of the CS/CJ-series instructions, and inaccuracies will occur
if the capacity of a user program for another PLC is converted for a CS/CJ-
series PLC based on the assumption that 1 word is 1 step. Refer to the infor-
mation at the end of SECTION 4 Instruction Execution Times and Number of
Steps for guidelines on converting program capacities from previous OMRON
PLCs.

The number of steps in a program is not the same as the number of instruc-
tions. For example, LD and OUT require 1 step each, but MOV(021) requires
3 steps. Other instructions require up to 7 steps each. The number of steps
required by an instruction is also increased by one step for each double-
length operand used in it. For example, MOVL(498) normally requires 3 steps,
but 4 steps will be required if a constant is specified for the source word oper-
and, S. Refer to SECTION 4 Instruction Execution Times and Number of
Steps for the number of steps required for each instruction.

Instructions

Most instructions in CS/CJ-series PLCs are provided with both non-differenti-
ated and upwardly differentiated variations, and some are also provided with a
downwardly differentiated variation.
A non-differentiated instruction is executed every time it is scanned.
» An upwardly differentiated instruction is executed only once after its exe-
cution condition goes from OFF to ON.

General Instruction Characteristics

Section 1-1

* A downwardly differentiated instruction is executed only once after its
execution condition goes from ON to OFF

Variation

Instruction type

Operation

Format

Example

Non-
differentiated

Output instructions
(instructions requiring
an execution condi-
tion)

The instruction is exe-
cuted every cycle while
the execution condition is
true (ON).

—

Output instruction
executed each cycle

H Howov s

Input instructions
(instructions used as
execution conditions)

The bit processing (such
as read, comparison, or
test) is performed every

cycle. The execution con-

dition is true while the
result is ON.

Input instruction
executed each cycle

Hi

HF |

Upwardly
differentiated
(with @ prefix)

Output instructions

The instruction is exe-
cuted just once when the
execution condition goes
from OFF to ON.

Instruction executed _|

|—| once for upward dif-

ferentiation

|—| emov

MOV(021) executed once
for each OFF to ON transi-
tion in CIO 000102.

Input instructions
(instructions used as
execution conditions)

The bit processing (such
as read, comparison, or
test) is performed every

cycle. The execution con-

dition is true for one cycle
when the result goes
from OFF to ON.

Upwardly differentiated
input instruction

i

——

ON execution condition created
for one cycle only for each OFF
to ON transition in CIO 000103.

Downwardly
differentiated
(with % prefix)

Output instructions

The instruction is exe-
cuted just once when the
execution condition goes
from ON to OFF.

%Instruction

executed once for
| I downward differenti

ation

0001
|—| FCo2" oseT :I%

SET executed once for

Input instructions
(instructions used as
execution conditions)

The bit processing (such
as read, comparison, or
test) is performed every

cycle. The execution con-

dition is true for one cycle
when the result goes
from ON to OFF.

Downwardly differentiated
input instruction

i

each ON to OFF transition
0001

in C1O 000102.
—i—

ON execution condition created
for one cycle only for each ON to
OFF transition in CIO 000103.

1-1-3

Note The downwardly differentiated option (%) is available only for the LD, AND,
OR, and RSET instructions. To create downwardly differentiated variations of
other instructions, control the execution of the instruction with work bits con-
trolled with DIFD(014) or DOWN(522).

Instruction Variations

The variation prefixes (@, %, and !) can be added to an instruction to create a
differentiated instruction or provide immediate refreshing.

Variation

Prefix

Operation

Differentiation

ferentiated

Upwardly dif- | @

tion.

Creates an upwardly differentiated instruc-

Downwardly |%
differentiated

tion.

Creates a downwardly differentiated instruc-

Immediate refreshing !

is executed.

The instruction’s operand data in the 1/O
Area will be refreshed when the instruction

! @ MOV

L=

Instruction mnemonic
Up-differentiation variation
Immediate-refreshing variation

General Instruction Characteristics Section 1-1

1-1-4 Instruction Location and Execution Conditions

The following table shows the locations in which instructions can be pro-
grammed. The table also shows when an instruction requires an execution
condition and when it does not. Refer to SECTION 2 Summary of Instructions
for details on specific instructions.

Instruction type Location Execution Format Examples
condition
Input | Instructions |Atthe left busorat |Notrequired || r== B LD, LD TST, and input com-
that start the start of an |_'._ ___ | parison instructions such as
logic instruction block LD >
conditions
Connecting |Between a starting | Required e AND, OR, AND TST, input
instructions | instruction and out- |T_| |_:_- | comparison instructions such
put instruction T as AND >, UP, DOWN, NOT
Output At the right bus Required e The majority of instructions
|'l:| |_'_-_|I (such as OUT and MQOV)
Not required Instructions such as END,
| - | JME, FOR, and ILC

In addition to these instructions, the CS/CJ-series PLCs are equipped with
block programming instructions. Refer to the description of the block program-
ming instructions for details.

Note If an execution condition does not precede an instruction that requires one, a
program error will occur when the program is checked from a Peripheral
Device.

1-1-5 Inputting Data in Operands

Operands are parameters that are set in advance with the 1/O memory
addresses or constants to be used when the instruction is executed. There
are basically three kinds of operands: Source operands, destination oper-
ands, and numbers.

-1 Mov JMP

#0000 |+ S (Source) &3 *~ N (Number)
D00000 [=— D (Destination)

Operand Usual Contents
code
Source Address containing | S Source Source data other than
the data or the data operand | control data
itself C Control | Control data with a bit
data or bits controlling
instruction execution

Destination | Address where the D
data will be stored

Number Contains a number N
such as a jump num-
ber or subroutine
number.

Note An instruction’s operands may also be referred to by their position in the
instruction (first operand, second operand, ...). The codes used for the oper-
and vary with the specific function of the operand.

General Instruction Characteristics Section 1-1

—__Mov
#0000 |+ First operand

D00000 |+=—— Second operand

Specifying Bit Addresses

Description Example Instruction example

To specify a bit address, specify the word 0001 02 08(2)1
dd d bit add directly.
address and bit address directly. Bit 02 i

[Word CIO 0001

Bit number
— Word address

Note The word address + bit number format is
not used for Timer/Counter Completion
Flags or Task Flags.

Specifying Word Addresses

Description Example Instruction example
To specify‘a word address, specify the word 0003 MOV 0003 D00200
address directly. Word CIO 0003
BN D00200
\— Word address [Word D00200

Specifying Indirect DM/EM Addresses in Binary Mode

Description Example Instruction example

When the @ prefix is input before a DM or EM
address, the contents of that word specifies
another word that is used as the operand. The
contents can be 0000 to 7FFF (0 to 32,767),
corresponding to the desired word address in the
DM or EM Area.

@DbUooIn.
00000 to 32767
Content Si (0000 to 7FFF)
ol |

When the contents of @DLICICICIC] is between @D00300 MOV #0001
0000 and 7FFF (00000 to 32,767), the corre- @D00300

sponding word between D00000 and D32767 is
specified.

Decimal: 256

Specifies D00256.

Add the @ prefix.

When the contents of @DULILICIL] is between .
8000 and FFFF (32,768 to 65,535), the corre- | @P00300

sponding word between EO_00000 and E0_32767

in EM bank 0 is specified. -
Decimal: 32,769

Specifies EO_00001.

General Instruction Characteristics

Section 1-1

Description

Example

Instruction example

0000 and 7FFF (00000 to 32,767), the corre-
sponding word between En[]_00000 and
Enl[]_32767 is specified.

When the contents of @Enl]_[JJ0] is between @E1 00200

0101

Decimal: 257

}

Specifies E1_00257.

8000 and FFFF (32,768 to 65,535), the corre-
sponding word between E ((1+1) _00000 and E
(L1+1) 32767 (in the next EM bank) is specified.

When the contents of @Enl_[JJIO is between @E1_00200

8 00 2

Decimal: 32770

Specifies E2_00002.

MOV #0001
@E1_00200

Note When binary mode is selected in the PLC Setup, the DM Area and current EM
bank addresses (bank 0 to C) are treated as consecutive memory addresses.
A word in EM bank 0 will be specified if an indirectly addressed DM word con-
tains a value greater than 32,767. For example, EO0000 in bank 0 will be
specified when the indirect-addressing DM word contains a hexadecimal

value of 8000 (32,768).

A word in the next EM bank will be specified if an indirectly addressed EM
word contains a value greater than 32,767. For example, E3_00000 will be
specified when the indirect-addressing EM word in bank 2 contains a hexa-
decimal value of 8000 (32,768).

Specifying Indirect DM/EM Addresses in BCD Mode

that word specify another word that is
used as the operand. The contents can
be 0000 to 9999, corresponding to the
desired word address in the DM or EM
Area.

xDLIOICIEN

_ 0000 to 9999
ovenl) g2

ol

Method Description Example Instruction example
g‘ dd(;freegtsag’” EM " |When the x prefix is input before aDM | ¥D00200 MOV #0001 xD00200
(BCD mode) or EM address, the BCD contents of

/

Specifies D00100.

Add the x prefix.

General Instruction Characteristics

Section 1-1

Addressing Index Registers

the 1/0 memory address in the
register is used as the operand.

Decrement by 1: ,—IRL]
Decrement by 2: ,——IR[]

Note Index registers will be dec-
remented when the instruc-
tion is executed even if an
error occurs and the Error
Flag turns ON.

Method Description Example Instruction example
Directly MOVR(560) moves the PLC memory address of a | IRO MOVR 0010 IR0
addressing word or bit to an Index Register (IR0 to IR15). IR2 Stores the PLC memory address
Index Registers | (MOVRW(561) moves the PLC memory address of of C10 0010 in IRO.
a timer or counter PV to an Index Register.) MOVR 000102 IR2
Stores the PLC memory address
of CIO 000102 in IR2.
Indirect Basic opera- The word or bit at the I/O memory |,IRO LD ,IRO
addressing with |tion (no offset) |address contained in IR[]is used IR1 Loads the status of the bit at the I/
Index Registers as the operand. Input a comma O memory address contained in
before the Index Register to indi- IRO.
cate indirect addressing. MOV #0001, IR1
(The bit/word designation can be Moves #0001 to the word at the I/
determined by the instruction or O memory address contained in
operand.) IR1.
Constant offset | The offset value (-2,048 to +5,IR0 LD +5,IR0
+2,047) is added to the I/O mem- | 131 |g7 |Adds 5 to the I/O memory
ory address contained in IRC] and address contained in IR0 and
the resulting address is used as loads the status of the bit at that
the operand. address.
(The offset is converted to binary MOV #0001 +31 ,IR1
when the instruction is executed.) Adds 31 to the 1/O memory
address contained in IR1 and
moves #0001 to the word at that
address.
DR offset The signed binary content of the |DRO ,IRO |LD DRO ,IRO
Data Register is added to the /O | prp |r1 |Adds the content of DRO to the I/
memory address contained in O memory address contained in
IR[] and the resulting address is IR0 and loads the status of the bit
used as the operand. at that address.
MOV #0001 DRO ,IR1
Adds the content of DRO to the I/
O memory address contained in
IR1 and moves #0001 to the word
at that address.
Auto-increment | After the I/O memory addressis |,IRO + + LD ,IRO + +
read from IRLJ, the content of the | |Rq + Loads the status of the bit at the I/
Index Register is incremented by O memory address contained in
one or two. IR0 and then increments the reg-
Increment by 1: RO+ ister by two.
Increment by 2: | IRC++ MOV #0001 ,IR1 +
Note Index registers will be incre- Moves #0001 to the word at the I/
mented when the instruction O memory address contained in
is executed even if an error IR1 and then increments the reg-
occurs and the Error Flag ister by one.
turns ON.
Auto-decre- The content of IR[] is decre- ,——1R0 LD,--1IRO
ment mented by one or two and then | _|rq Decrements the content of IR0 by

two and then loads the status of
the bit at that /O memory
address.

MOV #0001 , — IR1

Decrements the content of IR0 by
one and then moves #0001 to the
word at that I/O memory address.

Note Make sure that the contents of index registers indicate valid /0O memory
addresses.

General I nstruction Characteristics Section 1-1
Specifying Constants
Method Applicable Data Code Range Example
operands format
Constant All binary data | Unsigned # #0000 to #FFFF
(16-bit data) | and binary data | binary
withinarange [gjgned dec- |+ _32,768 t0 +32,767 |
imal
Unsigned & &0 to &66,535
decimal
All BCD data BCD # #0000 to #9999
and BCD data
within a range
Constant All binary data | Unsigned # #0000 0000 to -—-
(32-bit data) | and binary data | binary #FFFF FFFF
withinarange [gigned dec- |+ —2,147,483,648 to
imal - +2,147,483,647
Unsigned & &0 to &4,294,967,295 |---
decimal
All BCD data BCD # #0000 0000 to
and BCD data #9999 9999
within a range
Specifying Text Strings
Method Description Code Examples Instruction example
Text strings | Text is stored in ASC” (1byte/ "ABCDE" MOV$ D00100 D00200
character excluding special | g
characters) starting with the — D00100| 41 | 42
lower byte of the lowest word C D D00101| 43 | 44
in the range. "E" | NUL D00102| 45 00
If there is an odd number of L l
characters, 00 (NULL) is 41 42
stored in the higher byte of the 43 | 44 D00200| 41 | 42
last word in the range. 45 | 00 D00201| 43 | 44
If there is an even number of . D00202 | 45 | 00
characters, 0000 (two NULLS) ABCD
are stored in the word after the AT | BT
last in the range. "c" | "D"
NUL | NUL
I
41 | 42
43 | 44
00 00

General Instruction Characteristics

Section 1-1

The following diagram shows the characters that can be expressed in ASCII.

Leftmost bit
0{112/3/4/5/6/7|8/9 AB|IC|DIEIF
0 Sp|0|@|P| ‘ip — 2|3
1 111[A|Qla|q o |TI1F |
2 » 12|B|R|b|r IEEVAES
3 #|3|C|S|c|s IBACaS =
4 $/4|D|T|d|t N B o e o
|5 %|5/E|Uje|u AT
gG & 6IF|V|f|v FH =3
g7 " |7/G\Wig|w 7 ¥ X|Z
EE (8[H[X[h x| | [+[7[%[V
9) 19l1]Yl]ily CICAPAY
A %1 |J[Z]jlz T[aANL
B +; K [[k] # ¥ e0
C , I<IL¥[1 S AP2VAY
D —|=/M{] [m]} | RN
E . [>IN[" [n|~ 3|k |R
F /1?710_Jo ViEdE

1-1-6 Data Formats

The following table shows the data formats that can be used in CS/CJ-series

PLCs.
Name Format Decimal | Hexadecimal
range range
Unsigned 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0to 0000 to FFFF
data CITTTTITTTITTITTITITIT] |
data
Binary %215 214 213 712 3211 210 99 98 27 26 95 24 23 22 9l 20
Decimal 3276816384 819240962048 1024 512 256! 128 64 32 1618 4 2 1 |
Hexa- 1 3 2 1 0 . 93 2 1 0 3 2 1 0 3 2 1 0:
Howmal | 2 2220 20 2% 22 21 200 2% 22 2 200 2% 22 21 2
Signed 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 —32,768 | 8000 to 7FFF
binary to
data HEEEEE NN . e
Binary %215 214 213 212 3211 210 29 28 27 26 25 24 23 22 21 20
Decimal 32768 16384 819240962048 1024 512 256,128 64 32 16.8 4 2 1 .
Hexa- 1 3 2 1 0 . 93 2 1 0 3 2 1 0" 3 2 1 0:
Howmal | 2 2220 20 2% 22 21 200 2% 22 21 200 2% 22 21 20
Sign bit
0: Positive
1: Negative
BCD | 2% 22 21 20 123 22 pl 20 23 22 pl 0033 22 pl 0
P
Decimal . 0t09 | 0t9 . 09 | 0Oto9

10

General Instruction Characteristics Section 1-1

Name Format Decimal |Hexadecimal
range range
Floating- 31 30 29 23 22 21 20 19 18 17 3 2 1 0
mar o L] i HER
mal
Ly_/
Sign of Exponent . Mantissa
mantissa Binary
/—}%

Value = (-1)S19" x 1.[Mantissa] x 25xPonent
+ Sign (bit 31) 1: negative or 0: positive

* Mantissa The mantissa includes 23 bits from bit 00 to bit 22
and indicates this portion below the decimal point
in 1.LJ0000..... in binary.

» Exponent The exponent includes 8 bits from bit 23 to bit 30
and indicates n plus 127 in 2" in binary.

Note This format conforms to IEEE754 standards for single-precision floating-point data
and is used only with instructions that convert or calculate floating-point data. It can
be used to set or monitor from the 1/0O memory Edit and Monitor Screen on the CX-
Programmer (not supported by the Programming Consoles). As such, users do not
need to know this format although they do need to know that the formatting takes up
two words.

Double- 63 62 61 52 51 50 49 48 47 46 3 2 1 0
foatng: | | HEEEEREEE

floating-
point deci- —

mal Sign of Exponent Mantissa
mantissa Binary

—

Value = (-1)39"x 1.[Mantissa] x 25xponent
Sign (bit 63) 1: negative or O: positive

Mantissa The 52 bits from bit 00 to bit 51 contain the mantissa,
i.e., the portion below the decimal pointin 1.L1CI].....,
in binary.

Exponent The 11 bits from bit 52 to bit 62 contain the exponent
Thenexponent is expressed in binary as 1023 plus n
in 2",

Note This format conforms to IEEE754 standards for double-precision floating-point
data and is used only with instructions that convert or calculate floating-point
data. It can be used to set or monitor from the 1/O memory Edit and Monitor
Screen on the CX-Programmer (not supported by the Programming Consoles).
As such, users do not need to know this format although they do need to know
that the formatting takes up four words.

Signed Binary Numbers Negative signed-binary numbers are expressed as the 2’s complement of the
absolute hexadecimal value. For a decimal value of -12,345, the absolute
value is equivalent to 3039 hexadecimal. The 2's complement is 10000 — 3039
(both hexadecimal) or CFC7.

To convert from a negative signed binary number (CFC7) to decimal, take the
2's complement of that number (10000 — CFC7 = 3039), convert to decimal
(3039 hexadecimal = 12,345 decimal), and add a minus sign (-12,345).

11

Instruction Execution Checks Section 1-2

1-2
1-2-1

Instruction Execution Checks

Errors Occurring at Instruction Execution

An instruction’s operands and placement are checked when an instruction is
input from a Peripheral Device or a program check is performed from a
Peripheral Device (other than a Programming Console), but these are not final
checks. The following four errors can occur when an instruction is executed.

Instruction Processing Error (ER Flag ON)

Normally, Instruction Processing Errors are non-fatal errors, but the PLC
Setup can be set to treat Instruction Processing Errors as fatal errors. If this
setting has been made, the Instruction Processing Error Flag (A29508) will be
turned ON and program execution will stop when an Instruction Processing
Error occurs.

Access Error (AER Flag ON)

Normally, Access Errors are non-fatal errors, but the PLC Setup can be set to
treat these errors as fatal errors. If this setting has been made, the lllegal
Access Error Flag (A29510) and the Indirect DM/EM BCD Error Flag
(A29509) will be turned ON and program execution will stop when an Access
Error occurs.

lllegal Instruction Error

The lllegal Instruction Error Flag (A29514) will be turned ON and program
execution will stop when this error occurs.

UM (User Program Memory) Overflow Error

The UM Overflow Error Flag (A29515) will be turned ON and program execu-
tion will stop when this error occurs.

1-2-2 Fatal Errors (Program Errors)

12

Program execution will be stopped when one of the following program errors
occurs. When a program error has occurred, the task number of the task that
was being executed when program execution was stopped is written to A294
and the program address is written to A298 and A299.

Use the contents of these words to locate the program error and correct it as
necessary.

Address Description

A294 The task number of the current task is written to this word when pro-
gram execution is stopped because of a program error.

Cyclic tasks have task numbers 0000 to 001F (cyclic tasks O to 31).
Interrupt tasks have task numbers 8000 to 80FF (interrupt tasks O to

255).
A298 and The current program address is written to these words when program
A299 execution is stopped because of a program error.

A299 contains the leftmost digits of the program address and A298
contains the rightmost digits of the program address.

Instruction Execution Checks

Section 1-2

All errors for which the Error Flag or Access Error Flag turns ON is treated as
a program error The following table lists program errors. The PLC Setup can
be set to stop program execution when one of these errors occurs.

Error type

Description

Related flags

No END Instruction

There is no END(001) instruction in the program.

No END Error Flag
(A29511)

Task Error

There are three possible causes of a task error:

1) There isn’t an executable cyclic task.

2) There isn’t a program allocated to the task.

3) An interrupt was generated but the corresponding interrupt
task doesn’t exist.

Task Error Flag (A29512)

Instruction Processing
Error*

The CPU attempted to execute an instruction, but the data
provided in the instruction’s operand was incorrect.

*If the PLC Setup has been set to treat instruction errors as
fatal errors (program errors), the Instruction Processing Error
Flag (A29508) will be turned ON and program execution will
stop.

Error (ER) Flag,
Instruction Processing
Error Flag (A29508)

Access Error*

There are five possible causes of an access error:

1) Reading/writing to the parameter area.

2) Writing to memory that is not installed.

3) Reading/writing to an EM bank that is EM file memory.
4) Writing to a read-only area.

5) The contents of a DM/EM word wasn’'t BCD although the
PLC is set for BCD indirect addressing.

*If the PLC Setup has been set to treat instruction errors as
fatal errors (program errors), the lllegal Access Error Flag
(A29510) will be turned ON and program execution will stop.

Access Error (AER) Flag,
lllegal Access Error Flag
(A29510)

Indirect DM/EM BCD
Error*

The contents of a DM/EM word wasn’t BCD although the PLC
is set for BCD indirect addressing.

*If the PLC Setup has been set to treat instruction errors as
fatal errors (program errors), the Indirect DM/EM BCD Error
Flag (A29509) will be turned ON and program execution will
stop.

Access Error (AER) Flag,
Indirect DM/EM BCD Error
Flag (A29509)

Differentiation Overflow
Error

Differentiated instructions were repeatedly inserted and
deleted during online editing (over 31,072 times).

Differentiation Overflow
Error Flag (A29513)

UM Overflow Error

The last address in UM (user program memory) has been
exceeded.

UM Overflow Error Flag
(A29515)

lllegal Instruction Error

The program contains an instruction that cannot be executed.

lllegal Instruction Error
Flag (A29514)

13

SECTION 2
Summary of Instructions

This section provides a summary of instructions used with CS/CJ-series PLCs.

2-1 Instruction Classificationsby Function. 16
2-2 INnstruction FUNCLIONS.ottt e e 24
2-2-1 Sequencelnput Instructions. ... 24
2-2-2 Sequence Output Instructions. 26
2-2-3 Sequence Control Instructions 29
2-2-4 Timer and Counter InStructionscoovviineen... 32
2-2-5 Comparison INStructions. 36
2-2-6 DataMovement Instructions., 40
2-2-7 DataShiftInstructionsc. i 43
2-2-8 Increment/Decrement Instructions. 47
2-2-9 Symbol Math Instructions., 48
2-2-10 Corversion INstructions 53
2-2-11 LogicInstructions.covui i 59
2-2-12 Special Math Instructions. o 61
2-2-13 Floating-point Math Instructions 62
2-2-14 Double-precision Floating-point Instructions. 66
2-2-15 Table Data Processing Instructions., 70
2-2-16 DataControl INStructions..o 74
2-2-17 Subroutinelnstructions. 77
2-2-18 Interrupt Control Instructions., 78
2-2-19 High-speed Counter and Pulse Output Instructions
(CIAM-CPU22/230NlY). . .ot 80
2-2-20 StEPINSIrUCioNS. oo 82
2-2-21 Basicl/OUnitInstructions. 82
2-2-22 Serial Communications Instructions. 84
2-2-23 Network Instructions 85
2-2-24 FileMemory Instructions. 86
2-2-25 Digplay Instructions 87
2-2-26 Clock INSIIUCHIONS. . . . oo 87
2-2-27 Debugging Instructions.t 88
2-2-28 Failure DiagnosisInstructions, 89
2-2-29 Other INStructions.ot 90
2-2-30 Block Programming Instructions 91
2-2-31 Text String Processing Instructions 97
2-2-32 Task Control INStructions 100
2-3 Alphabetical List of Instructionsby Mnemonic....................... 101
2-4 Ligtof Ingtructionsby FunctionCode. oo, 116

15

Instruction Classifications by Function

Section 2-1

2-1

Instruction Classifications by Function

The following table lists the CS/CJ-series instructions by function. (The
instructions appear by order of their function in Section 3 Instructions.)

*Instructions or instruction groups marked with a single asterisk are supported
by the CS1-H, CJ1-H, CJ1M, and CS1D CPU Units only.

**|nstructions or instruction groups marked with two asterisks are supported
by the CJ1M CPU Units only.

***|nstructions or instruction groups marked with three asterisks are not sup-
ported by the CS1D CPU Units.

Classifica- Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
tion
Basic Input LD LOAD LD NOT LOAD NOT AND AND
instructions
AND NOT AND NOT OR OR OR NOT OR NOT
AND LD AND LOAD OR LD OR LOAD
Output ouT OUTPUT OUT NOT OUTPUT NOT [--- ---
Sequence NOT NOT UP CONDITION DOWN CONDITION
input ON OFF
Instructions Feqest LD TST LD BITTEST |LD TSTN LD BIT TEST |AND TST AND BIT
NOT TEST NOT
AND TSTN AND BIT OR TST OR BIT TEST |OR TSTN OR BIT TEST
TEST NOT NOT
Sequence - KEEP KEEP DIFU DIFFERENTI- | DIFD DIFFERENTI-
output ATE UP ATE DOWN
instructions OUTB* S|NGLE B|T — _— — —
OUTPUT
Set/Reset SET SET RSET RESET SETA MULTIPLE
BIT SET
RSTA MULTIPLE SETB* SINGLE BIT RSTB* SINGLE BIT
BIT RESET SET RESET
Sequence END END NOP NO OPERA- | ---
pontrol) TION
INStructions I eriock IL INTERLOCK |ILC INTERLOCK |-
CLEAR
Jump JMP JUMP JME JUMP END CJP CONDI-
TIONAL
JUMP
CJPN CONDI- JMPO MULTIPLE JMEO MULTIPLE
TIONAL JUMP JUMP END
JUMP
Repeat FOR FOR-NEXT BREAK BREAK LOOP | NEXT FOR-NEXT
LOOPS LOOPS

16

Instruction Classifications by Function Section 2-1
Classifica- Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
tion
Timer and BCD Timer TIM TIMER TIMH HIGH-SPEED | TMHH ONE-MS
counter (with TIMER TIMER
instructions timer
TTIM ACCUMULA- -
numbers) TIVE TIMER
Timer TIML LONG TIMER | MTIM MULTI-OUT- | ---
(without PUT TIMER
timer
numbers)
Counter CNT COUNTER CNTR REVERSIBLE |CNR RESET
(with TIMER TIMER/
counter COUNTER
numbers)
Binary* | Timer TIMX TIMER TIMHX HIGH-SPEED | TMHHX ONE-MS
(with TIMER TIMER
timer TTIMX ACCUMULA- |-
numbers) TIVE TIMER
Timer TIMLX LONG TIMER | MTIMX MULTI-OUT- | ---
(without PUT TIMER
timer
numbers)
Counter CNTX COUNTER CNTRX REVERSIBLE | CNRX RESET
(with TIMER TIMER/
counter COUNTER
numbers)
Comparison | Symbol LD, AND, OR | Symbol com- [LD, AND, OR |[Symbol com- [LD, AND, OR |Symbol
instructions | comparison + parison + parison (dou- |+ comparison
=,<><,<=>, |(unsigned) [=, <> <, <=>, |bleword, =, <> < <=,>, | (signed)
>= >=+L unsigned) >=+S
LD, AND, OR | Symbol com- |---
+ parison (dou-
=, <>, <, <=, >, | ble-word,
>=+SL signed)
Data CMP UNSIGNED CMPL DOUBLE CPS SIGNED
comparison COMPARE UNSIGNED BINARY
(Condition Flags) COMPARE COMPARE
CPSL DOUBLE ZCP* AREARANGE | ZCPL* DOUBLE
SIGNED COMPARE AREARANGE
BINARY COMPARE
COMPARE
Table MCMP MULTIPLE TCMP TABLE COM- | BCMP UNSIGNED
compare COMPARE PARE BLOCK COM-
PARE
BCMP2** EXPANDED | ---
BLOCK COM-
PARE
Data Single/ MOV MOVE MOVL DOUBLE MVN MOVE NOT
movement double-word MOVE
instructions MVNL DOUBLE
MOVE NOT
Bit/digit MOVB MOVE BIT MOVD MOVE DIGIT |[--- -—-
Exchange XCHG DATA XCGL DOUBLE
EXCHANGE DATA
EXCHANGE
Block/bit transfer XFRB MULTIPLE XFER BLOCK BSET BLOCK SET
BIT TRANS- TRANSFER
FER
Distribute/ collect DIST SINGLE COLL DATA COL-
WORD DIS- LECT
TRIBUTE
Index register MOVR MOVE TO MOVRW MOVETIMER/ | ---
REGISTER COUNTERPV
TO REGIS-
TER

17

Instruction Classifications by Function Section 2-1
Classifica- Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
tion
Data shift 1-bit shift SFT SHIFT REG- SFTR REVERSIBLE |ASLL DOUBLE
instructions ISTER SHIFT REG- SHIFT LEFT
ISTER
ASL ARITHMETIC |ASR ARITHMETIC |ASRL DOUBLE
SHIFT LEFT SHIFT RIGHT SHIFT RIGHT
0000 Hex asynchro- | ASFT ASYNCHRO- | ---
nous NOUS SHIFT
REGISTER
Word shift WSFT WORD SHIFT [---
1-bit rotate ROL ROTATE LEFT | ROLL DOUBLE RLNC ROTATE LEFT
ROTATE LEFT WITHOUT
CARRY
RLNL DOUBLE ROR ROTATE RORL DOUBLE
ROTATE LEFT RIGHT ROTATE
WITHOUT RIGHT
CARRY
RRNC ROTATE RRNL DOUBLE
RIGHT WITH- ROTATE
OUT CARRY RIGHT WITH-
OUT CARRY
1 digit shift SLD ONE DIGIT SRD ONE DIGIT
SHIFT LEFT SHIFT RIGHT
Shift n-bit data NSFL SHIFT N-BIT NSFR SHIFT N-BIT --- ---
DATA LEFT DATA RIGHT
Shift n-bit NASL SHIFT N-BITS | NSLL DOUBLE NASR SHIFT N-BITS
LEFT SHIFT N-BITS RIGHT
LEFT
NSRL DOUBLE
SHIFT N-BITS
RIGHT
Increment/ BCD ++B INCREMENT | ++BL DOUBLE --B DECRE-
decrement BCD INCREMENT MENT BCD
instructions BCD
—--BL DOUBLE
DECRE-
MENT BCD
Binary ++ INCREMENT | ++L DOUBLE - — DECRE-
BINARY INCREMENT MENT
BINARY BINARY
——L DOUBLE
DECRE-
MENT
BINARY

18

Instruction Classifications by Function Section 2-1
Classifica- Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
tion
Symbol Binary add + SIGNED +L DOUBLE +C SIGNED
math BINARY ADD SIGNED BINARY ADD
instructions WITHOUT BINARY ADD WITH CARRY
CARRY WITHOUT
CARRY
+CL DOUBLE --- --- --- ---
SIGNED
BINARY ADD
WITH CARRY
BCD add +B BCD ADD +BL DOUBLEBCD | +BC BCD ADD
WITHOUT ADD WITH CARRY
CARRY WITHOUT
CARRY
+BCL DOUBLEBCD | --- --- --- ---
ADD WITH
CARRY
Binary subtract - SIGNED -L DOUBLE -C SIGNED
BINARY SUB- SIGNED BINARY
TRACT BINARY SUBTRACT
WITHOUT SUBTRACT WITH CARRY
CARRY WITHOUT
CARRY
-CL DOUBLE
SIGNED
BINARY WITH
CARRY
BCD subtract -B BCD -BL DOUBLEBCD |-BC BCD
SUBTRACT SUBTRACT SUBTRACT
WITHOUT WITHOUT WITH CARRY
CARRY CARRY
-BCL DOUBLEBCD | ---
SUBTRACT
WITH CARRY
Binary multiply X SIGNED L DOUBLE xU UNSIGNED
BINARY SIGNED BINARY
MULTIPLY BINARY MULTIPLY
MULTIPLY
*UL DOUBLE
UNSIGNED
BINARY
MULTIPLY
BCD multiply *B BCD *BL DOUBLEBCD | ---
MULTIPLY MULTIPLY
Binary divide / SIGNED L DOUBLE U UNSIGNED
BINARY SIGNED BINARY
DIVIDE BINARY DIVIDE
DIVIDE
/UL DOUBLE --- --- --- ---
UNSIGNED
BINARY
DIVIDE
BCD divide /B BCD DIVIDE |/BL DOUBLEBCD | --- ---
DIVIDE

19

Instruction Classifications by Function Section 2-1
Classifica- Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
tion
Conversion |BCD/Binary con- BIN BCD-TO- BINL DOUBLE BCD BINARY-TO-
instructions |vert BINARY BCD-TO- BCD
DOUBLE
BINARY
BCDL DOUBLE NEG 2’'S COMPLE- | NEGL DOUBLE 2'S
BINARY-TO- MENT COMPLE-
DOUBLE BCD MENT
SIGN 16-BIT TO
32-BIT
SIGNED
BINARY
Decoder/ encoder |[MLPX DATA DMPX DATA
DECODER ENCODER
ASCII/HEX convert |ASC ASCIl CON- HEX ASCIlI TO HEX | --- -
VERT
Line/column con- LINE COLUMN TO |COLM LINE TO
vert LINE COLUMN
Signed binary/BCD | BINS SIGNED BCD- | BISL DOUBLE BCDS SIGNED
convert TO- BINARY SIGNED BCD- BINARY-TO-
TO- BINARY BCD
BDSL DOUBLE
SIGNED
BINARY-TO-
BCD
Logic Logical AND/OR ANDW LOGICAL ANDL DOUBLE ORW LOGICAL OR
instructions AND LOGICAL
AND
ORWL DOUBLE XORW EXCLUSIVE XORL DOUBLE
LOGICAL OR OR EXCLUSIVE
OR
XNRW EXCLUSIVE XNRL DOUBLE - -
NOR EXCLUSIVE
NOR
Complement COM COMPLE- COML DOUBLE
MENT COMPLE-
MENT
Special ROTB BINARY ROOT BCD SQUARE | APR ARITHMETIC
math ROOT ROOT PROCESS
Instructions FDIV FLOATING BCNT BIT
POINT COUNTER
DIVIDE
Floating- Floating point/ FIX FLOATING TO | FIXL FLOATING TO | FLT 16-BIT TO
point math binary convert 16-BIT 32-BIT FLOATING
instructions FLTL 32.BIT TO
FLOATING
Floating- point +F FLOATING- -F FLOATING- IF FLOATING-
basic math POINT ADD POINT POINT
SUBTRACT DIVIDE
xF FLOATING- |---
POINT
MULTIPLY
Floating- point RAD DEGREESTO |DEG RADIANS TO |SIN SINE
trigonometric RADIANS DEGREES
COSs COSINE TAN TANGENT ASIN ARC SINE
ACOS ARC COSINE | ATAN ARC TAN-
GENT
Floating- point SQRT SQUARE EXP EXPONENT LOG LOGARITHM
math ROOT
PWR EXPONEN- |-
TIAL POWER
Symbol compari- LD, AND, OR | Symbol com- |FSTR* FLOATING- FVAL* ASCII TO
son and conver- + parison (sin- POINT TO FLOATING-
sion* =, <>, <, <=, >, | gle-precision ASCII POINT
>=+F floating point)

20

Instruction Classifications by Function Section 2-1
Classifica- Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
tion
Double-pre- | Floating point/ FIXD DOUBLE FIXLD DOUBLE DBL 16-BIT TO
cision float- |binary convert FLOATING TO FLOATING TO DOUBLE
ing- point 16-BIT 32-BIT FLOATING
instruc-
i DBLL 32-BIT TO
tions* DOUBLE
FLOATING
Floating- point +D DOUBLE -D DOUBLE /D DOUBLE
basic math FLOATING- FLOATING- FLOATING-
POINT ADD POINT POINT
SUBTRACT DIVIDE
*D DOUBLE
FLOATING-
POINT
MULTIPLY
Floating- point RADD DOUBLE DEGD DOUBLE SIND DOUBLE
trigonometric DEGREESTO RADIANS TO SINE
RADIANS DEGREES
COsD DOUBLE TAND DOUBLE ASIND DOUBLE ARC
COSINE TANGENT SINE
ACOSD DOUBLE ARC | ATAND DOUBLEARC | ---
COSINE TANGENT
Floating- point SQRTD DOUBLE EXPD DOUBLE LOGD DOUBLE
math SQUARE EXPONENT LOGARITHM
ROOT
PWRD DOUBLE
EXPONEN-
TIAL POWER
Symbol compari- LD, AND, OR | Symbol com- |---
son + parison (dou-
=, <>, <,<=,>, | ble-precision
>=+D floating point)
Table data Stack SSET SET STACK PUSH PUSH ONTO |LIFO LAST IN
processing | processing STACK FIRST OUT
Instructions FIFO FIRST IN SNUM* STACK SIZE | SREAD* STACK DATA
FIRST OUT READ READ
SWRIT* STACK DATA | SINS* STACK DATA | SDEL* STACK DATA
OVERWRITE INSERT DELETE
1-record/ DIM DIMENSION SETR SETRECORD | GETR GET
multiple-word pro- RECORD LOCATION RECORD
cessing TABLE NUMBER
Record-to- word SRCH DATA MAX FIND MIN FIND
processing SEARCH MAXIMUM MINIMUM
SUM SUM FCS FRAME
CHECKSUM
Byte SWAP SWAP BYTES | ---
processing
Data control |- PID PID CON- PIDAT* PID CON- LMT LIMIT
instructions TROL TROL WITH CONTROL
AUTOTUNING
BAND DEAD BAND | ZONE DEAD ZONE |SCL SCALING
CONTROL CONTROL
SCL2 SCALING 2 SCL3 SCALING 3 AVG AVERAGE
Subroutines |--- SBS SUBROU- MCRO MACRO SBN SUBROU-
instructions TINE CALL TINE ENTRY
RET SUBROU- GSBS* GLOBAL GSBN* GLOBAL
TINE SUBROU- SUBROU-
RETURN TINE CALL TINE ENTRY
GRET* GLOBAL
SUBROU-
TINE
RETURN
Interrupt MSKS*** SET MSKR** READ INTER- | CLI*** CLEAR
control INTERRUPT RUPT MASK INTERRUPT
instructions MASK
DI DISABLE El ENABLE
INTERRUPTS INTERRUPTS

21

Instruction Classifications by Function Section 2-1
Classifica- Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
tion
High-speed |--- INI MODE CON- |PRV HIGH-SPEED | CTBL COMPARI-
counter/ TROL COUNTERPV SON TABLE
pulse out- READ LOAD
put instruc-
tions** SPED SPEED OUT- |PULS SET PULSES |PLS2 PULSE OUT-
PUT PUT
ACC ACCELERA- ORG ORIGIN PWM PULSE WITH
TION Control SEARCH VARIABLE
DUTY FAC-
TOR
Step STEP STEP DEFINE | SNXT STEP START |---
instructions
Basic I/0 - IORF 1/0 REFRESH | SDEC 7-SEGMENT IORD INTELLI-
Unit instruc- DECODER GENT I/O
tions READ
IOWR INTELLI- DLNK* CPU BUS
GENT I/O UNIT I/O
WRITE REFRESH
Serial com- | --- PMCR PROTOCOL TXD TRANSMIT RXD RECEIVE
munica- MACRO
tions
: : STUP CHANGE
instructions SERIAL PORT
SETUP
Network SEND NETWORK RECV NETWORK CMND DELIVER
instructions SEND RECEIVE COMMAND
Display MSG DISPLAY
instructions MESSAGE
File mem- |- FREAD READ DATA | FWRIT WRITE DATA |-
ory instruc- FILE FILE
tions
Clock - CADD CALENDAR CSuB CALENDAR SEC HOURS TO
instructions ADD SUBTRACT SECONDS
HMS SECONDSTO | DATE CLOCK
HOURS ADJUST-
MENT
Debugging | --- TRSM TRACE
instructions MEMORY
SAMPLING
Failure - FAL FAILURE FALS SEVERE FPD FAILURE
diagnosis ALARM FAILURE POINT
instructions ALARM DETECTION
Other STC SET CARRY |CLC CLEAR EMBC SELECT EM
instructions CARRY BANK
WDT EXTEND CCs* SAVE CONDI- | CCL* LOAD CONDI-
MAXIMUM TION FLAGS TION FLAGS
CYCLE TIME
FRMCV* CONVERT TOCV* CONVERT I0SP*** DISABLE
ADDRESS ADDRESS TO PERIPH-
FROM CV Ccv ERAL SER-
VICING
IORS*** ENABLE
PERIPH-
ERAL SER-
VICING

22

Instruction Classifications by Function Section 2-1
Classifica- Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
tion
Block Define block pro- BPRG BLOCK PRO- | BEND BLOCK PRO- |---
program- gram area GRAM BEGIN GRAM END
ming
instructions Block BPPS BLOCK BPRS BLOCK --- ---
program start/stop PROGRAM PROGRAM
PAUSE RESTART
EXIT EXIT Conditional EXIT NOT Conditional input_conditio | Conditional
bit_address END bit_address END NOT n EXIT END
IF branch IF CONDI- IF NOT CONDI- ELSE CONDI-
processing bit_address TIONAL bit_address TIONAL TIONAL
BLOCK BLOCK BLOCK
BRANCHING BRANCHING BRANCHING
(NQT) (ELSE)
IEND CONDI-
TIONAL
BLOCK
BRANCHING
END
WAIT WAIT ONE CYCLE | WAIT NOT ONE CYCLE [input_conditio | ONE CYCLE
bit_address AND WAIT bit_address AND WAIT n WAIT AND WAIT
NOT
Timer/ |BCD TIMW TIMER WAIT [CNTW COUNTER TMHW HIGH-SPEED
counter WAIT TIMER WAIT
Binary* TIMWX TIMER WAIT |CNTWX COUNTER TMHWX HIGH-SPEED
WAIT TIMER WAIT
Repeat LOOP LOOP BLOCK | LEND LOOPBLOCK | LEND NOT LOOP BLOCK
bit_address END bit_address END NOT
input_conditio | LOOP BLOCK | ---
n LEND END
Text string MOV$ MOV STRING | +$ CONCATE- LEFT$ GET STRING
processing NATE LEFT
instructions STRING
RIGHT$ GET STRING | MID$ GET STRING | FIND$ FIND IN
RIGHT MIDDLE STRING
LENS$ STRING RPLC$ REPLACE IN |DEL$ DELETE
LENGTH STRING STRING
XCHG$ EXCHANGE CLR$ CLEAR INS$ INSERT INTO
STRING STRING STRING
LD, AND, OR |STRING
+ COMPARI-
=$, <>§, <3, SON
<=$, >$, >=$
Task control |--- TKON TASK ON TKOF TASK OFF
instructions

23

Instruction Functions

Section 2-2

2-2
2-2-1

Instruction Functions

Sequence Input Instructions

Instruction
Mnemonic
Code

Symbol/Operand

Function

Location

Execution
condition

Page

LOAD
LD
@LD
%LD
ILD
'@LD
1%LD

Bus bar

|_

Starting
point of

I block

Indicates a logical start and creates an ON/OFF execution condition
based on the ON/OFF status of the specified operand bit.

Start of logic
Not required

142

LOAD NOT

LD NOT
@LD NOT
%LD NOT
ILD NOT
!@LD NOT
19%LD NOT
CS1-H, CJ1-H,
CJ1M CPU Units
only: @LD NOT
%LD NOT
1@LD NOT
19%LD NOT

Bus bar

Starting
point of
block

Indicates a logical start and creates an ON/OFF execution condition
based on the reverse of the ON/OFF status of the specified operand
bit.

Start of logic
Not required

144

AND

AND
@AND
%AND

IAND
I@AND
1%AND

-

Takes a logical AND of the status of the specified operand bit and the
current execution condition.

Continues on
rung

Required

146

AND NOT

AND NOT
@AND NOT
%AND NOT
IAND NOT
I@AND NOT
1%AND NOT
CS1-H, CJ1-H,
CJ1M CPU Units
only: @AND NOT
%AND NOT
I@AND NOT
1%AND NOT

Reverses the status of the specified operand bit and takes a logical
AND with the current execution condition.

Continues on
rung

Required

148

OR

OR
@OR
%O0R

IOR
I@OR
1%0R

Bus bar

Y
L

Takes a logical OR of the ON/OFF status of the specified operand bit
and the current execution condition.

Continues on
rung

Required

150

OR NOT

OR NOT
@OR NOT
%O0OR NOT
IOR NOT
I@OR NOT
1%0R NOT
CS1-H, CJ1-H,
CJ1M CPU Units
only: @OR NOT
%OR NOT
I@OR NOT
1%0R NOT

H
—
7|’|'—,

Reverses the status of the specified bit and takes a logical OR with the
current execution condition

Continues on
rung

Required

151

24

I nstruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
AND LOAD Logic block-Logic block | Takes a logical AND between logic blocks. Continues on | 153
AND LD rung
LD) Required
Logic block A
to
LD
Logic block B
to
ANDLD Serial connection between logic block A and
logic block B.
OR LOAD . : ; ; Continues on | 155
OR LD Logic block Takes a logical OR between logic blocks. rung
. LD Required
Logic block Logic block A
to
LD)
Logic block B
to
ORLD - Parallel connection between logic block A
and logic block B.
NOT Reverses the execution condition. Continues on | 161
NOT rung
520 Required
CONDITION ON UP(521) turns ON the execution condition for one cycle when the exe- | Continues on | 162
upP UP(521) cution condition goes from OFF to ON. rung
521 Required
CONDITION OFF DOWN(522) turns ON the execution condition for one cycle when the | Continues on | 162
DOWN execution condition goes from ON to OFF. rung
522 Required
BIT TEST LD TST(350), AND TST(350), and OR TST(350) are used in the pro- | Continues on | 163
LD TST | TST(850) [| gram like LD, AND, and OR; the execution condition is ON when the | rung
350 S specified bit in the specified word is ON and OFF when the bit is OFF. | Not required
N
S: Source word
N: Bit n umber
BIT TEST LD TSTN(351), AND TSTN(351), and OR TSTN(351) are used in the | Continues on |163
LD TSTN |] TSTN(351) [| program like LD NOT, AND NOT, and OR NOT; the execution condition | rung
351 S Is OFF when the specified bit in the specified word is ON and ON when | Not required
the bit is OFF.
N
S: Source word
N: Bit number
BIT TEST LD TST(350), AND TST(350), and OR TST(350) are used in the pro- | Continues on | 163
AND TST |~ | ANPTSTE50) [| gram like LD, AND, and OR; the execution condition is ON when the rung
350 S specified bit in the specified word is ON and OFF when the bit is OFF. | Required
N
S: Source word
N: Bit number
BIT TEST LD TSTN(351), AND TSTN(351), and OR TSTN(351) are used in the | Continues on |163
AND TSTN |~ | ANPTSTNGSL) [| program like LD NOT, AND NOT, and OR NOT; the execution condition | rung
351 S is OFF when the specified bit in the specified word is ON and ON when | Required
the bit is OFF.
N
S: Source word
N: Bit number

25

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
BIT TEST LD TST(350), AND TST(350), and OR TST(350) are used in the pro- | Continues on | 163
ORTST|™ | TST(350) [~ |gram like LD, AND, and OR; the execution condition is ON when the rung
350 S specified bit in the specified word is ON and OFF when the bit is OFF. | Required
N
S: Source word
N: Bit number
BIT TEST LD TSTN(351), AND TSTN(351), and OR TSTN(351) are used in the | Continues on |163
OR TSTN || TSTN(351) [| program like LD NOT, AND NOT, and OR NOT; the execution condition | rung
is OFF when the specified bit in the specified word is ON and ON when | Required
351 S the bit is OFF.
N
S: Source word
N: Bit number
2-2-2 Sequence Output Instructions
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
OUTPUT Outputs the result (execution condition) of the logical processing to the | Output 166
ouT specified bit. Required
10UT
OUTPUT NOT Reverses the result (execution condition) of the logical processing, and | Output 167
OUT NOT outputs it to the specified bit. Required
IOUT NOT
KEEP ; Output 168
- Operates as a latching relay.
KEEP | S (620 | xeepo1y || OP g relay. Required
IKEEP B L {pSet T keep | -
R (Reset) — A c _ A B c
011 . B
B: Bit
_| Reset
B C
S execution
condition
R execution
condition
Status of B
B:EFERENTIATE — oruois DIFU(013) turns the designated bit ON for one cycle when the Output 173
BIFU (013) execution condition goes from OFF to ON (rising edge). Required
IDIFU B _ N
. Execution condition
B: Bit
013
Status of B
One cycle

26

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location | Page
Mnemonic Execution
Code condition
BgV'TIENRENTlATE — DIFD(O14) DIFD(014) turns the designated bit ON for one cycle when the OUtp‘_Jt 173
DIFD execution condition goes from ON to OFF (falling edge). Required
B
IDIFD
B: Bit Execution condition
014
Status of B
One cycle
SET — s SET turns the operand bit ON when the execution condition is ON. O“tp‘%t 175
SET ET oN Required
@SET B Execution condition gpp
%SET of SET
ISET | B: Bit
I@SET ON
'%SET Status of B OFF
RESET —— RSET RSET turns the operand bit OFF when the execution condition is ON. O“tp‘%t 15
RSET ON Required
E@RSET B Execution condition
YoRSET of RSET OFF :
IRSET | B: Bit i
I@RSET
1%RSET Status of B
MULTIPLE BIT i ; ; Output 177
SET — SETA(S30) SETA(530) turns ON the specified ntg?ﬁr of consecutive bits. Required
SETA D
@SETA 15 (1 o
530 N1 : : N2 bits are set to 1
N2 (ON).
D: Beginning D+2
word
N1: Beginning bit
N2: Number of
bits
MULTIPLE BIT e ; : Output 177
RESET — RsTAGB31) RSTA(531) turns OFF the specified nun;ll:er of consecutive bits. Required
RSTA D b
@RSTA 15 E o
531 N1 N2 bits are reset to 0
N2 (OFF).
D: Beginning
word
N1: Beginning bit
N2: Number of
bits
SINGLE BIT SET SETB(532) turns ON the specified bit in the specified word when the exe- | Output 180
(CS1-H, CJ1-H, | SETB(532) | | cution condition is ON. Required
CJ1M, or CS1D D Unlike the SET instruction, SETB(532) can be used to set a bit in a DM or
only) EM word.
SETB N
@SETB
ISETB
D: Word address
N: Bit number

27

Instruction Functions

Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
SINGLE BIT RSTB(533) turns OFF the specified bit in the specified word when the Output 180
RESET (CS1-H, |~ | RSTB(533) | | execution condition is ON. Required
CJ1-H, CJ1M, or D Unlike the RSET instruction, RSTB(533) can be used to reset a bit in a
CS1D only) DM or EM word.
RSTB N
@RSTB
IRSTB
D: Word address
N: Bit number
SINGLE BIT OUTB(534) outputs the result (execution condition) of the logical pro- Output 184
OUTPUT (CS1-H, |~ | OUTB(534) | | cessing to the specified bit. Required
CJ1-H, CJ1M, or D Unlike the OUT instruction, OUTB(534) can be used to control a bit in a
CS1D only) DM or EM word.
OuUTB N
@OouTB
I0UTB

D: Word address
N: Bit number

28

Instruction Functions Section 2-2
2-2-3 Sequence Control Instructions
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
END ; Output 186
Indicates the end of a program.)
END END(001) completes the execution of a program for that cycle. No Not required
001 instructions written after END(001) will be executed. Execution

proceeds to the program with the next task number. When the
program being executed has the highest task number in the program,
END(001) marks the end of the overall main program.

]

Task 1 Program A
——— To the next task number
END
Task2 Program B)

——O
END

.1

——— To the next task number

Taskn Program Z

End of the main program

I/O refreshing

NO OPERATION This instruction has no function. (No processing is performed for Output 187
NOP NOP(000).) Not required
000
INTERLOCK Output 187
Interlocks all outputs between IL(002) and ILC(003) when the ’
IL IL(002) || execution condition for IL(002) is OFF. IL(002) and ILC(003) are Required
002 normally used in pairs.

Execution Execution
Execution condition ON condition OFF

condition

I e

] Normal Outputs
Interlocked section execution interlocked.

of the program

o

29

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
INTERLOCK Interlocks all outputs between IL(002) and ILC(003) when the execu- | Output 187
CLEAR ILC(003) | |tion condition for IL(002) is OFF. IL(002) and ILC(003) are normally Not required
ILC used in pairs.
003
Jump —{5MP(002) | | When the execution condition for IMP(004) is OFF, program Output 191
JMP (004) | | execution jumps directly to the first IME(005) in the program with Required
004 N the same jump number. JIMP(004) and JME(005) are used in pairs.
N: Jump number Execution condition .
ON OFF Instructions
1 JMP |---e-T X7 jumped
N
| Instructions in this section
i > are not executed and out-
Instructions i put status is maintained.
executed ! The instruction execution
/ time for these instructions
! is eliminated.
JME [=--7------ ---- 7
Y l
JUMP END Indicates the end of a jump initiated by JMP(004) or CJP(510). Output 191
JME JME(005) Not required
005 N
N: Jump number
S:Sl\wPDITIONAL — CIP(510) The operation of CIJP(510) is the basically the opposite of IMP(004). OUtpl.Jt 195
cIp When the execution condition for CJP(510) is ON, program execution | Reauired
N jumps directly to the first IME(005) in the program with the same jump
510 number. CJP(510) and JME(005) are used in pairs.
N: Jump number))
Execution Execution
condition OFF condition ON
_| | T [P N Instructions
' jumped
N u /
l‘. > Instructions in this section
Instructions i are not executed and out-
executed ! put status is maintained.
/ The instruction execution
! time for these instructions
/ is eliminated.
JME [=-------- ---- 7
Y |
\(]:Sl\wPDITIONAL — PNt The operation of CJPN(511) is almost identical to IMP(004). Output) 195
JPN(SLL) | | when the execution condition for CJP(004) is OFF, program execution | Not required
CJPN N jumps directly to the first IME(005) in the program with the same jump
511 number. CJPN(511) and JME(005) are used in pairs.
N: Jump number Execution Execution
condition ON condition OFF
—| I— CJPN |----f----- === N Instructions
Y\ jumped
N \
"‘ / Instructions in this section
! are not executed and out-
Instructions ' put status is maintained.
! The instruction execution
executed i . h :
! time for these instructions
K is eliminated.
JME [s <
N |

30

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
MULTIPLE JUMP ; . : Output 199
When the execution condition for IMPO(515) is OFF, all instructions .
JMPO IMPOGIS [| from JMPO(515) to the next JMEO(516) in the program are processed | Required
515 as NOP(000). Use JMP0(515) and JMEO(516) in pairs. There is no
limit on the number of pairs that can be used in the program.
Execution Execution
condition a ON condition a OFF
_|____ qeeeee Instructions
a Y jumped
Instructions \
executed ’.'
e Ko
1 Jumped instructions
are processed as
Execution Execution NOP(000). Instruction
condition b ON condition b OFF ~ €Xeécution times are
the same as
o U s s NOP(000).
Instructions ‘: J
executed K
e
Instructions
jumped
When the execution condition for IMP0O(515) is OFF, all instructions Output 199
from JMPO0(515) to the next JMEO(516) in the program are processed | Not required

MULTIPLE JUMP

JMEO(516)

as NOP(000). Use JMPO(515) and JMEO(516) in pairs. There is no

END
JMEO . ' .
516 limit on the number of pairs that can be used in the program
Egg’PNSEXT —roreE12 The instructions between FOR(512) and NEXT(513) are repeated a | OUtPut 201
(512) specified number of times. FOR(512) and NEXT(513) are used in Not required
FOR N pairs.
512
N: Number of FOR Repeated N times
loops N A
Repeated program section ’,’ ’,’
NEXT)
BREAK LOOP Output 204
Programmed in a FOR-NEXT loop to cancel the execution of the loo .
BREAK for gglven execution condition. Tf?e remaining instructions in the Ioog Required
514 are processed as NOP(000) instructions.
. Condition a ON
N repetmons
FOR
N 1
! Repetitions
h forced to end.
- AV
a :‘ /’l ‘n
h ," ' Processed as
oS ,' NOP(000).
FOR-NEXT The instructions between FOR(512) and NEXT(513) are repeated a Output 201
LOOPS NEXT(513)| | specified number of times. FOR(512) and NEXT(513) are used in Not required
NEXT pairs.
513

31

Instruction Functions Section 2-2
2-2-4 Timer and Counter Instructions
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
TIMER S TIM/TIMX(550) operates a decrementing timer with units of 0.1-s. Output 207
ngl The setting range for the set value (SV) is 0 to 999.9 s for BCD Required
() N and 0 to 6,553.5 s for binary (decimal or hexadecimal).
TIMX S Timer input gpp '
(Binary)
(CS1-H, CJ1-H, | N: Timer number .
CJ1M, or CS1D | 5: Set value Timer PV
only)
—(TIMX(550), Completion
Flag
N
S Timer input
N: Timer number
S: Set value Timer PV
Completion ON
Flag OFF
HIGH-SPEED g ti ; ; Output 211
TIMER —TIMH(015) Tf”\1/|gi(0152|{-t:|MHit('(551) ope;atetia detcrelmentSw:/g pmoetr ng] S;ngts Required
TIMH of 10-ms. The setting range for the se va_ue()is 0 to 99.99 s
015 N for BCD and 0 to 655.35 s for binary (decimal or hexadecimal).
(BCD) S Timer input SEF :
TIMHX | N: Timer number . ! J
S: Set value Timer PV SV
551 0
(Binary)
CS1-H, CJ1-H, |]
(CJlM, or CS1D TIMHX(551) Completion ON
only) N Flag OFF
S
Timer input
N: Timer number
S: Set value
Timer PV
Completion
Flag
ONE-MS TIMER TMHH(540)/TMHHX(552) operates a decrementing timer with units of | Output 216
TMHH TMHH(540)| | 1-ms. The setting range for the set value (SV) is 010 9.999 s for BCD | Required
540 N and 0 to 65.535 s for binary (decimal or hexadecimal).
(BCD) The timing charts for TMHH(540) and TMHHX(552) are the same as
S those given above for TIMH(015).
TMHHX N T b
: Timer number
(BCS:SDZ) S: Set value
(CS1-H, CJ1-H,
CJ1M, or CS1D | —
only) TMHHX(552)
N
S
N: Timer number
S: Set value

32

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
#&CE%MULATIVE Timer—{1TIM(087) | | TTIM(087)/TTIMX(555) operates an incrementing timer with units of Outpgt 219
TTIM input N 0.1-s. The setting range for the set value (SV) is 0 to 999.9 s for Required
087 BCD and 0 to 6,553.5 s for binary (decimal or hexadecimal).
I_ S
(BCD) Reset Timer input SEF
input] -
TTIMX . sv oo L !
555 |N: Timer number Timer PV E !
(Binary) | S: Set value : |
(CS1-H, CJ1-H, ! — Timing resumes.
CJIM, or CS1D | _. i
only) i-I[—jlgljetr_TTlMX(555) E | —PV maintained.
N 0 . ! T
[S Completion ©N i '
Reset Flag OFF T
input i
. ON :
N: Timer number Resetinput opp i
S: Set value
LONG TIMER — rimLsa2) TIML(542)/TIMLX(553) operates a decrementing timer with units of Output 222
TIML 0.1-s that can time up to approx. 115 days for BCD and 49,710 days | Required
(Bgéz) D1 for binary (decimal or hexadecimal).
: ; ON
D2 Timer input OFF
TIMLX s
_ 553 Timer PV
(Binary) | D1: Completion
(CS1-H, CJ1-H, | Flag
CJ1M, or CS1D D2: PV word L
only) | s: SV word) :
Completion Flag on !
(Bit 00 of D1) OFF !
| TIMLX(553)
D1
D2
S
D1: Completion
Flag
D2: PV word
S: SV word

33

Instruction Functions

Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
_I'YII",\J/ILETFI{OUTPUT — wrmea3) MTIM(543)/MTIMX(554) operates a 0.1-s incrementing timer with 8 Output 226
MTIM independent SVs and Completion Flags. The setting range for the Required
543 D1 set value (SV) is 0 t0 999.9 s for BCD and 0 to 6,553.5 s for binary
decimal or hexadecimal).
(BCD) D2 () timer PV
D2
MTIMX S | |
554)
(Binary) | D1: Completion Timer SVs 0
(CS1-H, CJ1-H, | Flags s -
CJ1M, or CS1D | D2: PV word Si1 ;
only) | S: 1st SV word -
SF to 2
—1 MTIMX(554) .
S+7 7
D1
D2 Timer input ON
S OFF |
sv7 |
D1: Completion to AT~
Flags SV2 e
D2: PV word : o
S: 1st SV word Timer PV (D2) g :) ;
R
0 1
Bit 7
Completion to
Flags (D1) Bit 2
Bit 1
Bito |
COUNTER count—=| oNT CNT/CNTX(546) operates a decrementing counter. The setting range | Qutput 231
CNT |input for the set value (SV) is 0 to 9,999 for BCD and 0 to 65,535 for binary | Required
(BCD) N (decimal or hexadecimal). ON
CNTX SI Countinput off
Reset
(& 546) input ON
nary) | . Reset input
(CS1-H, CI1-A, [N Cgunter p
CJ1M, or CS1D |Aumber
only) S: Set value
Counter PV
Count—CNTX(546)
input
N
S Completion
Flag
Reset _l
input
N: Counter
number
S: Set value

Instruction Functions

Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
REVERSIBLE : Output 234
Incre- — NTR(012)/CNTRX(548) operates a reversible counter.
COUNTER ment [CNTRO12) CNTR(012)/C (548) op verst Y Required
CNTR |input J- N |
012 | Decre- ; i
(BCD) | ment S Increment input L
input o
Reset oo
CNTSFZ)S(in,e;f Decrement input S S S |
(Binary) | ,,. i o i b
(CSL-H, CIL-H, | N Counter b o
CJ1M, or CS1D g“rg er | Pl :
only) | ¢ Setvalue Counter PV -
0—
Incre- —
ment LCNTRX(548)
input N
Decre__l- S Counter PV
ment
input
Reset
input
N: Counter Completion Flag
number
S: Set value
Counter PV
Completion Flag OFF
RESET TIMER/ CNR(545)/CNRX(547) resets the timers or counters within the speci- | Output 238
COUNTER | CNR(545) | |fied range of timer or counter numbers. Sets the set value (SV) to the Required
CNR NL maximum of 9999.
@CNR
545 N2
(BCD)
N1: 1st number in
CNRX [range
@CNRX | N,: Last number
547 | in range
(Binary)
(CS1-H, CJ1-H,
CJ1M, or CS1D CNRX(547)
only) N1
N2

N1: 1st number in
range

N,: Last number
in range

35

Instruction Functions

Section 2-2

2-2-5 Comparison Instructions

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
Symbol Compari- s . . .] 246
. — Symbol & opti L | Symbol comparison instructions (unsigned) compare two values
son (Unsigned) ymbol & options (constants and/or the contents of specified words) in 16-bit binary LD: Not
LD, AND, OR + =, S, data and create an ON execution condition when the comparison required
<>, <, <=, >, >= condition is true. There are three types of symbol comparison AND, OR:
300 (=) S, instructions, LD (LOAD), AND, and OR. Required
305 (<>) _ iy
310 (<) s C . LD ON execution condition when
315 (<=) | gL oomPanson /" comparison resultis true. _
320 (>) S,: Comparison — < — —
325(>7) | gata 2 : |
S1 ! |
82 ' i
ON execution condition
AND when comparison result
is true.
H T T
| | s | |
| | s | |
OR
_: __________ 1 CTT Tttt TS T T T T T e T m T T 5_
el J
— <
$1 \) "
ON execution condition when
$2 comparison result is true.
Symbol Compari- | S;: Comparison Symbol comparison instructions (double-word, unsigned) compare two 246
son (Double- data 1 values (constants and/or the contents of specified double-word data) in | | D: Not
word, unsigned) |g . Comparison unsigned 32-bit binary data and create an ON execution condition when | required
LD, AND, OR + =, dz. 5 the comparison condition is true. There are three types of symbol com- | AND, OR:
<> < <=, > >= 1|02 parison instructions, LD (LOAD), AND, and OR. Required
L
301 (=)
306 (<>)
311 (<)
316 (<=)
321 (>)
326 (>=)
Symbol Compari- | S;: Comparison Symbol comparison instructions (signed) compare two values (con- 246
son (Signed) data 1 stants and/or the contents of specified words) in signed 16-bit binary (4- | _D: Not
LD, AND, OR + =, | S,: Comparison digit hexadecimal) and create an ON execution condition when the com- | required
<>, <, <=, >, >= dz- 5 parison condition is true. There are three types of symbol comparison | AND, OR:
tg | data instructions, LD (LOAD), AND, and OR. Required
302 (=)
307 (<>)
312 (<)
317 (<=)
322 (>)
327 (>=)

36

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location | Page
Mnemonic Execution
Code condition
Symbol Compari- | S;: Comparison Symbol comparison instructions (double-word, signed) compare two 246
son (Double- data 1 values (constants and/or the contents of specified double-word data) in | | D: Not
word, signed) S,: Comparison signed 32-bit binary (8-digit hexadecimal) and create an ON execution | required
LD, AND, OR + =, dz. 5 condition when the comparison condition is true. There are three types AND, OR:
<> <, <=, >, >= ata of symbol comparison instructions, LD (LOAD), AND, and OR. Required
+SL
303 (=)
308 (<>)
313 (<)
318 (<=)
323 (>)
328 (>=)
gXIS:EGNED COoM-1_| CMP(020) Compares two unsigned binary values (constants and/or the contents Outpgt 252
CMP of specified words) and outputs the result to the Arithmetic Flags in Required
the Auxiliary Area.
ICMP S1 Y
020 S, Unsigned binary
comparison
Sl: Comparison
data 1) L
dsg.téié)mparlson Arithmetic Flags
(>, >=, 5, <5, %, <)
BEI)LSJI%INEED cMPL(060) | | Compares two double unsigned binary values (constants and/or the O“tp‘%t d 254
COMPARE contents of specified words) and outputs the result to the Arithmetic Require
S, Flags in the Auxiliary Area.
CMPL
060 S, Unsigned binary
comparison
S,: Comparison st | [st | set || sz |
data 1)
S,: Comparison . .
data 2 Arithmetic Flags
(>, >=, 5, <5, %, <)
g'g,uEER?EINARY — cPs(114) Compares two signed binary values (constants and/or the contents of O“tp‘%t 257
cPS specified words) and outputs the result to the Arithmetic Flags in the Required
Auxiliary Area.
ICPS S1 y
114 S, Signed binary
comparison
S1 s2
S.: Comparison [st]
data 1) L
Sz: Comparison Arithmetic Flags
data 2 (>, >=, =, <=, <, <3)
gl%tlil?EIE)EBINARY —{ cpsi(115)| | Compares two double signed binary values (constants and/or the (R)utpgt J 260
COMPARE contents of specified words) and outputs the result to the Arithmetic equire
S, Flags in the Auxiliary Area.
CPSL . _
115 S, Signed binary
comparison
gl: Ci)mparison | sin || s1] s+1 || sz |
ata
S,: Comparison
data 2 Arithmetic Flags
(>, >=, =, <=, <, <)
'l\:/lp"\Jé-IE-IPLE COM- | | MCMP(o19)| | Compares 16 consecutive words with another 16 consecutive words Output 263
and turns ON the corresponding bit in the result word where the Required
MCMP s contents of the words are not equal.
@MCMP 1 .
019 S, Comparison R
R $1 — 82 ~— |_|9 0:Words
S1+1 5241 — 1 i‘f’;‘/v%%g'-
Slt: %st word of : arent
se : equal.
S,: 1st word of : |- N
set 2 S1+14 S2+14 14
R: Result word —
S81+15 ~— 82415 — 15

37

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location | Page
Mnemonic Execution
Code condition
TABLE COM- — Compares the source data to the contents of 16 words and turns OUtpl_Jt 265
PARE TCMP(085)
TCcMP ON the corresponding bit in the result word when the contents are Required
S equal
@TCMP qual.
085 T Comparison R b
s T 0 : Data are
-]) — 1% squal
+1 — 1 0: Data aren't
S: Source data : equal.
T: 1st word of :
table - |
R: Result word T+14 — 14
T+15 — 15
UNSIGNED S— Compares the source data to 16 ranges (defined by 16 lower limits O“tp‘%t 268
BLOCK COM- BCMP(068)
PARE and 16 upper limits) and turns ON the corresponding bit in the result Required
—— S word when the source data is within the range.
@BCMP T Ranges 1: In range
068 R ——, 0:Notinrange
Lower limit Upper limit R
S: Source data - T to T+1 . 0
T: 1st word of : —
tabl - e
R?: F\?esult word Source data | T2 —|lo ™3 ‘ —*
-1
s[_ |1
. L
1= T+28 to T+29 — || 14
'~ T+30 to T+31 — | |15
EXPANDED Compares the source data to up to 256 ranges (defined by upper and | Output 270
ElﬂggK COM- BCMP2(502) | |ower limits) and turns ON the corresponding bit in the result word when | Required
BCMP2 S the source data is within a range.
@BCMP2 T 1: In range
502 T -N n=255 max. 0: Not in range
(CJIM only) R D i
ss d - T+lIRange 0 A|Range 0 B| T+2 - 0
: Source data ;
T: 1st word of Source datai> T+3[Range 1A|Range 1B{T+4 | |1
block s ; ‘ ‘
R: Result word 1
; ‘ D+15 max.
> T+2N+1|Range N A Range N Bf T+2N+2 —»
Note: A can be less than
or equal to B or
greater the B.

38

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
AREA RANGE Compares the 16-bit unsigned binary value in CD (word contents or Output 274
COMPARE (CS1- ZCP(088) constant) to the range defined by LL and UL and outputs the results to | Required
H, CJ1-H, CJ1M, the Arithmetic Flags in the Auxiliary Area.
or CS1D only) cb
ZCP LL
@ZCP
088 UL
CD: Compare data
(1 word)
LL: Lower limit of
range
UL: Upper limit of
range
DOUBLE AREA Compares the 32-bit unsigned binary value in CD and CD+1 (word con- | Output 277
RANGE COM- — | ZCPL(116) tents or constant) to the range defined by LL and UL and outputs the Required
PARE (CS1-H, results to the Arithmetic Flags in the Auxiliary Area.
CJ1-H, CIIM, or cb
CS1D only) LL
ZCPL
@ZCPL UL
116
CD: Compare data
(2 words)
LL: Lower limit of
range
UL: Upper limit of
range

39

Instruction Functions

Section 2-2

2-2-6 Data Movement Instructions

D: Destination
word

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
MOVE viov | — Moviezn) Transfers a word of data to the specified word. g:(tq%'.ilrted 279
SO s _Souceword _ _ _ _ |
I@MOV D |
021]
S:Source | T T T/ ==
D: Destination | Bit status
V not changed.
Destination word
DOUBLE MOVE o Output 282
— Transfers t ds of data to th fied ds.
@mggt MOVL(498) ransfers two wor sz ata to the specifie S\ivlor s i Required
408 s LT LTI
D b e e e e e o —— —— —— —
I Bit status
\?V:O%;t source | not changed.
\IIDVéJI:’LdSt destination 5 57T
IR RRRRERRRARRRRARRRRENENY
MOVE NOT MYN | =1 MVN(022) Transfers the complement of a word of data to the specified word. g:tF:Jlijrted 281
@WWN S _Sourceword ___ !
022 1
D I
__________ J
S: Source T
D: Destination | Bitstatus
inverted.
v
Destination word
38%' BLEMOVE |__ | MVNL(499) | | Transfers the complement of two words of data to the specified words. 8:;%‘:;(1 284
S S+1
MVNL -
@MVNL s WL T
499 [I T T T T T
S: 1st source | .Bit status
word inverted.
D: 1;’(destination D D+1
wor HHIRRRRRRRRRRRRRRRRRRRRRRERENN
MOVE BIT - : Output 285
— Transfers th fied bit.
@mgzg MovB(os2) | | Transfers the specified bi o] - |] Required
082 > 1 M
C
D s|
S: Source word or
data
C: Control word D| |

40

Instruction Functions Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition

MOVE DIGIT Output 287
@m&g 5 12y 87 43 o |Requred

083 S ¢l ot I T n TTm
c |
D

S: Source word or
data

C: Control word
D: Destination
word

—— MovD(083) Transfers the specified digit or digits. (Each digit is made up of 4 bits.)

MULTIPLE BIT
TRANSFER XFRB(062)

XFRB c
@XFRB

062 S
D

Output 290
43 0 Required
m 1]

C: Control word
S: 1st source
word

D: 1st destination
word

BLOCK o)
TRANSFER —— XFER(070) Transfers the specified number of consecutive words.

XFER N S D
@XFER
070 S N words —

D

Output 292
Required

S+(N-1) D+(N-1)

N: Number of
words

S: 1st source
word

D: 1st destination
word

BLOCK SET
BSET
@BSET s Source word Destination words

o L Jr—s

—

Output 295

— Copies the same word to a range of consecutive words.
BSET(071) p 9 Required

E

S: Source word
St: Starting word
E: End word -

DATA

PP Output 297
EXCHANGE — XCHG(073) Exchanges the contents of the two specified words.

Required

XCHG E1l E1l E2

@XCHG —
073 E2 [[] [[]

E1: 1st exchange
word

E2: Second
exchange word

41

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
DOUBLE DATA ; : ; Output 298
— Exchanges the contents of a pair of consecutive words with another .
EXCHANGE XCGL(562) pair of consecutive words. Required
XCGL E1l
@Xcs(g; = E1 E1+1 E2 E2+1
—_—
HEEEEEE- HEEEEE
E1l: 1st exchange
word
E2: Second
exchange word
SINGLE WORD At ; Output 300
JE— Transfers the source word to a destination word calculated by adding .
D|STR|BUTEDIST DIST(080) an offset value to the base address. Required
@DIST S Bs of n]
080 Bs i
of] i
S: Source word
Bs: Destination
base address
Of: Offset Bs+n r
DATA COLLECT | | COLL(081) Transfers the source word (calculated by adding an offset value to the OUtpl_Jt 302
COLL base address) to the destination word. Required
@COLL Bs
081
of Bs
D
Bs: Source base Bs+n
address
Of: Offset
D: Destination
word
MOVE TOREG- | | MOVR(560) | | Sets the internal /O memory address of the specified word, bit, or O“tp‘%t 304
ISTER (560)| | = - i if i Required
timer/counter Completion Flag in the specified Index Register. (Use q
MOVR S MOVRW(561) to set the internal I/O memory address of a
@MOVR timer/counter PV in an Index Register.)
D
560 I/O memory address of S
S: Source s [|7
(desiredwordor | = L—w It
bit)
D: Destination
(Index Register)
Index Reg|ster
MOVE TIMER/ : & ; Output 306
Sets the internal I/O memory address of the specified timer or -
gggll\grEEFé PVTO MOVRW(S61) counter's PV in the specified Index Register. (Use MOVR(560) to set | Required
S the internal /0O memory address of a word, bit, or timer/counter
MOVRW Completion Flag in an index Register.)
@MOVRW D
561 I/O memory address of S
S:Source |]
(desired TC s
number)
D: Destination Timer/counter PV only
(Index Register)
Index Reglster

42

Instruction Functions

Section 2-2

2-2-7 Data Shift Instructions

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
SHIFT REGISTER | pata o - - Output 309
L _ perates a shift register. -
SFT | input = SFT(010) [E | | St+1, Stz | | st \ Required
010| Smit St L O LTI
Reset™ E / UUUUUUUUUUUUUUUUUUUUMUUUUMUUUUUUUUUUUUMUUUUMUUU\\
input
P Lost Status of data
St: Starting word input for each
E: End word shift input
REVERSIBLE i ; ; ; ; Output 310
SHIFT REGISTER | —— SFTR(084) Creates a shift register that shifts data to either the right or tginlaefzt. Required
SFTR c c
@SFTR
084 St ~ E ~ ~ o st
CY 15 0 15 ------- 0 15 oData input
E O T] [=--------- []----- [[-mmeeees
g,hm
C: Control word ™ D firec-
St: Starting word Data H __________ |0| ﬁ - tion
E: End word input
QSTJ’;CSHHTST_ — AsFT(017) Shifts all non-zero word data within the specified word range either OUtpl_Jt 313
REGISTER towards St or toward E, replacing 0000Hex word data. Required
C 15 14 13 12
ASFT
@ASFT St ClL | | |mmmmmmeee
017 = L
St Shift direction
C: Control word o 0 0 0) Shift Shift enabled
St: Starting word :
E: End word Clear
0 0 0 o0)
) shit
E
St
Zero data
0
Non-zero data
E|O0 O O
WORD SHIFT ; ; ; Output 316
wsET |— wsFr(16) Shifts data between St and E in word units. Required
@WSFT E]
016 - Lost{f’?—\ qﬁ\ e g S
st || T R T
E
S: Source word
St: Starting word
E: End word
ARITHMETIC ; : Output 317
SHIFT LEFT — ASL(025) Shifts the conter:;s of Wd one bit to the left. . Required
ASL
wd
@nsL INENRERENEERENER
025 . 1.0
Wd: Word ﬁ/||/ | |/ 2

43

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
DOUBLE SHIFT ; ; Output 319
LEET —{ AsLL70) Shifts the contents of Wd and Wd +1 one bit to the left. Required
ASLL wd Wwd+1 wd
O ANENNNNNNNENNNNN]SANRNNNNNNNNNREN
570 .
Wwd: Word .
CY, 15/4 1%)/5/ 1%);"0
L1 (1] L [1]
ARITHMETIC . . : Output 321
SHIET RIGHT — ASR(026) Shifts the contents of Wd one bit to the right. Required
ASR 15 0
wWd
@As EENEEEENENEREREN
Wd: Word 0. \ \\
has i
DOUBLE SHIFT : . : Output 322
RIGHT — ASRL(571) Shifts the contents of Wd and Wd +1 one bit to the right. Required
ASRL wd Wd+1 wd
@ASRL 15 10 15 10
571 | \wd: Word 0_!|||||||||||||||||||||||||||||||||
54 o\ 15{4 0\CY
L1 [L1 [1]
ROTATE LEFT ; ; ; ; ; Output 324
— Shifts all Wd bits one bit to the left including the Carry Flag (CY).
ROL ROL(027) 9 y Flag (CY) Required
@ROL CYy 1514 10
027 wd =
Wd: Word D| | | | |J |
DOUBLE ; ; ; ; ; Output 326
ROTATE LEFT —{ RoLL(572) (Sg\l(f;s all Wd and Wd +1 bits one bit to the left including the Carry Flag Required
ROLL
wd Wd+1 wd
@R??‘IZ‘ CY 1514 10 1514 10
Wd: Word [FW| [T] [T | |J|
ROTATE LEFT . P P - . Output 331
WITHOUT — RLNC(574) Shifts all Wd bits one bit to the left not including the Carry Flag (CY). Required
CARRY
RLNC wd CY 1514 wd 10
@RLNC) A
W Word] R E—— [T]
574 L J
DOUBLE ; ; ; ; ; Output 332
ROTATE LEET — RLNL(576) Elrgfts(g{l()\Nd and Wd +1 bits one bit to the left not including the Carry Required
WITHOUT v 9 (=1
CARRY AL CY 1514 Wd+1 01514 Wd 10
@RLNL | Wd: Word D’|L| [[[T | |J|
576
ROTATERIGHT | | Shifts all Wd bits one bit to the right including the Carry Flag (CY). Output 327
ROR ROR(028) W Required
@ROR Wwd 1514 Wd+1 0 1514 0 oY
028 LL] [] L] [
Wd: Word L
DOUBLE ; ; ; ht ; Output 329
ROTATE RIGHT |—— RORL(573) Eggs(gl()wd and Wd +1 bits one bit to the right including the Carry Required
RORL
@RORL wd 1514 Wd+1 0 1514 Wwd 0 gy
573 | wd: Word |t| | [T 11 ﬁﬁ]

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
o e | — 1 Rrncers)| | Shifts all w bits one bit to the right not including the Carry Flag (CY). | OUtPu! 334
CARRY The contents of the rightmost bit of Wd shifts to the leftmost bit and to | Required
wd the Carry Flag (CY).
RRNC 15 14 10
@RRSI\Q Wd: Word P v gy
w |L| | | |J | 0
DOUBLE ; ; ; ; ; ; Output 336
— Shifts all Wd and Wd +1 bits one bit to the right not including the Carry ’
@?JQZ)E?'GHT RRNL(577) Flag (CY). The contents of the rightmost bit of Wd +1 is shifted to the ~ | Required
wd leftmost bit of Wd, and to the Carry Flag (CY).
CARRY
RRNL |\ 1514 Wd+1 0 15 Wd 0 cY
Wd: Word
@RRNL PVt Pae W Pnn
577 |t||| [TT [0 ||J|E
ONE DIGIT SHIFT : - f Output 338
LEET — SLD(074) Shifts data by onz digit (4 bits) to the Ieft.S 1 ReqF:Jired
@2::8 St POV VN NV VNN F\/W\
074 E LOSt l l l _______ l - . -
St: Starting word
E: End word
ONE DIGIT SHIFT : - f ; Output 339
RIGHT — SRD(075) Shifts data by oneEd|g|t (4 bits) to the right. X Required
SRD St DoHex—~ S
@SRD | I B |RERERED [| Lost
075 E
St: Starting word
E: End word
SHIFT N-BIT ; - ; Output 341
DATA LEFT —{ nsFLE78) Shifts the specified number of bits to the left. Required
NSFL D]
@NSFL
578 C
N
D: Beginning
word for shift
C: Beginning bit
N: Shift data D)
length [] of o |
N-1 bit
SHIFT N-BIT i i i i Output 343
DATA RIGHT NSFR(579) Shifts the specified number of bits to tct;e right. Required
NSFR D lII
@NSFR
579 C
N |
D: Beginning _Shifts one bit to the right
word for shift cy
C: Beginning bit |
N: Shift data
length N1 bit

45

Instruction Functions

Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
SHIFT N-BITS ; - i if Output 345
— Shifts the specified 16 bits of word data to the left by the specified -
LEFT NASL(S80) | | humber of bits. Required
NASL D
@NASL 15 12 11 87 43 0
580 c c| P o | i |
-
D: Shift word . .
C: Control word Shift n-bits
! Contents of
—— "a"or "0"
LI shifted in
N bits
DOUBLE SHIFT . - : . Output 348
) — NSLL(582 Shifts the specified 32 bits of word data to the left by the specified :
N-BITS LEFT 582) | | number of bits. Required
NSLL D
@NSLL 15 1211 87 43 0
532 c cl P o - |
hift n-bi
D: Shift word D+1 |:)S fftn bltas
C: Control word
Contents of
"a"or "0"
8/ shifted in
FIT1
N bits
SHIFT N-BITS ; - ; : . Output 350
S Shifts the specified 16 bits of word data to the right by the specified .
RIGHT NASRGED | | number of bits. Required
NASR D
@NASR
581 C
Contents of "a" or
D: Shift word 0" shifted in
C: Control word
N bits
DOUBLE SHIFT . I, . . o Output 353
—_— Shifts the specified 32 bits of word data to the right by the specified -
- NSRL(583 f
N-BITS RIGHT G83) || number of bits. 15 1211 87 43 0 Required
NSRL D cl o | = |
@NSRL [——
583 c Shift n-bits
a D+1 D
D: Shift word
C: Control word Contents of
"2t or "0" —MN\a
shifted in [TTTE

46

Instruction Functions Section 2-2
2-2-8 Increment/Decrement Instructions
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
INCREMENT | Increments the 4-digit hexadecimal content of the specified word by 1. | OutPut 356
BINARY ++(590) Required
- wa +
@++
590 | wd: word
DOUBLE INCRE- _dini ; s Output 358
MENT BINARY — 591 Iln.crements the 8-digit hexadecimal content of the specified words by Required
++L
@++L wd wd+1 wd +1 wd+1 wd
591 | wd: Word
DECREMENT dini ; - Output 360
BINARY — — (592 ?.ecrements the 4-digit hexadecimal content of the specified word by Required
@- wd 8
592 | \wd: word
g(E)kAJEII;IE DEC- — - -L(593) ?ecrements the 8-digit hexadecimal content of the specified words by gg:ﬁrted 362
BINARY wd ’
——L Wd+1 wd -1 Wd+1 wd
@--L .
503 Wd: 1st word
INCREMENT i I’ Output 364
BCD —— ++B(594) Increments the 4-digit BCD content of the specified word by 1. Required
++B
ot wa .
594 wd: Word
DOUBLE INCRE- - s Output 366
MENT BCD —— ++BL(595) Increments the 8-digit BCD content of the specified words by 1. ReqFl)Jil'ed
++BL
@++BL wd wds1 | wd | 1 —— wae1 | wad
595 | wd: 1st word
DECREMENT _diqi ifi Output 368
BCD — _g(s96) Decrements the 4-digit BCD content of the specified word by 1. Required
--B
@--B wd =)
596 | wd: word
g(E)kAJEII;IE ggg — - -BL(597) Decrements the 8-digit BCD content of the specified words by 1. (R):(t]?::rted 370
--BL
@--BL wd Wwd+1 wd -1 — Wd+1 wd
597 | wd: 1st word

a7

Instruction Functions Section 2-2
2-2-9 Symbol Math Instructions
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
SIGNED BINARY i (i ; Output 373
J— Adds 4-digit (single-word) hexadecimal data and/or constants.
ADD WITHOUT +(400) git (sing) Required
CARRY . AU (Signed binary)
+ . .
%O Ad " (Signed binary)
R
CY will turn
Au: Augend word ONwhenthere | cy || R | (signed binary)
Ad: Addend word IS acarry.
R: Result word
DOUBLE . ; : Output 375
iﬁg@?ﬁ'gﬁ? — +L(401) Adds 8-digit (double-word) hexadecimal data and/or constants. Required
CARRY Au [At || Aau | (Signed binary)
@il Ad + [ager | [Cad] (Signed binary)
R
401 CY will turn
vAvg;dlst augend t?]l;ln\;vihseg Loy [ra | [R | (Signedbinary)
Ad: 1st addend cary.
word
R: 1st result word
SIGNED BINARY it i el . . Output 377
ADD WITH — +C(402) égl?@é}:gglzés\}?gle word) hexadecimal data and/or constants with the Required
CARRY ’ . .
0 Au (Signed binary)
@+C Ad : .
402 = (Signed binary)
Au: Augend word *
Ad: Addend word cY will turn
R: Result word ONwhenthere [cy | | R | (Signed binary)
is a carry.
DOUBLE P N " Output 379
[— Adds 8-digit (double-word) hexadecimal data and/or constants with -
igg\EV?TiINARY *CL(403) | |the Carry Flag (CY). Required
CARRY Au [sz || Au | (Signedbinary)
+CL Ad . .
@+CL = | Ad+1 | | Ad | (Signed binary)
403
CcY
Au: 1st augend "
word CY will turn
Ad: 1st addend ON when there | cy | | R+1 | | R | (Signed binary)
word is a carry.
R: 1st result word
(B)E'? égg%/\v(lTH- —] +B(404) | | Adds 4-digit (single-word) BCD data and/or constants. gutpqt J 381
equire
2w (8c)
404 Ad : (BCD)
R
CY will turn
Au: Augend word ON when there [cy || r |®CD)
Ad: Addend word is a carry.
R: Result word

48

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
DOUBLE BCD . Output 382
ADD WITHOUT |—1+BL(405) Adds 8-digit (double-word) BCD data and/or constants. Required
CARRY
Au +1 Au (BCD)
A | | | |
@+BL Ad + [ag] [ad_] ®cD)
405
R
CY will turn
Au: 1st augend ON when therel ey ” R+1 | | R | (BCD)
word is a carry.
Ad: 1st addend
word
R: 1st result word
BCDADDWITH | | +BC(406) | |Adds 4-digit (single-word) BCD data and/or constants with the Carry Output 384
CARRY (406) Flag (CY). Required
+BC A BCD
@+BC Au (BCD)
we| [ad =2
R
N
Au: Augend word :
. CY will turn
Afj' Addend word ON when there
R: Result word is a camy, [cy || R | (cD)
DOUBLE BCD Hini R ; Output 386
ADD WITH —+BCL(407) é&o@l}s(g%glt (double-word) BCD data and/or constants with the Carry Required
CARRY ’
+BCL Au [Aavvr | [A | cD
@+BCL
e A:i [acv1 || ad | (BCD)
s
Au: 1st augend
word .
Ad:dlst addend gm\\l/\vngéw&ere | cy | | R+1 | | R | (BCD)
wor h
R: 1st result word | 'S acary.
SIGNED BINARY . . Output 387
SUBTRACT — -(410) Subtracts 4-digit (single-word) hexadecimal data and/or constants. Required
WITHOUT : i Signed binar
wiTHol i (Signed binary)
@: Su - (Signed binary)
410 R
Mi: Minuend word \(/:v%(evr\:”tlhtgrrg i(s)g [cy || R | (Signed binary)
Su: Subtrahend borrow
word '
R: Result word
DOUBLE i - ; Output 389
SIGNED BINARY |— -L(411) Subtracts 8-digit (double-word) hexadecimal data and/or constants. Required
SUBTRACT - . .
WITHOUT Mi | Mi+1 | | Mi | (Signed binary)
CARRY Su
-L [sutv1 || su | (Signed binary)
@-L R
411 CY will turn
Mi: Minuend word ON when | cY || R+1 | | R | (Signed binary)
Su: Subtrahend there is a
word borrow.
R: Result word

49

Instruction Functions

Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
gll_(l;BNTERI?'-\EITNARY — —c(412) | | Subtracts 4-digit (single-word) hexadecimal data and/or constants (R)”tp‘_‘t J 393
: equire
WITH CARRY v with the Carry Flag (CY). (Signed binary) a
-C
@-C Su (Signed binary)
412
R
-
Mi: Minuend word :
CY will turn
Su: Subtrahend . .
word - ranen ONwhenthere [cy | [R | (Signed binary)
R: Result word is a borrow.
gl(()stlil?EIE)EBlN ARY |—]-CL(413) Subtracts 8-digit (double-word) hexadecimal data and/or constants OUtpl_‘t 395
WITH CARRY with the Carry Flag (CY). Required
Mi
@:8:: Su | Mi+1 | | Mi | (Signed binary)
413 R [sux1 || su | (Signedbinary)
Mi: Minuend word -
Su: Subtrahend CY will turn
word ON when
R: Result word thereisa | cy | [rez || R | (signed binary)
borrow.
\?V(I:.PH%LLJETRACT — -B(414) Subtracts 4-digit (single-word) BCD data and/or constants. gmp"_'t d 398
equire
CARRY , (BCD)
Y M [wi]
o8 [s - s e
R
CY will turn
Mi: Minuend word ON when there Lev [R |@ECD)
Su: Subtrahend is a carry.
word
R: Result word
DOUBLE BCD - Output 399
\%I{PJSG?T — -BL(415) Subtracts 8-digit (double-word) BCD data and/or constants. Required
CARRY Mi [mi+1 || m | BCD)
—-BL Su
@-BL [suv1 || su | (BCD)
415 R
. ; CY will turn
Vh\//l:).rést minuend ON when there l cY l l R+l l l R l (BCD)
Su: 1st is a borrow.
subtrahend word
R: 1st result word
BCD SUBTRACT d o . Output 403
— Subtracts 4-digit (single-word) BCD data and/or constants with the
WITH CARRY ~BC(416)| | Zarry Flag (C\g().(9) Required
—BC .
@-8C i (BCD)
416 Su
< eco)
- CY
Mi: Minuend word -
Su: Subtrahend v will turn
word
R: Result word ON when there | Cy | | R | (BCD)
is a borrow.

50

Instruction Functions

Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
DOUBLE BCD —— _BCL(417 Subtracts 8-digit (double-word) BCD data and/or constants with the OUtpl_‘t 404
SUBTRACT @101 | Carry Flag (CY) Required
WITH CARRY , y Fag (&Y).
—BCL Mi [mi+1 || wm | (BcD)
@-BCL Su
417 = [six1 || su | (BCD)
- CY
Mi: 1st minuend
word o wil
Su: 1st will turn BCD
subtrahend word ON when there | 4 | | R+1 | | R | ()
R: 1st result word is a borrow.
SIGNED BINARY _r [- Output 406
MULTIPLY — *(420) Multiplies 4-digit signed hexadecimal data and{or cons.tants. Required
@x
Mr) .
420 x (Signed binary)
R
Md: Multiplicand . .
word R | R | (Signedbinary)
Mr: Multiplier
word
R: Result word
DOUBLE . it i ; Output 408
,\SAISFFII:ELEINARY *L(421) Multiplies 8-digit signed hexadecimal data and/or constants. Required
L Md Md + 1 Md (Signed binary)
@xL Mr
421 R x Mr + 1 Mr (Signed binary)
Md: 1st
W't'l@t'crﬁﬂﬁigvlgf R+3 R+2 R+1 R (Signed binary)
word
R: 1st result word
LBJ:\,I\ISAISyED — *U(422) Multiplies 4-digit unsigned hexadecimal data and/or constants. S:trl);ijrted 410
MULTIPLY _ _ q
*U Md (Unsigned binary)
@x*u Mr
422 R x (Unsigned binary)
Md: Multiplicand _)
word | R +1 | R | (Unsigned binary)
Mr: Multiplier
word
R: Result word
BIC\I)LSJI%INEED — «uL(423) Multiplies 8-digit unsigned hexadecimal data and/or constants. g”tp'-_'t g 412
equire
BINARY _ _ q
MULTIPLY Md Md + 1 Md (Unsigned binary)
xUL Mr
*UL . .
@ 423 R x Mr+1 Mr (Unsigned binary)
Md: 1st
multiplicand word . .
Mr: 1st multiplier R+3 R+2 R+1 R (Unsigned binary)
word
R: 1st result word

51

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
BCD MULTIPLY _ it (i g Output 413
«8 |~ *B(424) Multiplies 4-digit (single-word) BCD data and/or constants. Required
@:B Md (BCD)
424
r : 8co)
R
Md: Multiplicand R +1 | R | (BCD)
word
Mr: Multiplier
word
R: Result word
DOUBLE BCD . i . Output 415
MULTIPLY —*BL(425) Multiplies 8-digit (double-word) BCD data and/or constants. Required
*BL
@+BL Md Md +1 Md (BCD)
425 Mr
R x Mr+1 Mr (BCD)
Md: 1st
multiplicand word
Mr: 1st multiplier R+3 R+2 R+1 R (BCD)
word
R: 1st result word
SIGNED BINARY o i e ; ; Output 417
J— Divides 4-digit (single-word) signed hexadecimal data and/or
DIVIDE /(430) constants. gl (sing)59 Required
@/ Dd (Sig y)
430 Dr . .
R + (Signed binary)
Dd: Dividend ’ .
word R +1 | R | (Signed binary)
Dr: Divisor word
R: Result word Remainder Quotient
DOUBLE i o ; ; Output 419
— Divides 8-digit (double-word) signed hexadecimal data and/or
SIGNED BINARY /L(431) || Divides 8-digit () sig Required
n Dd Dd +1 Dd (Signed binary)
@iL Dr
431 R + Dr+1 Dr (Signed binary)
Dd: 1st dividend
word ; ;
Dr: 1st divisor R+3 R+2 R+1 R (Signed binary)
word]]
R: 1st result word Remainder Quotient
UNSIGNED - sl : : Output 421
BINARY DIVIDE |— /U(432) Divides 4-digit (single-word) unsigned hexadecimal data and/or Required
constants. q
/U Dd
@8] (Unsigned binary)
432 Dr
R 5 (Unsigned binary)
Dd: Dividend
d . .
Vl;(r):rDivisor word R+1 | R | (Unsigned binary)
R: Result word
Remainder Quotient

52

I nstruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
DOUBLE i e ; ; Output 423
— Divides 8-digit (double-word) unsigned hexadecimal data and/or
UNSIGNED /UL(433) | | Divides 8-digit () unsig Required
BINARY DIVIDE . .
JUL Dd Dd +1 Dd (Unsigned binary)
@/UL Dr
433 R - Dr+1 Dr (Unsigned binary)
Dd: 1st dividend
\Isv?'r?.st divisor R+3 R+2 R+1 R (Unsigned binary)
;g?ﬂt result word Remainder Quotient
BCD DIVIDE Output 425
@5 g /B(434) Divides 4-digit (single-word) BCD data and/or constants. Required
Dr
R (BCD)
Dd: Dividend
word BCD
Dr: Divisor word R+1 | R | ()
R: Result word Remainder Quotient
DOUBLE BCD - L Output 427
DIVIDE — /BL(435) Divides 8-digit (double-word) BCD data and/or constants. Required
/BL
@/BL Dd Dd + 1 pd | (BCD)
435 Dr
R + Dr+1 Dr (BCD)
Dd: 1st dividend
word
Dr: 1st divisor R+3 R+2 R+1 R (BCD)
word ; .
R: 1st result word Remainder Quotient
2-2-10 Conversion Instructions
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
BCD-TO-BINARY ; Output 429
J— Converts BCD data to binary data.
BIN BIN(023) y Required
@g'zg S s (BCD) —R (BIN)
R
S: Source word
R: Result word
DOUBLE BCD- e e . i i Output 430
TO-DOUBLE — BINL(058) Converts 8-digit BCD data to 8-digit hexadecimal (32-bit binary) data. Required
BINARY S
BINL S (BCD) . R (BIN)
@B(I)l;lé R S+1 (BCD) R+1 (BIN)
S: 1st source
word
R: 1st result word

53

Instruction Functions

Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
BINARY-TO-BCD : Output 432
— Converts a word of binary data to a word of BCD data.
BCD BCD(024) y Required
@BCD S s (BIN) —R (BCD)
024
R
S: Source word
R: Result word
DOUBLE i ; hit hi Hini Output 433
BINARY-TO- —— BCDL(059) Converts 8-digit hexadecimal (32-bit binary) data to 8-digit BCD data. Required
DOUBLE BCD
BCDL S S (BIN) __ R (BCD)
@B%Iglg- R S+1 (BIN) R+1 (BCD)
S: 1st source
word
R: 1st result word
2'S COMPLE-) ; Output 435
S Calculates the 2's complement of a word of hexadecimal data.
MENT NEG(160) P Required
NEG IS 2's complement
@NEG (Complement + 1)
160 R © (R)
S: Source word
R: Result word
DOUBLE 2'S . . Output 437
COMPLEMENT —NEGL(161) Calculates the 2's complement of two words of hexadecimal data. Required
NEGL S 2's complement
@NEGL (Complement + 1)
161 R LY (R+1,R)
S: 1st source
word
R: 1st result word
16-BIT TO 32-BIT _hit i ; ; _hi ; Output 439
SIGNED BINARY | — siGn(s00) Expands a 16-bit signed binary value to its 32-bit equivalent. Required
SIGN
@SIGN S '\‘AS‘B
600 R S
S: Source word MSB = 1: MSB = 0:
R: 1sturesu\f\tl word FFFF Hex 0000 Hex
D+1 D

D = Contents of S

I nstruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
DATA DECODER | | MLPX(076) Reads the numerical value in the specified digit (or byte) in the source OUtP‘{t 440
MLPX word, turns ON the corresponding bit in the result word (or 16-word Required
@MLPX s range), and turns OFF all other bits in the result word (or 16-word
076 range).
C 4-to-16 bit conversion
R c[o | [I | n

S: Source word
C: Control word
R: 1st result word

£=1 (Convert 2 digits.)

sl p I m | : | n=2 (Start with second digit.)

4-t0-16 bit decoding
(Bit m of R is turned ON.)

15 p 0
R oo
Re1[
8-t0-256 bit conversion cl 1 | [1+ i n]

£=1 (Convert 2 bytes.) |

[1 n=1 (Start with first byte.)
s| m i p
R
8-t0-256 bit decoding
(Bit m of R to R+15 is turned ON.)
15 0
31 m 16
Rl | —1f
L 239 224
R+14|255 240
R+15
R+16:; | :
R+17; 1 :
: Two 16-word ranges
: sare used when £
R+30: specifies 2 bytes.
R+31;

55

Instruction Functions

Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
DATA ENCODER || bMPX(077)| | FInds the location of the first or last ON bit within the source word (or Output 445
DMPX 16-word range), and writes that value to the specified digit (or byte) in | Required
@DMPX s the result word.
077 16-to-4 bit conversion
R cl o o [1 n
FInds leftmost bit
C (Highest bit address)
| |
S: 1st source I15 p ,;_ 0 £=1 (Convert
word s B 2 words.)
R: Result word s g = }
C: Control word +1 1
16-to-4 bit decodi
-to-4 bit decoding)) .
(Location of left Leftmost bit ~ Rightmost bit
most bit (m) is writ-
tento R.)
| n=2 (Start with digit 2.)
n
R p m
256-t0-8 bit conversion
cl o w [1§ n
£=0 (Convert one 16-word range.)
15 0
|31 16
SJ;1 Leftmost bit
Plde 0m 224
stl4loss—l_ 240
s+15
Finds leftmost bit
(Highest bit address)
256-t0-8 bit decoding
(The location of the leftmost bit in the
16-word range (m) is written to R.)
II n=1 (Start with byte 1.)
R m
ASCII CONVERT | | ASC(086 Converts 4-bit hexadecimal digits in the source word into their 8-bit OUtp‘%t R
ASC (086) | | ASCIl equivalents. . . Required
@ASC S D[o { 1o [n [m |
086) o
Di First digit to convert |
D V
m
S: Source word s 1 [2 | 3
Di: Digit b g
designator HEX
D: 1st destination Number of
word digits (n+1)
ASCII
Left (1) | | Right (0)
D 33
31 32

56

Instruction Functions

Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
ASCII TO HEX —{ HExc62) | | Converts up to 4 bytes of ASCII data in the source word to their Output 453
HEX (162) | | hexadecimal equivalents and writes these digits in the specified Required
@HEX S destination word.
162 C: 0021
Di pil o o1 [n I m
D First byte to convert
S: 1st source Left (1) Right (0)
word s 33 32
Di: Digit
designator S+1 34
D: Destination
word -
ASCII Number of digits (n+1)
First digit to write
HEX n+1 f
I m Al
D| 4 3 2
EI%LEUMN TO — LINE(063) Converts a column of bits from a 16-word range (the same bit number OUtpl_‘t 457
LINE in 16 consecutive words) to the 16 bits of the destination word. Required
S
@LINE Bit N Bit
063 N 15 l 00
D S 0/0|0f1]1f1]1[0|0|0 1]|0|0]|O(0]|1
S: 1st source S+1 1/1|0|1|0|0Of1]|0f0O|1]1|1|0(0]|Of1
word S+2 0/0|0f1]|1({0|1[1|0|0,1]|0f0]21([1]1
N: Bit number
word
S+15 [o]1]1]o]o]o]o[1]1]o]0]0]1]0]1]0]
Bit Bit
y 15 00
D o] - - - [ofafafs]
LINE TO : P Output 459
—— coLm(o64) | | Converts the 16 bits of the source word to a column of bits in a -
COLUMN (064) 16-word range of destination words (the same bit number in 16 Required
COLM S consecutive words).
@CoLM
064 D Bit Bit
15 00
N
1.1]1
S: Source word S @ u...
D: 1st destination
word *
N: Bit number .
Bit Bi Bit
15 ‘ 00
D 0|0fo|0Of1|1|1|0|Of0O[|1[0|0O|0O]|O]|1
D+1 ([1]1f0]1|0|0|1|0|Of1]|1[1|0|0O|O]|1
D+2 |(0|0f0|1[1)|0|1|1|0f0[1[0|O|21|1]|1
D+3 [1]|0f0|0|0|0O|1|1|0f0|0Of0O|O|1|1]|1
D+15|o|1]1|1]o]o]o]1]1]0lo]0]1]0]1]0]

57

Instruction Functions

Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
SIGNED BCD- : : : Output 462
—_— Converts one word of signed BCD data to one word of signed binar
TO-BINARY BINS(470) | | 7o 9 g Y | Required
BINS c
@BINS o[]
470 S Signed BCD format
D specified in C
C: Control word S| Signed BCD | —— D| Signed binary
S: Source word
D: Destination
word
gl%tlil?EI_DEBCD- — BisL@72) Converts double signed BCD data to double signed binary data. gg:ﬁrted 465
BISL .
@BISL s Signed BCD format
472 specified in C
D
S| SignedBCD | DJ Signed binary
C: Control word s+1| Signed BCD D+1| Signed binary
S: 1st source
word
D: 1st destination
word
SIGNED BINARY- ; ; ; Output 468
— Converts one word of signed binary data to one word of signed BCD
TO-BCD BCDS(M7Y) | | Jata. g Y 9 Required
@BCDS
471 S Signed BCD format
D specified in C
S| Signed binary |—» D| Signed BCD |
C: Control word
S: Source word
D: Destination
word
DOUBLE ; ; ; Output 470
SIGNED BINARY- |— BDSL(473) Converts double signed binary data to double signed BCD data. Required
TO-BCD
@BDSL s
473 Signed BCD format
D specified in C
C: Control word S| Signed binary | _, D| Signed BCD
S: 1st source $+1| Signed hinary D+1| Signed BCD

word
D: 1st destination
word

58

Instruction Functions

Section 2-2

2-2-11 Logic Instructions

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
LOGICAL AND ; ; He i i Output 474
J— Takes the logical AND of corresponding bits in single words of word .
@ﬁmgw ANDW(O34)| | jata andlor constants. Required
Iy
034 , I I~ R
R I) R
1 1 1
I Input 1
I Input 2 1 0 0
R: Result word 0 1 0
0 0 0
DOUBLE ; ; P Output 476
JE— Takes the logical AND of corresponding bits in double words of word .
LOGICAL AﬁﬁDL ANDL(10) | | data and/or constants. Required
1
ANDL
enroL ” (I 13+1). (1, 1p+1) - (R, R+1)
R l1.17+1 I lo+1 R, R+1
1 1 1
I1: Input 1
I,: Input 2 1 0 0
R: Result word 0 1 0
0 0 0
LOGICAL OR ; ; He i o Output 477
JE— Takes the logical OR of corresponding bits in single words of word -
@gsw ORW(035) data and/or constants. Required
Iy
035 I l1+12-R
2
R I I R
1 1 1
I1: Input 1
I,: Input 2 1 0 1
R: Result word 0 1 1
0 0 0
DOUBLE ; ; He Output 479
— Takes the logical OR of corresponding bits in double words of word .
LOGICAL O(?RWL ORWL(611) data and/or constants. Required
Iy
ORWL
@ 611 I (I.13+1) + (I 15+1) - (R, R+1)
R I1.1h+1 I 1o+1 R, R+1
1
I1: Input 1
I, Input 2 1 0 1
R: Result word 0 1 1
0 0 0
EXCLUSIVE OR ; ; ; He i i Output 481
JEN— Takes the logical exclusive OR of corresponding bits in single words .
@igsw XORW(O38)| | 4f word data and/or constants. Required
g
036 | I +T00, - R
2
R I1) R
1 1 0
I1: Input 1
I, Input 2 1 0 1
R: Result word 0 1 1
0 0 0

59

Instruction Functions

Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
DOUBLE EXCLU- ; ; ; P Output 483
JE— Takes the logical exclusive OR of corresponding bits in double words -
SIVE OR XORL(612) of word data and/or constants. Required
XORL ly
@XOGFi; | (Ip13+1). (RN + (LT #1). (I 1p+1) - (R, R+1)
2
R I1.1h+1 b1+l | R,R+1
I1: Input 1 1 1
1: Inpu
l,: Input 2 1 0 1
R: Result word 0 1 1
0 0 0
EXCLUSIVE NOR ; ; ; ; Output 485
JE— Takes the logical exclusive NOR of corresponding single words of .
XNRW(037,
XNRW (037) word data and/or constants. Required
@XNRW |
1
037 A I+ T, - R
R I I R
1 1 1
I1: Input 1
I,: Input 2 1 0 0
R: Result word 0 1 0
0 0 1
DOUBLE EXCLU- ; : : P Output 486
JE— Takes the logical exclusive NOR of corresponding bits in double .
SIVE NOR YNRL XNRL(613) words of word data and/or constants. Required
Iy
@X’\g; I, (I111#2). (I 1+1) + ([T #1). (L +1) - (R, R+1)
R I1.11+1 Ib1,+1 | R, R+1
I1: Input 1 ! !
1: Inpu
l: Input 2 1 0 0
R: 1st result word 0 1 0
0 0 1
COMPLEMENT | | COM(029 Turns OFF all ON bits and turns ON all OFF bits in Wd. OUtp"_'t 488
COM (029) o Required
@COMm Wd-Wd:1- 0and0 -1
wd
029
Wd: Word
DOUBLE COM- . P Output 490
PLEMENT —— COML(614) Turns OFF all ON bits and turns ON all OFF bits in Wd and Wd+1. Required
COML (Wd+1, wd) - (Wd+1, wd)
@COML wd
614 | wd: word

60

Instruction Functions

Section 2-2

2-2-12 Special Math Instructions

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
BINARY ROOT | | ROTB(620) | | COMputes the square root of the 32-bit binary content of the specified Output 491
ROTB words and outputs the integer portion of the result to the specified Required
@ROTB S result word.
620
R
[s s] =0 = |
S: 1st source
word Binary data (32 bits) Binary data (16 bits)
R: Result word
BCD SQUARE - Output 493
— Computes the square root of an 8-digit BCD number and outputs the .
ROOT ROGT ROOT(072) integer portion of the result to the specified result word. Required
@ROOT S
072 R J [s s | —=[=
fvo}gt source BCD data (8 digits) BCD data (4 digits)
R: Result word
ARITHMETIC Calculates the sine, cosine, or a linear extrapolation of the source data. | Output 497
PROCESS APR(069) | | The linear extrapolation function allows any relationship between X Required
APR C and Y to be approximated with line segments.
@APR
069 S
R
C: Control word
S: Source data
R: Result word
FLOATING - L . . Output 509
[— Divides one 7-digit floating-point number by another. The -
POINT DIVIDE FDIV(079) floating-point numbers are expressed in scientific notation (7-digit Required
@EB:\\; Dd mantissa and 1-digit exponent).
079 Dr Quotient
R | Rtz | R]
Dd: 1st dividend | Dr+1 Dr | > | Dd+1 | Dd |
word
Dr: 1st divisor
word
R: 1st result word
BIT COUNTER e i Output 513
J— Counts the total number of ON bits in the specified word(s).
BCNT BCNT(067) P (®) Required
@BCNT N)
067 N words
S Counts the number
to of ON bits.
R
S+(N-1) Binary result
N: Number of
words
S: 1st source R[]
word
R: Result word

61

Instruction Functions

Section 2-2

2-2-13 Floating-point Math Instructions

R: 1st result word

point data, 32 bits)

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
FLOATING TO ; : : P ; Output 520
A — Converts a 32-bit floating-point value to 16-bit signed binary data and -
16-8IT FIx FIX(450) places the result in the specified result word. Required
S . .
@FIX | S+1 | s | Floating-point data
450 R (32 bits)
S: 1st source . .
worg [r 1 signedbinary daia
R: Result word (16 bits)
FLOATING TO ; ; ; H i ; Output 522
— Converts a 32-bit floating-point value to 32-bit signed binary data and ’
32-BIT FIXL FIXL(451) places the result in the specified result words. Required
S
@FIXL R | S+1 S | Floating-point data
451 ’ (32 hits)
S: 1st source | |
word R+1 R Si i
. gned binary data
R: 1st result word (32 bits)
16-BIT TO P ; ; ; ; Output 523
J— Converts a 16-bit signed binary value to 32-bit floating-point data and :
FLOATING FLT FLT(452) places the result in the specified result words. Required
@FLT S : ;
452 R Signed binary data
(16 bits)
S: Source word
R: 1stresultword | R+1 | R | Floating-point data
(32 bits)
32-BIT TO P ; ; : ; Output 525
— Converts a 32-bit signed binary value to 32-bit floating-point data and ’
FLOATING FLTL FLTL(453) places the result in the specified result words. Required
S
@FLTL R | S+1 s Signed binary data
453 (32 bits)
|
S: 1st source . .
word | R+1 R | Floating-point data
R: 1st result word (32 bits)
FLOATING- ; ; : ; Output 527
— Adds two 32-bit floating-point numbers and places the result in the .
POINT ADD . +F(454) specified result words. Required
%;Z 2: | Au+l | Au | Augend (floating-point
data, 32 hits)
R
+ | Ad+1 | Ad | Addend (floating-point
Au: 1st augend data, 32 bits)
word
AD: 1st addend . .
Word | R+1 | R | Result (floating-point
R: 1st result word data, 32 hits)
FLOATING- ; ; ; Output 529
pu— Subtracts one 32-bit floating-point number from another and places .
.'?S}_\'\(':TTSUB' F(455) the result in the specified result words. Required
Mi
-F
@-F Su | Mi+1 | Mi | Minuend (floating-
455 = point data, 32 bits)
_| Su+l | Su | Subtrahend (floating-
Mi: 1st Minuend point data, 32 bits)
word
Su: 1st .
Subtrahend word | R+1 | R | Result (floating-

62

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
FLOATING- Sl : : ; ; Output 531
— Multiplies two 32-bit floating-point numbers and places the result in
POINT MULTIPLY *F(456) | | the sgecified result words. op P Required
xF
Md - .
@xF | Md+1 | Mmd | Multiplicand (floating-
456 Mr point data, 32 bits)
R X | Mr+1 | Mr | Multiplier (floating-
point data, 32 bits)
Md: 1st
Multiplicand word
Mr: 1t Multiplier | R+1 | R | Result (floating-
R: 1st result word point data, 32 bits)
FLOATING- o ; ; : Output 533
— Divides one 32-bit floating-point number by another and places the -
POINT DIVIDE [F(A57) || resultin the specified result words. Required
ya Dd . _
@/F | Dd+1 | Dd | Dividend (floating-
457 Dr point data, 32 bits)
R o | Dr+1 | Dr | Divisor (floating-
Dd: 1st Dividend point data, 32 bits)
word
v[\)/g réSt Divisor | R+1 | R | Result (floating-
R: 1st result word point data, 32 bits)
DEGREES TO ; ; ; ; Output 535
JE— Converts a 32-bit floating-point number from degrees to radians and .
RADIANS RAD RAD(458) places the result in the specified result words. Required
S
@RAD .
458 R | S+1 S | Source (degrees, 32-bit
floating-point data)
/
S: 1st source |
word ; ;
; R+1 R Result (radians, 32-bit
R: 1st result word floating-point data)
RADIANS TO ; ; ; ; Output 536
JE— Converts a 32-bit floating-point number from radians to degrees and .
DEGREES DEG DEG(459) places the result in the specified result words. Required
S
@DEG . .
459 R | S+1 S | Source (radians, 32-bit
floating-point data)
S: 1st source /
word]
R: 1st result word | R+1 R | Result (degrees, 32-bit
floating-point data)
SINE — SIN(460) | | Calculates the sine of a 32-bit floating-point number (in radians) and Output 538
SIN places the result in the specified result words. Required
@SIN IS
460 R SIN (l S+1 S |) Source (32-bit
floating-point
S: 1st source v data)
word
R: 1st result word | R+1 R | Result (32-bit
floating-point
data)
COSINE —{ cos(ae1)| | Calculates the cosine of a 32-bit floating-point number (in radians) Output 540
COs and places the result in the specified result words. Required
@Cos S Source (32-bit
461 R COS(| S+1 S |) floating-point
! data)
S: 1st source
word :
R: 1st result word | R+1 R | Egz;[?rlutg(%%lgltt
data)

63

Instruction Functions

Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
TANGENT — TaN(462) | | Calculates the tangent of a 32-bit floating-point number (in radians) Output 542
@$ﬁ“ and places the result in the specified result words. Required
S
462 (N) Source (32-bit
R TAN | St S | floating-point
S: 1st source / data)
word
R: 1st result word | R+1 | R | Result (32-bit
floating-point
data)
ARC SINE — AsiN(63) Calculates the arc sine of a 32-bit floating-point number and places Output 544
ASIN the result in the specified result words. (The arc sine function is the Required
@ASIN IS inverse of the sine function; it returns the angle that produces a given
463 sine value between -1 and 1.)
R .
Source (32-bit
S: 1st source SIN"l(| S+1 S |) floating-point
word data)
R: 1st result word]
[ra R | Result (32-bit
floating-point
data)
ARC COSINE —— Acos(464) | | Calculates the arc cosine of a 32-bit floating-point number and places OUtpl_‘t 546
ACOS the result in the specified result words. (The arc cosine function is the | Required
@ACOS S inverse of the cosine function; it returns the angle that produces a
464 R given cosine value between -1 and 1.)
Source (32-bit
S: 1st source Cos‘l(| S+1 S |) floating-point
word data)
R: 1st result word i
| R+1 R | Result (32-bit
floating-point
data)
ARCTANGENT | | ATAN(465) Calculates the arc tangent of a 32-bit floating-point number and OUtpl_‘t 548
ATAN places the result in the specified result words. (The arc tangent Required
@ATAN S function is the inverse of the tangent function; it returns the angle that
465 produces a given tangent value.)
R Source (32-bit
S: 1st source TAN™? (| S+1 S |) floating-point
word data)
R: 1st result word /
| R+1 R | Result (32-bit
floating-point
data)
SQUAREROOT || SQRT(466) Calculates the square root of a 32-bit floating-point number and OUtpl_‘t 550
SQRT places the result in the specified result words. Required
@SORT S
466 Source (32-bit
R | S+1 S | floating-point
S: 1st source 1 data)
word
R: 1st result word | R+1 R | Result (32-bit

floating-point
data)

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
EXPONENT —— EXP(467) Calculates the natural (base e) exponential of a 32-bit floating-point OUtpl_Jt 552
EXP number and places the result in the specified result words. Required
@EXP S
467 Source (32-bit
R | S+1 | S | floating-point
S: 1st source e & data)
word
R: st result word [ra | R | Result (32-bit
floating-point
data)
LOGARITHM [— Calculates the natural (base e) logarithm of a 32-bit floating-point Outpgt 554
LOG(468) ? 2 d
LOG number and places the result in the specified result words. Require
@LOG S
468 Source (32-hit
R |Oge| S+1 S | floating-point
S: 1st source y data)
word
R: 1st result word | Rra R | Result (32-bit
floating-point
data)
EXPONENTIAL ; ; ; ; f Output 556
— Raises a 32-bit floating-point number to the power of another 32-bit .
POWER BWR PWR(840) floating-point number. Required
@PWR B __— Power
840 E
R Bt1 | s | — [Ra]| R
B: 1st base word -
E: 1st exponent Base
word
R: 1st result word
FLOATING SYM- | ysing LD: Compares the specified single-precision data (32 bits) or constants LD: 557
BOL COMPARI- and creates an ON execution condition if the comparison result is true. | Not required
SON (CS1-H, Symbol, option Three kinds of symbols can be used with the floating-point symbol
CJ1-H, CJ1M, or Si comparison instructions: LD (Load), AND, and OR. AND or OR:
CS1D only) or IR
s2 Required
LD, AND. or OR
+ | Using AND:
=F (329), | | L
<>F (330)’ Symbol, option
<F (331), s1
<=F (332), s2
>F (333),
or >=F (334) | Using OR:
~ | Symbol, option J
S1
S2
S1: Comparison data 1
S2: Comparison data 2

65

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
FLOATING- Converts the specified single-precision floating-point data (32-bit deci- | Output 561
POINT TO ASCII FSTR(448) | | mal-point or exponential format) to text string data (ASCII) and outputs | required
(CS1-H, CJ1-H, the result to the destination word.
CJ1M, or CS1D S
only) C
FSTR
@FSTR D
448 S: 1st source
word
C: Control word
D: Destination
word
ASCII TO FLOAT- Converts the specified text string (ASCII) representation of single-pre- | Output 566
ING-POINT (CS1- |~ | FVAL(449) [| cision floating-point data (decimal-point or exponential format) to 32-bit | required
H, CJ1-H, CJ1M, single-precision floating-point data and outputs the result to the desti-
or CS1D only) S nation words.
FVAL
@FVAL D
449
S: Source word
D: 1st destination
word

2-2-14 Double-precision Floating-point Instructions

The Double-precision Floating-point Instructions are supported only by the

CS1-H, CJ1-H, CJ1M, or CS1D CPU Units.

Instruction Symbol/Operand Function Location | Page
Mnemonic Execution
Code condition
DOUBLE FLOAT- Converts the specified double-precision floating-point data (64 bits) to 16- | Output 577
ING TO 16-BIT — | FIXD(841) | | bit signed binary data and outputs the result to the destination word. Required
BINARY
FIXD S
@FIXD D
841
S: 1st source
word
D: Destination
word
DOUBLE FLOAT- Converts the specified double-precision floating-point data (64 bits) to 32- | Output 578
ING TO 32-BIT — | FIXLD(842)| | bit signed binary data and outputs the result to the destination words. Required
BINARY
FIXLD S
@FIXLD D
842
S: 1st source
word
D: 1st destination
word
16-BIT BINARY Converts the specified 16-bit signed binary data to double-precision float- | Output 580
TO DOUBLE DBL(843) ing-point data (64 bits) and outputs the result to the destination words. Required
FLOATING S
DBL
@DBL D
843
S: Source word
D: 1st destination
word

66

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location | Page
Mnemonic Execution
Code condition
32-BIT BINARY Converts the specified 32-bit signed binary data to double-precision float- | Output 581
TO DOUBLE — | DBLL(844) | | ing-point data (64 bits) and outputs the result to the destination words. Required
FLOATING S
DBLL
@DBLL D
844
S: 1st source
word
D: 1st destination
word
DOUBLE FLOAT- Adds the specified double-precision floating-point values (64 bits each) Output 583
ING-POINT ADD +D(845) and outputs the result to the result words. Required
+D
@+D Au
845 Ad
R
Au: 1st augend
word
Ad: 1st addend
word
R: 1st result word
DOUBLE FLOAT- Subtracts the specified double-precision floating-point values (64 bits Output 585
ING-POINT SUB- |~ | ~D(846) each) and outputs the result to the result words. Required
TRACT Mi
-D
@-b Su
846
R
Mi: 1st minuend
word
Su: 1st subtra-
hend word
R: 1st result word
DOUBLE FLOAT- Multiplies the specified double-precision floating-point values (64 bits Output 587
ING-POINT MUL- *D(847) each) and outputs the result to the result words. Required
TIPLY Md
*D
@xD Mr
847
R
Md: 1st multipli-
cand word
Mr: 1st multiplier
word
R: 1st result word
DOUBLE FLOAT- Divides the specified double-precision floating-point values (64 bits each) | Output 589
ING-POINT /D(848) and outputs the result to the result words. Required
DIVIDE Dd
/D
@b Dr
848
R
Dd: 1st Dividend
word
Dr: 1st divisor
word
R: 1st result word

67

Instruction Functions

Section 2-2

S: 1st source
word
R: 1st result word

Instruction Symbol/Operand Function Location | Page
Mnemonic Execution
Code condition
DOUBLE Converts the specified double-precision floating-point data (64 bits) from | Output 591
DEGREES TO RADD(849)| | degrees to radians and outputs the result to the result words. Required
RADIANS S
RADD
@RADD R
849
S: 1st source
word
R: 1st result word
DOUBLE RADI- Converts the specified double-precision floating-point data (64 bits) from | Output 593
ANS TO DEGD(850)| | radians to degrees and outputs the result to the result words. Required
DEGREES S
DEGD
@DEGD R
850
S: 1st source
word
R: 1st result word
DOUBLE SINE Calculates the sine of the angle (radians) in the specified double-precision | Output 594
SIND SIND(851) | | floating-point data (64 bits) and outputs the result to the result words. Required
@SIND S
851
R
S: 1st source
word
R: 1st result word
DOUBLE Calculates the cosine of the angle (radians) in the specified double-preci- | Output 596
COSINE T | .COSD(852) | sion floating-point data (64 bits) and outputs the result to the result words. | Required
COSD S
@CosD
852 R
S: 1st source
word
R: 1st result word
DOUBLE TAN- Calculates the tangent of the angle (radians) in the specified double-preci- | Output 598
GENT TAND(853)| | sion floating-point data (64 bits) and outputs the result to the result words. | Required
TAND S
@TAND
853 R
S: 1st source
word
R: 1st result word
DOUBLE ARC Calculates the angle (in radians) from the sine value in the specified dou- | Output 600
SINE ASIND(854)| | ble-precision floating-point data (64 bits) and outputs the result to the Required
ASIND result words. (The arc sine function is the inverse of the sine function; it
@ASIND S returns the angle that produces a given sine value between -1 and 1.)
854 R
S: 1st source
word
R: 1st result word
DOUBLE ARC Calculates the angle (in radians) from the cosine value in the specified Output 602
COSINE ACOSD(855) | double-precision floating-point data (64 bits) and outputs the result to the | Required
ACOSD result words. (The arc cosine function is the inverse of the cosine function;
@ACOSD S it returns the angle that produces a given cosine value between -1 and 1.)
855 R

68

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location | Page
Mnemonic Execution
Code condition
DOUBLE ARC Calculates the angle (in radians) from the tangent value in the specified Output 604
TANGENT ATAND(856)| | double-precision floating-point data (64 bits) and outputs the result to the Required
ATAND result words. (The arc tangent function is the inverse of the tangent func-
@ATAND S tion; it returns the angle that produces a given tangent value.)
856 R
S: 1st source
word
R: 1st result word
DOUBLE Calculates the square root of the specified double-precision floating-point | Output 606
SQUARE ROOT SQRTD(857) | data (64 bits) and outputs the result to the result words. Required
SQRTD S
@SQRTD
857 R
S: 1st source
word
R: 1st result word
DOUBLE EXPO- Calculates the natural (base e) exponential of the specified double-preci- | Output 608
NENT EXPD(858) | | sion floating-point data (64 bits) and outputs the result to the result words. | Required
EXPD S
@EXPD
858 R
S: 1st source
word
R: 1st result word
DOUBLE LOGA- Calculates the natural (base e) logarithm of the specified double-precision | Output 610
RITHM LOGD(859)| | floating-point data (64 bits) and outputs the result to the result words. Required
LOGD S
@LOGD
859 R
S: 1st source
word
R: 1st result word
DOUBLE EXPO- Raises a double-precision floating-point number (64 bits) to the power of | Output 612
NENTIAL | PWRD(860)| | another double-precision floating-point number and outputs the resultto | Required
POWER B the result words.
PWRD
@PWRD E
860
R
B: 1st base word
E: 1st exponent
word
R: 1st result word
DOUBLE SYM- Using LD: Compares the specified double-precision data (64 bits) and creates an ON | LD: 614
BOL COMPARI- execution condition if the comparison result is true. Not
SON Symbol option Three kinds of symbols can be used with the floating-point symbol com- | required
LD, AND. or OR S1 parison instructions: LD (Load), AND, and OR.
N S2 AND or
=D (335), OR:
<>D (336), | Using AND: Required
<D (337), -
<:D (338), Symbol, option
>D (339), s1
or >=D (340) S2
Using OR:
Symbol, option 4
S1
S2
S1: Comparison data 1
S2: Comparison data 2

69

Instruction Functions Section 2-2
2-2-15 Table Data Processing Instructions
Instruction Symbol/Operand Function Location | Page
Mnemonic Execution
Code condition
SET STACK — sseT(e30) | | Defines a stack of the specified length beginning at the specified word Output 623
SSET and initializes the words in the data region to all zeroes. Required
@SSET B Internal I/O
630
N memory address
TB: 1 k {r +(N-1) .
: 1st stac m 1) 7/
address 1123 2:; N Wtordks
N: Number of { — PR in stac
Last word m+
words h TB+3 m+3
in stack med
Stack
pointer
m+(N-1)
PUSH ONTO : Py Output 626
STACK — PUSH(632) Writes one word of data to the specified stack. Required
PUSH Internal I/0 Internal I/O
@PUSH B memory address memory
address
632 S
i n LL:] n
TB 1 t t k TB+1| TB+1]
:1st stac TB+2 TB+2]
address {TB+3 I {TB+3 m
S: Source word
H m
' m+1
n
n
LAST IN FIRST i if Output 632
— Reads the last word of data written to the specified stack (the newest
out LIFO(634) | | jata in the stack). P (Required
LIFO B
@LIFO Stack Internal 1/0 Internal /O
634 D pointer memory address memory address
. B B
TB: 1st stack e n Newest 1gsy n
address /‘ data
D: Destination TB+2 TB+2
word {TB+3 m r {TB+3 m-1
Stack :
pointer
m-1 T im-1 Ais
m m left un-
chang
ed.
n n
The pointer is | Last-in first-out
decremented. |
FIRST IN FIRST : ; e Output 629
— Reads the first word of data written to the specified stack (the oldest
out FIFO(633) | | data in the stack). P (Required
FIFO B Internal 1/0 Internal 1/0
@FIFO memory address memory address
633 D 8 n Oldest 8 n
TB: 1st stack Stack TB+l data TB+1
: 1st stacl ;
address pomter{TB+2 m -~ {TB+2_ m-1——
D: Destination TB+3 TB+3
word Stack
pointer|
T M m-1
M m : M m
n n
First-in first-out

70

Instruction Functions

Section 2-2

Instruction Symbol/Operand Function Location | Page
Mnemonic Execution
Code condition
DIMENSION) . Output 635
— Defines a record table by declaring the length of each record and the -
RECORD TABIISE\/I DIM(631) number of records. Up to 16 record tables can be defined. Required
N
@DIM Table number (N)
631 LR - \
NR Record 1
TB
N: Table number | Number of records > LR x NR
LR: Length of * words
each record
NR: Number of
records
TB: 1st table { Record NR
word v ~
SET RECORD ; ; P ; Output 638
— Writes the location of the specified record (the internal I/O memory)
LOCATION SETR SETR(635) address of the beginning of the record) in the specified Index Register. Required
@SETR N Internal 1/0
635 R Table number (N) memory address
D SETR(635) writes the internal 1/0
memory address (m) of the first word
of record R to Index Register D.
N: Table number m
R: Record
number D
D: Destination |
Index Register IR II'
GET RECORD ; Output 640
— Returns the record number of the record at the internal I/O memory A
NUMBER GETR GETR(636) address contained in the specified Index Register. Required
@GETR N
636 IR Table number (N)| Internal I/0
memory address
D
GETR(636) writes
N: Table number mCH the record number of
IR: Index Register the record that in-
D: Destination cludes 1/0 memory
word address (m) to D.
o[n]
DATA SEARCH s Output 642
— Searches for a word of data within a range of words.
SRCH SRCH(181) 9 Required
@SRCH C Internal 1/10
181 memory address
R1
R1 >.. Search
Cd . .
C: 1st control -
word 4
R1: 1st word in K
E%\gg) R1+(C-1)
: Comparison
data e ——

71

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location | Page
Mnemonic Execution

Code condition
SWAP BYTES —— swAP(637) | | Switches the leftmost and rightmost bytes in all of the words in the O”tp‘%‘ 644
SWAP range. L Required
@SWAP N Byte position is swapped.
637
R1
¥ A
N: Number of R1
words

R1: 1st word in
range

FIND MAXIMUM

MAX
@MAX

182

— MAX(182)

C

R1

D

C: 1st control
word

R1: 1st word in
range

D: Destination
word

Finds the maximum value in the range.

Internal 1/0
memory address

R1

C words

Max.
value

R1+(W-1) >

Output 646
Required

D: 1st destination
word

FIND MINIMUM ; . ; Output 650
Finds the minimum value in the range.
MIN e gInternal 110 Required
MIN
@ C memory address
183 R1
R1
D C words
C: 1st control Mi |
word in. val ueD
R1: 1st word in R1+(W-1) 7
range
D: Destination |R00|I|
word
SUM ; Output 653
sum |—1 sumasa vAv(cj)(rdest.he bytes or words in the range and outputs the result to two Required
@SUM c c
184
R1
D R1
C: 1st control WCH
word
R1: 1st word in R1+(W-1)
range +)
D: 1st destination | I |
word 5 5
+
EEQME CHECK- | | FCs(s0) | | Calculates the ASCII FCS value for the specified range. (R)ggt::rted 656
FCS C
@FCS
180 R1 C units
D
C: 1§t control Calculation ASCII conversion
wor
R1: 1st word in FCS value }
range B

72

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location | Page
Mnemonic Execution
Code condition
STACK SIZE Counts the amount of stack data (humber of words) in the specified stack. | Output 659
READ (CS1-H, — SNUM(638) required
CJ1-H, CJ1M, or
CS1D only) B
SNUM D
@SNUM
638 | TB: First stack
address
D: Destination
word
STACK DATA Reads the data from the specified data element in the stack. The offset Output 662
READ (CS1-H, —|SREAD(639)| | value indicates the location of the desired data element (how many data | required
CJ1-H, CI1M, or elements before the current pointer position).
CS1D only) B
SREAD C
@SREAD
639 D
TB: First stack
address
C: Offset value
D: Destination
word
STACK DATA Writes the source data to the specified data element in the stack (overwrit- | Output 665
OVERWRITE — |SWRIT(640)| | ing the existing data). The offset value indicates the location of the desired | required
(CS1-H, CJ1-H, B data element (how many data elements before the current pointer posi-
CJ1M, or CS1D tion).
only) C
SWRIT
@SWRIT S
640
TB: First stack
address
C: Offset value
S: Source data
STACK DATA Inserts the source data at the specified location in the stack and shifts the | Output 668
INSERT (CS1-H, |~ | SINS(641) | | rest of the data in the stack downward. The offset value indicates the loca- | required
CJ1-H, CJ1M, or tion of the insertion point (how many data elements before the current
CS1D only) B pointer position).
@SINS =
641 S
TB: First stack
address
C: Offset value
S: Source data
STACK DATA Deletes the data element at the specified location in the stack and shifts | Output 671
DELETE (CS1-H, |~ | SDEL(642)| | the rest of the data in the stack upward. The offset value indicates the required
CJ1-H, CI1M, or location of the deletion point (how many data elements before the current
CS1D only) B pointer position).
SDEL C
@SDEL
642 D
TB: First stack
address
C: Offset value
D: Destination
word

73

Instruction Functions

Section 2-2

2-2-16 Data Control Instructions

Instruction
Mnemonic
Code

Symbol/Operand

Function

Location

Execution
condition

Page

PID CONTROL
PID
190

PID(190)
S
C
D

S: Input word

C: 1st parameter
word

D: Output word

Executes PID control according to the specified parameters.
l* Parameters (C to C+8)

PID control

l

Manipulated variable (D)

PVinput (S) —

Output
Required

675

PID CONTROL
WITH AUTOTUN-
ING

PIDAT

191

(CS1-H, CJI1-H,
or CJ1M only)

— PIDAT(191)
S
C
D

S: Input word

C: 1st parameter
word

D: Output word

Executes PID control according to the specified parameters. The PID
constants can be auto-tuned with PIDAT(191).

Output
required

686

LIMIT CONTROL

LMT
@LMT

680

LMT(680)
S
C
D

S: Input word
C: 1st limit word
D: Output word

Controls output data according to whether or not input data is within
upper and lower limits.
D

Upper limit oo ¢
C+1

Lower limit ~
C ',

Output
Required

696

DEAD BAND
CONTROL

BAND
@BAND

681

— BAND(681)
S
C
D

S: Input word
C: 1st limit word
D: Output word

Controls output data according to whether or not input data is within
the dead band range.

Output
A

Lower limit (C)
Y

e " > Input
Upper limit (C+1)

Output
Required

698

74

Instruction Functions Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
ggﬁl?ggi\m —{ ZoNE(e82) | | Adds the specified bias to input data and outputs the result. Sgtpl):ijrted 701
ZONE S Output q
@ZONE
682 C L
D Positive bias (C+1) -
S: Input word ,f 0 Input
C: 1st limit word
D: Output word e . .
p / < Negative bias (C)
SCALING ; : ; ; ; Output 704
— Converts unsigned binary data into unsigned BCD data according to ’
@28:: SCLAM | | the specified linear function. Required
194 S R (unsigned BCD) Scaling is performed according
P1 to the linear function defined
by points A and B.
R
S: Source word Bdp------mo - Point B P Ad (BCD)] Converted
P1: 1st parameter adlPaint | P1+1| As (BIN) value
word | AAF-TTZ= T ! P1+2| Bd (BCD
R: Result word i : P1+3 (BCD)] Converted
| ; Bs (BIN) value
AS Bs S (unsigned binary)
SCALING 2 — SCL2(486) Converts signed binary data into signed BCD data according to the O“tp‘%t 708
SCL2 specified linear function. An offset can be input in defining the linear | Required
@scL2 s function.
486 .
P1 Positive Offset Negative Offset
R R (signed BCD) R (signed BCD)

S: Source word

P1: 1st parameter
word AY
R: Result word AY

Offset AX
AX
S (signed binary) A-—- S (signed
Offset binary)

Offset of 0000

P1 Offset | (Signed binary) R (signed BCD)
P1+1 AY (Signed binary)
P1+2 AX (Signed BCD)
AY
Offset = 0000 hex
AX
S (signed
binary)

75

Instruction Functions

Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
SCALING 3 — sCL3(487) Converts signed BCD data into signed binary data according to the OUtp‘_Jt 712
SCL3 specified linear function. An offset can be input in defining the linear Required
@SCL3 s function.
487 .
P1 Positive Offset Negative Offset
R R (signed binary) R (signed binary)
S: Source word Max Max conversion
P1: 1st parameter conver- bo-—ooo___, Lo ___
word sion Z
R: Result word
AY AY
/ ToAX AX
win 7] | Offset Offset \ / S (signed BCD)
conver- : 1
h S (signed BCD)
sion Z Min. conversion
Offset of 0000
R (signed binary)
Max [Tttt
conver-
sion
AY
—
AX .
S (signed BCD)
----| Min. conversion
AVERAGE ; i Output 716
— Calculates the average value of an input word for the specified
AVG AVG(195) | | qumber of cycles. ’ P P Required
195 IS
[S: Source word |
N
R
S: Source word
N: Number of N: Number of cycles
cycles

R: Result word

R |—

R+1[| |_Pointer |
Average Valid Flag Average

R+ 2| |
R+3

. |]

E i N values

|

R+N+1

76

Instruction Functions

Section 2-2

2-2-17 Subroutine Instructions

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
SUBROUTINE : . o : Output 720
— Calls the subroutine with the specified subroutine number and :
CALL SBS(091) executes that program. Required
@ggg N Execution condition ON
—
091 | N: Subroutine A
number —I—— sBs —
n
» Main program B
B
<
N
SBN
n
Subroutine
program A
" (SBN(092) to
A RET(093))
v |
v
RET < Program end
END
MACRO — MCRO(099) Calls the subroutine with the specified subroutine number and OUtp‘%t 725
MCRO executes that program using the input parameters in S to S+3 and the | Required
@MCRO N output parameters in D to D+3.
099
S MCRO(099)
D s —— AB00 ——} MCRO
s+1 —— A601 Ny
S+2 — A602 s -
N: Subroutine s13 —— 603 5
number
S: 1stinput Breuion ofsub | Hene
parameter word | SBNGaz and =
D: 1st output L REE =
parameter word MCRO(099) |
D — A604 SBN
D+1 — AB05S
D+2 — 06| | e —eemeeeens .
— o7 Tne shbroutine usee A200,
to AB607 as outputs.
SUBROUTINE ; P : : s Output 729
— Indicates the beginning of the subroutine program with the specified
ENTRY SBN(092) | | subroutine numt?er. N preg P Not required
SBN N
092
N: Subroutine ——f—— sBs MCRO
number S n or
SBN
n Subroutine region
RET
SUBROUTINE Indicates the end of a subroutine program. Output 732
RETURN Not required
RET
093

77

Instruction Functions

Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
GLOBAL SUB- Calls the subroutine with the specified subroutine number and exe- Output 732
ROUTINE CALL |~ |GSBS(750)| | cutes that program. Not required
(CS1-H, CJ1-H,
CJ1M, or CS1D N
only) . _
S
750
GLOBAL SUB- Indicates the beginning of the subroutine program with the specified Output 740
ROUTINE ENTRY | = |GSBN(751) | subroutine number. Not required
(CS1-H, CJ1-H,
CJ1M, or CS1D N
only) , .
asen |N: Subrouine
751
GLOBAL SUB- Indicates the end of a subroutine program. Output 743
ROUTINE Not required
RETURN (CS1-H,
CJ1-H, CJ1M, or
CS1D only)
GRET
752
2-2-18 Interrupt Control Instructions
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
SET INTERRUPT Output 744
- |7 | MSKS(690 i
MASK (Not sup ©ON | sets up interrupt processing for I/O interrupts or scheduled interrupts. | Required
ported by CS1D.) . "
MSKS N Both I/O interrupt tasks and scheduled interrupt tasks are masked
@MSKS (disabled) when the PC is first turned on. MSKS(690) can be used to
S unmask or mask /O interrupts and set the time intervals for
690 scheduled interrupts.
N: Interrupt Interrupt Input Unit 0 to 3
identifier
S: Interrupt data /o
mterrupt
Mask (1) or unmask (0)
interrupt inputs 0 to 7.
Time interval
Scheduled
_interrupt Set scheduled interrupt
time interval.
READ Reads the current interrupt processing settings that were set with Output 750
INTERRUPT T | MSKR(692) | | MSKS(690). Required
MASK (Not sup- N
ported by CS1D.)
MSKR D
@MSKR
692 | N: Interrupt
identifier
D: Destination
word

78

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
E\II_TI?EAR%UPT (Not |—] CLI(691) | |Clears or retains recorded interrupt inputs for 1/O interrupts Output 755
supported by or sets the time to the first scheduled interrupt for scheduled Required
CSiD.) N interrupts.
CLl S N=0to3
@CLI
691 | . Interrupt Interrupt
meruet | Minputn nputh”
S: Interrupt data '
Internal Internal
status T status T
Recorded interrupt cleared Recorded interrupt retained
N=4to5
MSKS(690)
Execution of scheduled
NV interrupt task.
Time to first
scheduled interrupt
DISABLE INTER- : . : Output 760
Disables execution of all interrupt tasks except the power OFF
RUPTS DI DI(693) interrupt. P P P Required
@Dl
P T
0000.00
Disables execution of all
interrupt tasks (except
the power OFF interrupt).
X
ENABLE INTER- ’ : ’] Output 762
Enables execution of all interrupt tasks that were disabled with
RUPTS EI(694) DI(693). P Not required
El
694
Disables execution of all
interrupt tasks (except the
power OFF interrupt).
Enables execution of all
disabled interrupt tasks.

79

Instruction Functions

Section 2-2

2-2-19 High-speed Counter and Pulse Output Instructions (CJ1M-
CPU22/23 Only)

Instruction
Mnemonic
Code

Symbol/Operand

Function

Location

Execution
condition

Page

MODE CONTROL
INI

@INI

880

— INI

P

C

NV

P: Port specifier
C: Control data

NV: 1st word with
new PV

INI(880) is used to start and stop target value comparison, to
change the present value (PV) of a high-speed counter, to
change the PV of an interrupt input (counter mode), to change
the PV of a pulse output, or to stop pulse output.

Output
Required

769

HIGH-SPEED
COUNTER PV
READ
PRV
@PRV
881

PRV

P

C

D

P: Port specifier
C: Control data

D: 1st destination
word

PRV(881) is used to read the present value (PV) of a high-
speed counter, pulse output, or interrupt input (counter mode).

Output
Required

773

COMPARISON
TABLE LOAD

CTBL
@CTBL

882

CTBL

P

C

B

P: Port specifier
C: Control data

TB: 1st compari-
son table word

CTBL(882) is used to perform target value or range comparisons for
the present value (PV) of a high-speed counter.

Output
Required

77

SPEED OUTPUT

SPED
@SPED

885

SPED

P

M

F

P: Port specifier
M: Output mode

F: 1st pulse fre-
guency word

SPED(885) is used to specify the frequency and perform pulse output
without acceleration or deceleration.

Output
Required

781

SET PULSES

PULS
@PULS
886

PULS

P

T

N

P: Port specifier
T: Pulse type

N: Number of
pulses

PULS(886) is used to set the number of pulses for pulse output.

Output
Required

786

80

Instruction Functions

Section 2-2

Instruction
Mnemonic
Code

Symbol/Operand

Function

Location

Execution
condition

Page

PULSE OUTPUT

PLS2
@PLS2

887

PLS2

P

M
S
E

P: Port specifier
M: Output mode
S: 1st word of set-
tings table

F: 1st word of
starting frequency

PLS2(887) is used to set the pulse frequency and acceleration/deceler-
ation rates, and to perform pulse output with acceleration/deceleration
(with different acceleration/deceleration rates). Only positioning is pos-
sible.

Output
Required

789

ACCELERATION
CONTROL

ACC
@ACC

888

ACC

P

M

S

P: Port specifier
M: Output mode

S: 1st word of set-
tings table

ACC(888) is used to set the pulse frequency and acceleration/deceler-
ation rates, and to perform pulse output with acceleration/deceleration
(with the same acceleration/deceleration rate). Both positioning and
speed control are possible.

Output
Required

795

ORIGIN SEARCH

ORG
@ORG

889

ORG

P

C

P: Port specifier
C: Control data

ORG(889) is used to perform origin searches and returns.

Output
Required

802

PULSE WITH
VARIABLE DUTY
FACTOR
PWM
@
891

PWM

P

F

D

P: Port specifier
F: Frequency
D: Duty factor

PWM(891) is used to output pulses with a variable duty factor.

Output
Required

805

81

Instruction Functions Section 2-2
2-2-20 Step Instructions
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
STEP DEFINE STEP(008) functions in following 2 ways, depending on its position and | Output 808
STEP |~ | STEP(008) | | whether or not a control bit has been specified. Required
008 B (1)Starts a specific step.
(2)Ends the step programming area (i.e., step execution).
B: Bit
STEP START SNXT(009) is used in the following three ways: Output 808
SNXT SNXT(009) [| (1)To start step programming execution. Required
009 B (2)To proceed to the next step control bit.
(3)To end step programming execution.
B: Bit
2-2-21 Basic I/O Unit Instructions
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
/0 REFRESH . Output 825
— Refreshes the specified 1/0 words.
IORF IORF(097) P Required
@IORF St I/O bit area or I/O Unit or
097 Special I/0O Unit bit area Special 1/0 Unit
E
St: Starting word St
E: End word 1/0 refreshing
E
Z)ES(IZEC();BAIEFIQ\IT — SDEC(078) Converts the hexadecimal contents of the designated digit(s) into OUtP‘%t 828
8-bit, 7-segment display code and places it into the upper or lower Required
SDEC S 8-bits of the specified destination words.
@SDEC
078 Di 15 1211 87 43 0
D pil o 10 [m | n |
m_Number of digits |
S: Source word - A N First digit to convert
Di: Digit
designator
D: 1st destination S+1
word
HEX
@ Rightmost 8 bits (0)
7-segment

82

I nstruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
INTELLIGENT I/O " Output 831
READ — 10rD(222) Reads the contents of the I/O Unit's memory area. Required
IORD C S
@IORD S+1
222 S
D Unit number of Special I/O Unit
C: Control data
S: Transfer ‘,
source and | Desig-
number of words D number
D: Transfer of words'
destination and read.
number of words
INTELLIGENT I/O " Output 834
— Outputs the contents of the CPU Unit's I/O memory area to the
WRITE IOWR(223) | | Sodar /O Unit Y Required
IOWR C
@IOWR
223 S D
D+1 —
D
C: Control data Unit number of Special I/O Unit
S: Transfer
source and
number of words
D: Transfer —
destination and s
number of words Desig-
nated
number of
words writ-
ten.
CPU BUS UNIT Immediately refreshes the 1/O in the CPU Bus Unit with the specified | Output 837
1/0 REFRESH — |DLNK(226)] | unit number. required
(CS1-H, CJ1-H,
CJ1M, or CS1D N
only) o
DLNK | N: Unit number
@DLNK
226

83

Instruction Functions Section 2-2

2-2-22 Serial Communications Instructions

Instruction Symbol/Operand Function Location Page
Mnemonic Execution

Code condition
EARA%L%COL —{ PMCR(260) Calls and executes a communications sequence registered in a Serial Output 844

PMCR Communications Board (CS Series only) or Serial Communications Required

nit.
@PMCR cl uni CPU Unit Serial Communications Unit

260 Cc2 Port
S

R

C1: Control word 1
C2: Control word 2
S: 1st send word

R: 1st receive word

External
device

TRANSMIT Outputs the specified number of bytes of data from the RS-232C port | Output 853
TXD |~ | TXD(236) built into the CPU Unit. Required

@TXD
236 S
C

N

S: 1st source
word

C: Control word
N: Number of
bytes

0000 to 0100 hex
(0 to 256 decimal)

RECEIVE Reads the specified number of bytes of data from the RS-232C port Output 858
RXD |~ | RXD(235) | | built into the CPU Unit. Required

@RXD D
235

C
N

D: 1st destination
word

C: Control word
N: Number of
bytes to store
0000 to 0100 hex
(0 to 256 decimal)

CHANGE SERIAL Changes the communications parameters of a serial port on the CPU | Output 863
PORT SETUP — | STUP(237)| | Unit, Serial Communications Unit (CPU Bus Unit), or Serial Communi- Required
STUP cations Board. STUP(237) thus enables the protocol mode to be

@STUP C changed during PLC operation.

237 s

C: Control word
(port)

S: First source
word

Instruction Functions

Section 2-2

2-2-23 Network Instructions

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
NETWORK SEND ; ; Output 879
— Transmits data to a node in the network.
SEND SEND(090) o Required
@SEND S Local node Destination node
090 5 15 0 15 0
S — —
C n: No. of b
send n
S: 1st source J words =
word
D: 1st destination
word
C: 1st control
word
NETWORK . : Output 885
S— Requests data to be transmitted from a node in the network and
RECV(098 .
RECEIVE ©99) | | receives the data. Required
RECV S
@RECV
098 D Local node Source node
15 0 15 0
c D— S —
S: 1st source m n
word
D: 1st destination <:I
word
C: 1st control
word
DELIVER ; Output 890
COMMAND CMND(490) Sends FINS commands and receives the response. Required
@gmmg S Local node Destination node
490 D < 15 0
- Com-
C mand | Command
data (n =
vSv'o%cslt command (S-1) bytes)
D: 1st response + %
word
C: 1st control L,
word @
_/\
15 0
D— Re-
sponse Response
data (m <:| Execute
(D-1) bytes)
+ M
2~ -

85

Instruction Functions Section 2-2

2-2-24 File Memory Instructions

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
READ DATA FILE —FREAD(700) Reads the specified data or amount of data from the specified data file Outpgt 899
FREAD in file memory to the specified data area in the CPU Unit. Required
@FREAD c
700 Starting read ad-
S1 dress ; s
specified in S1+2 iFr:Ieszspemfled CPU Unit
S2 and S1+3 o
D /
C: Control word Number of
vsvé:rdlSt source words specified
in S1 and S1+1
S2: Filename Q nSLandS
D: 1st destination —
word Memory Card or glfuvr\?obrgrs
EM file memory written
(Specified by the to D and
4" digit of C.) _ 3 D+1.
File specified
in S2 CPU Unit
/ Number of D
words D+1
Memory Card or EM file memory
(Specified by the 4! digit of C.)
;Q{EIETE DATA —]FwriT(701)| | Overwrites or appends data in the specified data file in file memory Output 906
with the specified data from the data area in the CPU Unit. If the Required
FWRIT C specified file doesn't exist, a new file is created with that filename.
@FWRIT
701 D1 CPU Unit Starting word File specified in D2
K specified in
D2 Starting D1+2 and
address 15 0| Di1+3
S _SpeCIerd Number of
inS words specified
C: Control word in D1 and D1+1
D1: 1st
destination word Overwrite Q

D2: Filename
S: 1st source

word Memory Card or EM file memory

(Specified by the 4th digit of C.)

CPU Unit File specified in D2
Starting 45 Elgd of —‘ Existing
address Ny e m e e e o data
specified Number of
ins words specified
in D1 and D1+1
Append Q
Memory Card or EM file memory
(Specified by the 4th digit of C.)
Beginning _
P i of file File speci- /— New file created
CPU Unit | fiedinD2
Starting JPPPELa
address 15 0—‘I\Iu—r;ber of words
specified specified in D1
inS and D1+1 _.--

Memory Card or EM file memory
(Specified by the 4th digit of C.)

86

Instruction Functions Section 2-2
2-2-25 Display Instructions
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
DISPLAY Reads the specified sixteen words of extended ASCII and displays the | Output 913
MESSAGE MSG(046) | | message on a Peripheral Device such as a Programming Console. Required
MSG N
@MSG
046 M
N: Message
number
M: 1st message
word
2-2-26 Clock Instructions
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
CALENDARCAADDDD —{ cAbD(730) | | Adds time to the calendar data in the specified words. g:;%‘;rted 916
@CADD C 15 87 0
730 C Minutes !Seconds
T c+1| Day !Hour
R c+2| Year Month
+
C: 1st calendar
VTVF){gt time word 19 87 9
R: 1st result word T Minutes _:Seconds
T+1 Hours
15 8.7 0
R Minutes !Seconds
R+1| Day iHour
R+2| Year Month
CALENDAR ; ; P Output 920
SUBTRACT — CSUB(731) Subtracts time from the calendar data in the specified words. Required
CSUB c 15 87 0
@CSuB C Minutes iSeconds
731 T c+1| Day Hour
R c+2| Year Month
C: 1st calendar B
VTV'O{csj,t time word 15 87 :
R: 1st result word T Minutes iSeconds
T+1 Hours
15 8|7 0
R Minutes iSeconds
R+1| Day !Hour
R+2| Year Month

87

Instruction Functions Section 2-2
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
HOURS TO ; : : . Output 923
— Converts time data in hours/minutes/seconds format to an equivalent .
SEC(065 - A
SECONDS (069) time in seconds only. Required
SEC S
@SEC 5 15 0
065 S| Minutes ! Seconds
S: 1st source S5+1 Hours
word
D: 1st destination
word l
15 0
D
Seconds
D+1
SECONDS TO ; i i Output 925
— Converts seconds data to an equivalent time in .
HOURS HMS(066) hours/minutes/seconds format. Required
HMS S
@HMS 5 15 0
066
S S Seconds
S: 1st source +1
word
D: 1st destination
word l
15 0
D | Minutes | Seconds
D+1 Hours
CLOCK ; : oy P Output 928
— Changes the internal clock setting to the setting in the specified ’
ADJUSTMENT DATE(735) | | coiree words. Required
DATE S
@DATE CPU Unit
735 s: 1st source
word
Internal clock
S1 | Minutes iSeconds
New t
setting S+1 [Day Hour
S+2 | Year {Month
S$+3 | oo iDay of week
2-2-27 Debugging Instructions
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
TRACE When TRSM(045) is executed, the status of a preselected bit or word | Output 930
MEMORY is sampled and stored in Trace Memory. TRSM(045) can be used any- | Not required
SAMPLING where in the program, any number of times.
TRSM
045

88

Instruction Functions

Section 2-2

2-2-28 Failure Diagnosis Instructions

C: Control word
T: Monitoring time
R: 1st register
word

4 Execution
' condition A JI FPD
Error-pro-
cessing
R block (op-
tional)

Next instruction block

Logic diagnosis block*

Logic diagnosis :
execution condition C

[

Diagnostic output B

Logic diagnosis function
Determines which input in C prevents
output B from going ON.

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
FAILURE ALARM Generates or clears user-defined non-fatal errors. Non-fatal errors Output 934
FAL FAL(OOG) do not stop PC operation. Required
@FAL N Also generates non-fatal errors with the system.
006 FAL Error Flag ON
S A Corresponding Executed FAL
F FaL Execution of — " Number Flag ON
FAL(006) Error code wr itten to A400
N: FAL number N generates a Error code and time written to Error
S: 1st message 0000 non-f atal er- Log Area
word or error ror with FAL .
code to gener- ’ 7“7 ERR Indicator flashes
ate :
Message
. I:l displayed on
Programming
Console
EEI\I{ILEJIEQIIEE ALARM | FALS(007) Generates user-defined fatal errors. Fatal errors stop PC operation. OUtP‘%t 942
FALS Also generates fatal errors with the system. Required
007 N FALS Error Flag ON
S . Error code written to A400
[FALS |——Execution of 1™ Error code and time/date written
N FALS(007) to Error Log Area
N: FALS number generates a
S: 1st message 0000 fa.‘?}' S&T’é Neo
word or error \rlleIJtmber N ¢ 7N ERR Indicator lit
code to gener- . :
ate :
L I:l Message displayed
on Programming
Console
E?El.lr‘gg.ﬁgﬁm-r — FPD(269) Diagnoses a failure in an instruction block by monitoring the time Outpgt 950
between execution of FPD(269) and execution of a diagnostic output | Required
FPD and finding which input is preventing an output from being turned ON.
C g p p 9 p 9
269 T Time monitoring function:
Starts timing when execution condition A goes
R ON. Generates a non-fatal error if output B
isn't turned ON within the monitoring time.

89

Instruction Functions Section 2-2
2-2-29 Other Instructions
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
SET CARRY Sets the Carry Flag (CY). Output 959
STC STC(040) Required
@STC
040
CLEAR CARRY Turns OFF the Carry Flag (CY). Output 960
CcLC CLC(041) Required
@cCLC
041
SELECT EM Changes the current EM bank. Output 961
BANK EMBC(281) Required
EMBC N
@EMBC
281| N: EM bank
number
EXTEND Extends the maximum cycle time, but only for the cycle in which this Output 963
MAXIMUM | WDT(094) | |instruction is executed. Required
CYCLE TIME T
WDT
@WDT | .
094 T: Timer setting
SAVE CONDI- Saves the status of the condition flags. Output 965
TION FLAGS Required
(CS1-H, CJ1-H,
CJ1M, or CS1D
only)
CCSs
@cCcCs
282
LOAD CONDI- Reads the status of the condition flags that was saved. Output 967
TION FLAGS Required
(CS1-H, CJ1-H,
CJ1M, or CS1D
only)
CCL
@cCCL
283
CONVERT Converts a CV-series PLC memory address to its equivalent CS/CJ- Output 968
ADDRESS FROM FRMCV(284) | series PLC memory address. Required
CV (CS1-H, CJ1-
H, CJIM, or S
CS1D only) D
FRMCV
FRMCV _
@ 284 S: Word contain-
ing CV-series
memory address
D: Destination
Index Register
CONVERT Converts a CS/CJ-series PLC memory address to its equivalent CV- Output 972
ADDRESSTOCV |~ | TOCV(285) | | series PLC memory address. Required
(CS1-H, CJ1-H,
CJ1M, or CS1D S
only) D
TOCV
TOCV .
@ 285 S: Index Register
containing CS-
series memory
address
D: Destination
word

90

Instruction Functions

Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
DISABLE Disables peripheral servicing during program execution in one of the Output 976
PERIPHERAL IOSP(287) || Parallel Processing Modes or Peripheral Servicing Priority Mode. Required
SERVICING
(CS1-H, CJ1-H,
or CJ1M only)
IOSP
@IOSP
287
ENABLE Enables peripheral servicing that was disabled by IOSP(287) for pro- | Output 978
PERIPHERAL IORS(288) || gram execution in one of the Parallel Processing Modes or Peripheral | Not required
SERVICING Servicing Priority Mode.
(CS1-H, CJ1-H,
or CJ1M only)
IORS
288
2-2-30 Block Programming Instructions
Instruction Symbol/Operand FunctionS Location Page
Mnemonic Execution
Code condition
EIF_QSEEAM — BPRG(096) Define a block programming area. For every BPRG(096) there must Outpgt 983
BEGIN be a corresponding BEND(801). Required
N
BPRG —F——8PRG | —+
096 | N: Block program N
number
Block program
Executed when the execu-
A tion condition is ON.
BEND
BLOCK Define a block programming area. For every BPRG(096) there must be | Block program | 983
PROGRAM END a corresponding BEND(801). Required
BEND
801
BLOCK BPPS Pause and restart the specified block program from another block Block.program 985
PROGRAM (811 roaram Required
—{
BPPS N
8111 N: Block program — F—————BPRG
number
to
BPPS
to BPPS(811) executed
BEND for block program n.
————1BPRG
a n
to Block program n. Once
BEND paused this block program
will not be executed even

if bit "a" is ON.

91

Instruction Functions Section 2-2
Instruction Symbol/Operand FunctionS Location Page
Mnemonic Execution
Code condition
BLOCK BPRS Pause and restart the specified block program from another block Block_program 985
PROGRAM (812) program ReqUIred
RESTART ’
812
N: Block program BPRG
number
to
BPRS n
to BPRS(812) executed
BEND for block program n.
————1BPRG
a n
o Block program n. This block
BEND program will now be executed
as long as bit "a" is ON.
CONDITIONAL EXIT(806) EXIT(806) without an o P : ; Block program | 991
perand bit exits the program if the execution .
BLOCK EXIT condition is ON. Required
=" | B+ Bit operand _| |— Execution Execution
806 BPRG
condition condition
OFF ON
A "A" executed. | "A" executed.
Execution condition Y
EXIT
B "B" executed. E
BEND P
Block ended.
CONDITIONAL | EXIT(806)B EXIT(806) without an o o : , Block program | 991
perand bit exits the program if the execution :
BLOCK EXITEXIT condition is ON. Required
B: Bit operand ; :
Operand bit Operand bit
806 —F——8PRe | OFF ON
(ON for (OFF for EXIT
EXITNOT) NOT)
A "A" executed. | "A" executed.
EXIT R (EXIT NOT R) s,
B "B" executed. E
BEND .
Block ended.
CONDITIONAL EXIT NOT(806) EXIT(806) without an operand bit exits the program if the execution Block program | 991
BLOCK EXIT B condition is OFF. Required
NOT
EXIT NOT | B: Bit operand
806

92

Instruction Functions Section 2-2
Instruction Symbol/Operand FunctionS Location Page
Mnemonic Execution
Code condition
(B:E)gchliTIONAL IF (802) If the execution condition is ON, the instructions between IF(802) and Block_program 988
BRANCHING ELSE(803) will be executed and if the execution condition is OFF, the | Required
E instructions between ELSE(803) and IEND(804) will be executed.
802 ;
EXBC}JFIOH Execution NO
condition condition ON2
IF YES
A
"A" executed (be- "B" executed
ELSE tween IF and ELSE). (after ELSE).
|
B
IEND IEND
(B:E)(l;lgll(TIONAL IF (802) If the operand bit is ON, the instructions between IF(802) and Block_program 988
BRANCHING B ELSE(803) will be executed. If the operand bit is OFF, the instructions | Required
between ELSE(803) and IEND(804) will be executed.
I B: Bit operand
802
Operand bit
ON?
IF R (IF NOT R) YES
A
"A" executed (be "B" executed
ELSE tween IF and ELSE), (after ELSE).
I
B
IEND IEND
CONDITIONAL IF (802) NOT The instructions between IF(802) and ELSE(803) will be executed and | Block program | 988
BLOCK B if the operand bit is ON, the instructions be ELSE(803) and IEND(804) | Required
BRANCHING will be executed is the operand bit is OFF.
(NOT) .
IF NOT | B: Bit operand
802
CONDITIONAL If the ELSE(803) instruction is omitted and the operand bit is ON, the | Block program | 988
BLOCK instructions between IF(802) and IEND(804) will be executed Required
BRANCHING
(ELSE)
ELSE
803
CONDITIONAL If the operand bit is OFF, only the instructions after IEND(804) will be | Block program | 988
BLOCK executed. Required
BRANCHING
END
IEND
804

93

Section 2-2

Instruction Functions
Instruction Symbol/Operand FunctionS Location Page
Mnemonic Execution
Code condition
ONE CYCLEAND | WAIT(805) If the execution condition is ON for WAIT(805), the rest of the Block_program 994
WAIT instruction in the block program will be skipped. Required
805 Execution Execution Execution
condition condition condition
OFF Ol‘:F ON
)
— ———BPRG upn /
executed. /! I
A ;o ;o
;o L
Execution i / ; / "B" executed.
condition ! / ! /
i ! P
WAIT Lo b
B E l” i l”
BEND
c /e f e "C" executed.
| executed. |/ executed.
%—J
Wait
ONE CYCLE AND | WAIT(805) If the operand bit is OFF (ON for WAIT NOT(805)), the rest of the Block program | 994
WAIT B instructions in the block program will be skipped. In the next cycle, Required
WAIT none of the block program will be executed except for the execution
805 | n. i condition for WAIT(805) or WAIT(805) NOT. When the execution condi-
B: Bit operand tion goes ON (OFF for WAIT(805) NOT), the instruction from
WAIT(805) or WAIT(805) NOT to the end of the program will be exe-
cuted.
ONE CYCLE AND | WAIT(805) NOT If the operand bit is OFF (ON for WAIT NOT(805)), the rest of the Block program | 994
WAIT (NOT) B instructions in the block program will be skipped. In the next cycle, Required
WAIT NOT none of the block program will be executed except for the execution
805 | B: Bit operand condition for WAIT(805) or WAIT(805) NOT. When the execution condi-
: p tion goes ON (OFF for WAIT(805) NOT), the instruction from
WAIT(805) or WAIT(805) NOT to the end of the program will be exe-
cuted.
TIMER WAIT TIMW(813) Delays execution of the block program until the specified time has Block program | 998
TIMW N elapsed. Execution continues from the next instruction after Required
(Bg:ILD:;)Y TIMW(813)/TIMWX(816) when the timer times out.
SV: 010 999.9 s for BCD and
N: Timer number BPRG 0 to 6,553.5 s for binary
TIMWX | sv: Set value
816
(Binary) | TIMWX(816) A g g
(CS1-H, CI1-H, N executed.,” S
CJ1M, or CS1D SV A ;T P
only) S S
N: Timer number TIMW N sV S
SV: Set value S preset. ,"I@l
B : ,’/ P "B" executed.
BEND
"C" executed.
C

94

Instruction Functions

Section 2-2

Instruction Symbol/Operand FunctionS Location Page
Mnemonic Execution
Code condition
COUNTER WAIT | CNTW(814) Delays execution of the rest of the block program until the specified count | BIock program | 1001
CNTW N has been achieved. Execution will be continued from the next instruction Required
814 SV after CNTW(814)/CNTWX(817) when the counter counts out.
(BCD) SV: 0 to 9,999 times for BCD and
BPRG 0 to 65,535 times for binary
CNTWX | N: Counter
817 | number \ ,
(cst H(E:I\r]]frlﬁ) SV: Set value wpn e A
CJ1M, or cs1p |- Countinput A ereouted = S
only) | CNTWX(817) S o
N TIMW N
SV S SV / /
R pre’$et. ; [Time e aésed]
B v LS
N: Counter i ¥ "B" executed.
number ! ’
SV: Set value BEND
I: Count input o o "C" executed.
c executed. | executed.
'II—'IIII\(/IBERS\IIDV?IE'IP TMHW(815) Delays execution of the rest of the block program until the specified | Block program | 1004
N time has elapsed. Execution will be continued from the next Required
T'V':;’g SV instruction after TMHW(815) when the timer times out.
SV: 010 99.99 s for BCD and
(BCD) | ;. Timer number BPRG 0 to 655.35 s for binary
SV: Set value
TMHWX
818 | TMHW(818) " K B
(Binary) N ted. /] A
(CS1-H, CIL-H, sv A erecHiesy A -
CJIM, or CS1D S S
onl K /
Y) N: Timer number TMHW N sV / P |
SV: Set value S presét. ./ [Time elapsed]
B L L "B" executed.
BEND
"C" executed.
C

95

Instruction Functions

Section 2-2

Instruction Symbol/Operand FunctionS Location Page
Mnemonic Execution
Code condition
LOOP LOOP(809) designates the beginning of the loop program. Block program | 1007
LOOP Required
809
Execution Execution Execution Execution
condition condition condition condition
ON OFF OFF OFF
—— —1BPRG
A
Loop B N A7 A
8
Execution condition
LEND 2 2
S Lo b L
% Loop repeated
BEND
LEND LEND (810) LEND(810) or LEND(810) NOT specifies the end of the loop. When Block program | 1007
LEND LEND(810) or LEND(810) NOT is reached, program execution will loop | Required
810 back to the next previous LOOP(809) until the operand bit for
LEND(810) or LEND(810) NOT turns ON or OFF (respectively) or until
the execution condition for LEND(810) turns ON.
LEND LEND (810) If the operand bit is OFF for LEND(810) (or ON for LEND(810) NOT), | Block program | 1007
LEND B execution of the loop is repeated starting with the next instruction after | Required
810 LOOP(809). If the operand bit is ON for LEND(810) (or OFF for
. Bi LEND(810) NOT), the loop is ended and execution continues to the
B: Bit operand - .
next instruction after LEND(810) or LEND(810) NOT.
Operand Operand Operand Operand
bit ON bit OFF bit OFF bit OFF
— —1BPRG
A
LOOP N :,7""_":,_’)
B
LEND R (LEND NOT R
Ty [N — -
c Loop repeated
BEND
Note The status of the operand bit would
be reversed for LEND(810) NOT.
LEND NOT LEND(810) NOT | LEND(810) or LEND(810) NOT specifies the end of the loop. When Block program | 1007
LEND NOT LEND(810) or LEND(810) NOT is reached, program execution will loop | Required
810 | B: Bit operand back to the next previous LOOP(809) until the operand bit for
: p LEND(810) or LEND(810) NOT turns ON or OFF (respectively) or until
the execution condition for LEND(810) turns ON.

96

Instruction Functions

Section 2-2

2-2-31 Text String Processing Instructions

Instruction
Mnemonic
Code

Symbol/Operand

Function

Location

Execution
condition

Page

MOV STRING

MOV$
@MOoVvs$
664

— MOV$(664)
S
D

S: 1st source
word

D: 1st destination
word

Transfers a text string.

S

[ellullelbd

C|m|o(®m
[ollul(e]b

C(mo|m,

Output
Required

1013

CONCATENATE
STRING
+$
@+$
656

+$(656)
s1
S2
D

S1: Text string 1
S2: Text string 2
D: First

destination word

Links one text string to another text string.
S1 -

S2 -

Output
Required

1015

GET STRING
LEFT

LEFT$
@LEFT$

652

— LEFT$(652)
S1
S2
D

S1: Text string
first word

S2: Number of
characters

D: First
destination word

Fetches a designated number of characters from the left (beginning)
of a text string.

S2| 00 ! 04

}/ . D

S1

o>
lw]les]

c|m|O(>
c|mjo|m

Output
Required

1018

GET STRING
RIGHT

RGHT$
@RGHTS$

653

— RGHT$(653)
S1
S2
D

S1: Text string
first word

S2: Number of
characters

D: First
destination word

Reads a designated number of characters from the right (end) of a
text string.

S1 A

S2| 00 03 D E F

G NUL

Output
Required

1020

GET STRING
MIDDLE

MID$
@MID$
654

MID$(654)
S1
S2
S3

D

S1: Text string
first word

S2: Number of
characters

S3: Beginning
position

D: First
destination word

Reads a designated number of characters from any position in the
middle of a text string.

S2[00 i 06

—|O|m
Cle|x[m

NUL | N

S$2] 00 : 05

Output
Required

1022

97

Instruction Functions

Section 2-2

Instruction
Mnemonic
Code

Symbol/Operand

Function

Location

Execution
condition

Page

FIND IN STRING

FIND
@FIND$

660

— FIND$(660)
S1
S2
D

S1: Source text
string first word
S2: Found text
string first word
D: First
destination word

Finds a designated text string from within a text string.

Found data
~--82-[C [NUL]

S1- D-[00 03

c|m|O(>
c|mjo|m

Output
Required

1024

STRING LENGTH

LENS
@LENS$
650

LEN$(650)
S
D

S: Text string first
word
D: 1st destination
word

Calculates the length of a text string.
1 12 }/—- D
3 4

5 NUL

S1-

Output
Required

1026

REPLACE IN
STRING

RPLC$
@RPLC$
661

RPLC$(654)
S1
S2
S3
S4
D

S1: Text string
first word

S2: Replacement
text string first
word

S3: Number of
characters

S4: Beginning
position

D: First
destination word

Replaces a text string with a designated text string from a designated
position.

S3| 00 ! 04

AEN

f‘\sm K

S4] 00 : 05

C|T|x[O]>

C|—|O[O|®

T NUL | N

Output
Required

1028

DELETE STRING

DEL$
@DELS$
658

DEL$(658)
S1
S2
S3

D

S1: Text string
first word

S2: Number of
characters

S3: Beginning
position

D: First
destination word

Deletes a designated text string from the middle of a text string.

Number of characters to be
deleted (designated by S2).

= o

c|T|O|>
lw]

L NUL

83| 00 ! 05

Output
Required

1031

98

Instruction Functions

Section 2-2

Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
E#S:}I\IAGNGE ——Ixcros(e65)| | Replaces a designated text string with another designated text string. Sg;%lijrted 1033
XCHG$ Ex1 A B Ex1[€ D
@XCHGS$ EX1I—Nur T wuL NUL | NUL
665 Ex2 & L) — A& i
Ex1: 1st Ex2[_C D ExX2[A B
exchange word 1 NUL NUL NUL NUL
Ex2: 1st
exchange word 2
CLEAR STRING N N : Output 1035
— Clears an entire text string with NUL (00 hex).
CLR$ CLR$(666) g () Required
@CLR$ S s-{_ A B S - UL NUL
666] D —_— UL NUL
N NUL NUL UL NUL
S: Text string first
word
INSERT INTO ; ; ; ; Output 1037
STRING — INss(e57) Deletes a designated text string from the middle of a text string. Required
INS$
S1 $2-{ M | N |
@INS$ NUL | NUL
657 S2
81 - A B D-| A B
S3 ¢ D Js3[00f 06 c ' D
D g 5 - E E Inserted
NUL T NUD characters
S1: Base text NUL | NUL
string first word
S2: Inserted text
string first word
S3: Beginning
position
D: First
destination word
String Compari- LD Sting comparison instructions (=3$, <>$, <$, <=$, >$, >=$) compare two 1040
son text strings from the beginning, in terms of value of the ASCII codes. If | | D: Not
LD, AND, OR + |— | Symbol the result of the comparison is true, an ON execution condition is cre- | required
=$, <>$, <$, <=$, ated for a LOAD, AND, or OR. AND, OR:
>$, >=$ S1 Required
670 (=$)
671 (<>$) S2
672 (<$)
674 (>$) | =—
675 (>=9) Symbol
S1
S2
OR
—1 Symbol
S1
S2

S1: Text string 1
S2: Text string 2

99

Instruction Functions Section 2-2
2-2-32 Task Control Instructions
Instruction Symbol/Operand Function Location Page
Mnemonic Execution
Code condition
TASK ON P Output 1045
— Makes the specified task executable.
TKON TKON(820) P Required
@TKON N e , i ,
820 The specified task's task number The specified task's task number
is higher than the local task's task is lower than the local task's task
N: Task number number (m<n). number (m>n).
Task m l Task m I
T TkoN H | O .
n | i
i \ Be-
1 ! comes
END s | END H | | execut
able in I | able in
thatcycle.| + .. - | the next
\/\ — - Pt ~a cycle.
Task n \ Task n \
CH |- I TKON
n
END END
TASK OFF . ; Output 1049
— Puts the specified task into standby status.
TKOF TKOF(821) P y Required
@TKOF N The specified task's task num- The specified task's task num-
821 ber is higher than the local ber is lower than the local

N: Task number

task's task number (m<n).

Task m l
—— TKOF
n
In stand-
END by status
that
cycle.
Task n \
= Of i+
i |
i i
1 END i
i e i
AT, -1 =
i

task's task number (m>n).

1

Task m
In stand-
END by status
the next
_/—\ cycle.
Task n \
— TKOF —
n
END

s

100

Alphabetical List of Instructions by Mnemonic Section 2-3

2-3 Alphabetical List of Instructions by Mnemonic

A

Mnemonic Instruction Function code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification

ACC ACCELERATION CON- | 888 @ACC - - 795
TROL

ACOS ARC COSINE 464 @ACOS --- 546

ACOSD DOUBLE ARC 855 @ACOSD 602
COSINE

AND AND --- @AND %AND IAND 146

AND < AND LESS THAN 310 246

AND <$ AND STRING LESS | 672 - - - 1040
THAN

AND <> AND NOT EQUAL 305 - - - 246

AND <>$ AND STRING NOT 671 - - - 1040
EQUAL

AND <>D AND DOUBLE FLOAT- | 336 614
ING NOT EQUAL

AND <>F AND FLOATING NOT | 330 - - - 557
EQUAL

AND <>L AND DOUBLE NOT 306 - - - 246
EQUAL

AND <>S AND SIGNED NOT 307 - - - 246
EQUAL

AND <>SL AND DOUBLE 308 - -—- - 246
SIGNED NOT EQUAL

AND <D AND DOUBLE FLOAT- | 337 614
ING LESS THAN

AND <F AND FLOATING LESS 331 557
THAN

AND <L AND DOUBLE LESS 311 - - - 246
THAN

AND <S AND SIGNED LESS 312 246
THAN

AND <SL AND DOUBLE 313 - -—- - 246
SIGNED LESS THAN

AND = AND EQUAL 300 --- 246

AND =$ AND STRING EQUALS | 670 - 1040

AND =D AND DOUBLE FLOAT- | 335 - - - 614
ING EQUAL

AND =F AND FLOATING 329 - - - 557
EQUAL

AND =L AND DOUBLE EQUAL | 301 --- 246

AND =S AND SIGNED EQUAL | 302 --- 246

AND =SL AND DOUBLE 303 246
SIGNED EQUAL

AND > AND GREATER THAN | 320 - - - 246

AND >$ AND STRING 674 - - - 1040
GREATER THAN

AND >D AND DOUBLE FLOAT- | 339 614
ING GREATER THAN

AND >F AND FLOATING 333 - - - 557
GREATER THAN

AND >L AND DOUBLE 321 246
GREATER THAN

AND >S AND SIGNED 322 - - -—- 246
GREATER THAN

AND >SL AND DOUBLE 323 246
SIGNED GREATER
THAN

AND LD AND LOAD --- --- --- --- 153

101

Alphabetical List of I nstructions by Mnemonic Section 2-3
Mnemonic Instruction Function code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification

AND NOT AND NOT -—- - - IAND NOT 148

AND TST AND BIT TEST 350 - --- --- 163

AND TSTN AND BIT TEST 351 - --- --- 163

AND <= AND LESS THAN OR | 315 --- --- --- 246
EQUAL

AND <=$ AND STRING LESS 673 1040
THAN OR EQUALS

AND <=D AND DOUBLE FLOAT- | 338 --- --- --- 614
ING LESS THAN OR
EQUAL

AND <=F AND FLOATING LESS | 332 557
THAN OR EQUAL

AND <=L AND DOUBLE LESS 316 --- --- --- 246
THAN OR EQUAL

AND <=S AND SIGNED LESS 317 246
THAN OR EQUAL

AND <=SL AND DOUBLE 318 --- --- --- 246
SIGNED LESS THAN
OR EQUAL

AND >= AND GREATER THAN | 325 - - - 246
OR EQUAL

AND >=$ AND STRING 675 1040
GREATER THAN OR
EQUALS

AND >=D AND DOUBLE FLOAT- | 340 --- --- --- 614
ING GREATER THAN
OR EQUAL

AND >=F AND FLOATING 334 557
GREATER THAN OR
EQUAL

AND >=L AND DOUBLE 326 246
GREATER THAN OR
EQUAL

AND >=S AND SIGNED 327 - - - 246
GREATER THAN OR
EQUAL

AND >=SL AND DOUBLE 328 --- --- --- 246
SIGNED GREATER
THAN OR EQUAL

ANDL DOUBLE LOGICAL {610 @ANDL - - 476
AND

ANDW LOGICAL AND 034 @ANDW - - 474

APR ARITHMETIC 069 @APR - - 497
PROCESS

ASC ASCII CONVERT 086 @ASC - - 449

ASFT ASYNCHRONOUS 017 @ASFT - - 313
SHIFT REGISTER

ASIN ARC SINE 463 @ASIN --- --- 544

ASIND DOUBLE ARC SINE 854 @ASIND --- --- 600

ASL ARITHMETIC SHIFT 025 @ASL - --- 317
LEFT

ASLL DOUBLE SHIFT LEFT {570 @ASLL 319

ASR ARITHMETIC SHIFT | 026 @ASR - - 321
RIGHT

ASRL DOUBLE SHIFT 571 @ASRL - - 322
RIGHT

ATAN ARC TANGENT 465 @ATAN 548

ATAND DOUBLE ARC TAN- 856 @ATAND 604
GENT

AVG AVERAGE 195 - --- --- 716

102

Alphabetical List of Instructions by Mnemonic Section 2-3
B
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
BAND DEAD BAND CON- 681 @BAND 698
TROL
BCD BINARY-TO-BCD 024 @BCD 432
BCDL DOUBLE BINARY-TO- | 059 @BCDL 433
BCD
BCDS SIGNED BINARY-TO- |471 @BCDS 468
BCD
BCMP UNSIGNED BLOCK 068 @BCMP 268
COMPARE
BCMP2 EXPANDED BLOCK | 502 @BCMP2 270
COMPARE
BCNT BIT COUNTER 067 @BCNT 513
BDSL DOUBLE SIGNED 473 @BDSL 470
BINARY-TO-BCD
BEND BLOCK PROGRAM 801 983
END
BIN BCD-TO-BINARY 023 @BIN 429
BINL DOUBLE BCD-TO- 058 @BINL 430
DOUBLE BINARY
BINS SIGNED BCD-TO- 470 @BINS 462
BINARY
BISL DOUBLE SIGNED 472 @BISL 465
BCD-TO-BINARY
BPPS BLOCK PROGRAM 811 985
PAUSE
BPRG BLOCK PROGRAM 096 983
BEGIN
BPRS BLOCK PROGRAM 812 985
RESTART
BREAK BREAK LOOP 514 204
BSET BLOCK SET 071 @BSET 295
C
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
CADD CALENDAR ADD 730 @CADD 916
CCL LOAD CONDITION 283 @CCL 967
FLAGS
CCs SAVE CONDITION 282 @CCs 965
FLAGS
CJP CONDITIONAL JUMP | 510 195
CJPN CONDITIONAL JUMP | 511 195
CLC CLEAR CARRY 041 @cLC 960
CLI CLEAR INTERRUPT 691 @CLI 755
CLR$ CLEAR STRING 666 @CLR$ 1035
CMND DELIVER COMMAND | 490 @CMND --- 890
CMP COMPARE 020 ICMP 252
CMPL DOUBLE COMPARE 060 254
CNR RESET TIMER/ 545 @CNR 238
COUNTER
CNRX RESET TIMER/ 548 @CNRX 238
COUNTER
CNT COUNTER --- - — - 231
CNTX COUNTER 546 231
CNTR REVERSIBLE 012 234
COUNTER

103

Alphabetical List of Instructions by Mnemonic Section 2-3
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
CNTRX REVERSIBLE 548 234
COUNTER
CNTW COUNTER WAIT 814 --- --- --- 1001
CNTWX COUNTER WAIT 818 - 1001
COLL DATA COLLECT 081 @COLL 302
COLM LINE TO COLUMN 064 @COLM 459
COM COMPLEMENT 029 488
COML DOUBLE 614 @COML 490
COMPLEMENT
COoS COSINE 461 @COoSs 540
COSD DOUBLE COSINE 852 @COSD --- - 596
CPS SIGNED BINARY 114 --- --- ICPS 257
COMPARE
CPSL DOUBLE SIGNED 115 260
BINARY COMPARE
CSuB CALENDAR 731 @CSUB --- --- 920
SUBTRACT
CTBL COMPARISON TABLE | 882 @CTBL 777
LOAD
D
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
DATE CLOCK ADJUSTMENT | 735 @DATE 928
DBL 16-BIT BINARY TO 843 @DBL 580
DOUBLE FLOATING
DBLL 32-BIT BINARY TO 844 @DBLL --- --- 581
DOUBLE FLOATING
DEG RADIANS-TO 459 @DEG 536
DEGREES
DEGD DOUBLE RADIANS TO | 850 @RADD --- --- 591
DEGREES
DEL$ DELETE STRING 658 @DEL$ 1031
DI DISABLE INTER- 693 @Dl 760
RUPTS
DIFD DIFFERENTIATE 014 IDIFD 173
DOWN
DIFU DIFFERENTIATE UP 013 - IDIFU 173
DIM DIMENSION RECORD | 631 @DIM 635
TABLE
DIST SINGLE WORD 080 @DIST 300
DISTRIBUTE
DLNK CPU BUS UNIT I/O 226 @DLNK --- --- 837
REFRESH
DMPX DATA ENCODER 077 @DMPX 445
DOWN CONDITION OFF 522 - 162
E
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
El ENABLE 694 762
INTERRUPTS
ELSE ELSE 803 988
EMBC SELECT EM BANK 281 @EMBC --- --- 961
END END 001 - --- --- 186
EXIT NOT CONDITIONALBLOCK | 806 991
(operand) EXIT NOT

104

Alphabetical List of Instructions by Mnemonic Section 2-3
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
EXIT (input con- | CONDITIONALBLOCK | 806 991
dition) EXIT
EXIT (operand) | CONDITIONALBLOCK | 806 991
EXIT
EXP EXPONENT 467 @EXP 552
EXPD DOUBLE EXPONENT | 858 @EXPD 608
F
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
FAL FAILURE ALARM 006 @FAL 934
FALS SEVERE FAILURE 007 942
ALARM
FCS FRAME CHECKSUM 180 @FCS --- - 656
FDIV FLOATING POINT 079 @FDIV --- --- 509
DIVIDE
FIFO FIRST IN FIRST OUT |633 @FIFO 629
FIND$ FIND IN STRING 660 @FIND$ 1024
FIX FLOATING TO 16-BIT |450 @FIX 520
FIXD DOUBLE FLOATING 841 @FIXD --- --- 577
TO 16-BIT BINARY
FIXL FLOATING TO 32-BIT |451 @FIXL --- --- 522
FIXLD DOUBLE FLOATING 842 @FIXLD 578
TO 32-BIT BINARY
FLT 16-BIT TO FLOATING | 452 @FLT 523
FLTL 32-BIT TO FLOATING |453 @FLTL --- --- 525
FOR FOR-NEXT LOOPS 512 - --- --- 201
FPD FAILURE POINT 269 --- --- - 950
DETECTION
FREAD READ DATA FILE 700 @FREAD 899
FRMCV CONVERT ADDRESS | 284 @FRMCV 968
FROM CV
FSTR FLOATING POINT TO | 448 @FSTR --- --- 561
ASCII
FWRIT WRITE DATA FILE 701 @FWRIT 906
FVAL ASCII TO FLOATING 449 @FVAL 566
POINT
G
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
GETR GET RECORD 636 @GETR 640
NUMBER
GRET GLOBAL SUBROU- 752 --- --- --- 743
TINE RETURN
GSBN GLOBAL SUBROU- 751 740
TINE ENTRY
GSBS GLOBAL SUBROU- 750 @GSBS 732
TINE CALL
H
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
HEX ASCII TO HEX 162 @HEX --- --- 453
HMS SECONDS TO HOURS | 066 @HMS 925

105

Alphabetical List of Instructions by Mnemonic Section 2-3
I
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
IEND IF END 804 988
IF NOT (oper- IF NOT 802 988
and)
IF (input condi- | IF 802 988
tion)
IF (operand) IF 802 - 988
IL INTERLOCK 002 - 187
ILC INTERLOCK CLEAR 003 - 187
INI MODE CONTROL 880 @INI 769
INS$ INS$ 657 @INS$ 1037
IORD INTELLIGENT I/O 222 @IORD 831
READ
IORF /0 REFRESH 097 @IORF 825
IORS ENABLE PERIPH- 288 978
ERAL SERVICING
I0SP DISABLE PERIPH- 287 @IOSP 976
ERAL SERVICING
IOWR INTELLIGENT I/O 223 @IOWR 834
WRITE
J
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
JME JUMP END 005 191
JMEO MULTIPLE JUMP END | 516 199
JMP JUMP 004 191
JMPO MULTIPLE JUMP 515 199
K
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
KEEP KEEP 011 IKEEP 168
L
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
LD LOAD --- @LD %LD ILD 142
LD < LOAD LESS THAN 310 - 246
LD <$ LOAD STRING LESS 672 1040
THAN
LD <D LOAD DOUBLE 337 614
FLOATING LESS
THAN
LD <F LOAD FLOATING 331 557
LESS THAN
LD <> LOAD NOT EQUAL 305 246
LD <>$ LOAD STRING NOT 671 1040
EQUAL
LD <>D LOAD DOUBLE 336 614
FLOATING NOT
EQUAL
LD <>F LOAD FLOATING NOT | 330 557
EQUAL
LD <>L LOAD DOUBLE NOT | 306 246
EQUAL

106

Alphabetical List of Instructions by Mnemonic Section 2-3
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification

LD <>S LOAD SIGNED NOT 307 --- --- --- 246
EQUAL

LD <>SL LOAD DOUBLE 308 --- --- --- 246
SIGNED NOT EQUAL

LD <L LOAD DOUBLE LESS | 311 246
THAN

LD <S LOAD SIGNED LESS | 312 --- --- --- 246
THAN

LD <SL LOAD DOUBLE 313 246
SIGNED LESS THAN

LD = LOAD EQUAL 300 - --- --- 246

LD =% LOAD STRING 670 1040
EQUALS

LD =D LOAD DOUBLE 335 614
FLOATING EQUAL

LD =F LOAD FLOATING 329 --- --- --- 557
EQUAL

LD =L LOAD DOUBLE 301 --- --- --- 246
EQUAL

LD =S LOAD SIGNED EQUAL | 302 - 246

LD =SL LOAD DOUBLE 303 246
SIGNED EQUAL

LD > LOAD GREATER 320 --- --- --- 246
THAN

LD >$ LOAD STRING 674 1040
GREATER THAN

LD >D LOAD DOUBLE 339 --- --- --- 614
FLOATING GREATER
THAN

LD >F LOAD FLOATING 333 - - - 557
GREATER THAN

LD >L LOAD DOUBLE 321 - - - 246
GREATER THAN

LD >S LOAD SIGNED 322 246
GREATER THAN

LD >SL LOAD DOUBLE 323 --- --- --- 246
SIGNED GREATER
THAN

LD NOT LOAD NOT - - - ILD NOT 144

LD TST LOAD BIT TEST 350 - - - 163

LD TSTN LOAD BIT TEST 351 - --- --- 163

LD <= LOAD LESS THAN OR | 315 --- --- --- 246
EQUAL

LD <=$% LOAD STRING LESS |673 1040
THAN OR EQUAL

LD <=D LOAD DOUBLE 338 --- --- --- 614
FLOATING LESS
THAN OR EQUAL

LD <=F LOAD FLOATING 332 557
LESS THAN OR
EQUAL

LD <=L LOAD DOUBLE LESS | 316 246
THAN OR EQUAL

LD <=S LOAD SIGNED LESS | 317 - --- --- 246
THAN OR EQUAL

LD <=SL LOAD DOUBLE 318 - --- --- 246
SIGNED LESS THAN
OR EQUAL

LD >= LOAD GREATER 325 - --- --- 246
THAN OR EQUAL

LD >=% LOAD STRING 675 1040
GREATER THAN OR
EQUALS

107

Alphabetical List of Instructions by Mnemonic Section 2-3
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
LD >=D LOAD DOUBLE 340 --- --- --- 614
FLOATING GREATER
THAN OR EQUAL
LD >=F LOAD FLOATING 334 557
GREATER THAN OR
EQUAL
LD >=L LOAD DOUBLE 326 246
GREATER THAN OR
EQUAL
LD >=S LOAD SIGNED 327 --- --- --- 246
GREATER THAN OR
EQUAL
LD >=SL LOAD DOUBLE 328 --- --- --- 246
SIGNED GREATER
THAN OR EQUAL
LEFT$ GET STRING LEFT 652 @LEFTS$ 1018
LEN$ STRING LENGTH 650 @LENS$ 1026
LEND NOT LOOP END NOT 810 1007
(operand)
LEND (input LOOP END 810 - - - 1007
condition)
LEND (oper- LOOP END 810 1007
and)
LIFO LAST IN FIRST OUT 634 @LIFO --- --- 632
LINE COLUMN TO LINE 063 @LINE - --- 457
LMT LIMIT CONTROL 680 @LMT --- --- 696
LOG LOGARITHM 468 @LOG 554
LOGD DOUBLE LOGARITHM | 859 @LOGD 610
LOOP LOOP 809 1007
M
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
MAX FIND MAXIMUM 182 @MAX --- --- 646
MCMP MULTIPLE COMPARE | 019 @MCMP 263
MCRO MACRO 099 @MCRO 725
MID$ GET STRING MIDDLE | 654 @MID$ 1022
MIN FIND MINIMUM 183 @MIN 650
MLPX DATA DECODER 076 @MLPX 440
MOV MOVE 021 @Mov MOV 279
MOV$ MOVE STRING 664 @MOV$ --- --- 1013
MOVB MOVE BIT 082 @MOVB --- --- 285
MOVD MOVE DIGIT 083 @MOVD --- --- 287
MOVL DOUBLE MOVE 498 @MOVL --- --- 282
MOVR MOVE TO REGISTER | 560 @MOVR --- --- 304
MSG DISPLAY MESSAGE 046 @MSG --- --- 913
MSKR READ INTERRUPT 692 @MSKR 750
MASK
MSKS SET INTERRUPT 690 @MSKS --- --- 744
MASK
MTIM MULTI-OUTPUT 543 --- --- --- 226
TIMER
MTIMX MULTI-OUTPUT 554 226
TIMER
MVN MOVE NOT 022 @MVN --- --- 281

108

Alphabetical List of Instructions by Mnemonic Section 2-3
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
MVNL DOUBLE MOVE NOT | 499 @MVNL 284
MOVRW MOVE TIMER/ 561 306
COUNTER PV TO
REGISTER
N
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
NASL SHIFT N-BITS LEFT 580 @NASL 345
NASR SHIFT N-BITS RIGHT | 581 @NASR 350
NEG 2'S COMPLEMENT 160 @NEG 435
NEGL DOUBLE 2'S 161 @NEGL 437
COMPLEMENT
NEXT FOR-NEXT LOOPS 513 201
NOP NO OPERATION 000 --- 187
NOT NOT 520 161
NSFL SHIFT N-BIT DATA 578 @NSFL 341
LEFT
NSFR SHIFT N-BIT DATA 579 @NSFR 343
RIGHT
NSLL DOUBLE SHIFT 582 @NSLL 348
N-BITS LEFT
NSRL DOUBLE SHIFT 583 @NSRL 353
N-BITS RIGHT
O
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
OR OR @OR %O0R I0R 150
OR < OR LESS THAN 310 246
OR <$ OR STRING LESS 672 1040
THAN
OR <> OR NOT EQUAL 305 246
OR <>$ OR STRING NOT 671 1040
EQUAL
OR <>D OR DOUBLE FLOAT- 336 614
ING NOT EQUAL
OR <>F OR FLOATING NOT 330 557
EQUAL
OR <>L OR DOUBLE NOT 306 246
EQUAL
OR <>S OR SIGNED NOT 307 246
EQUAL
OR <>SL OR DOUBLE SIGNED | 308 246
NOT EQUAL
OR <D OR DOUBLE FLOAT- 337 614
ING LESS THAN
OR <F OR FLOATING LESS | 331 557
THAN
OR <L OR DOUBLE LESS 311 246
THAN
OR<S OR SIGNED LESS 312 246
THAN
OR <SL OR DOUBLE SIGNED | 313 246
LESS THAN
OR = OR EQUAL 300 246
OR =$ OR STRING EQUALS | 670 1040

109

Alphabetical List of Instructions by Mnemonic Section 2-3
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification

OR =D OR DOUBLE FLOAT- 335 — - — 614
ING EQUAL

OR =F OR FLOATING EQUAL | 329 - --- - 557

OR =L OR DOUBLE EQUAL 301 246

OR =S OR SIGNED EQUAL 302 246

OR =SL OR DOUBLE SIGNED |303 246
EQUAL

OR > OR GREATER THAN | 320 - — - 246

OR >$ OR STRING GREATER | 674 --- - - 1040
THAN

OR >D OR DOUBLE FLOAT- |339 614
ING GREATER THAN

OR >F OR FLOATING 333 - - - 557
GREATER THAN

OR>L OR DOUBLE 321 - — - 246
GREATER THAN

OR >S OR SIGNED 322 - . — 246
GREATER THAN

OR >SL OR DOUBLE SIGNED | 323 - - - 246
GREATER THAN

ORLD OR LOAD - - - - 155

OR NOT OR NOT - - IOR NOT 151

ORTST OR BIT TEST 350 - . — 163

OR TSTN OR BIT TEST 351 - . — 163

OR <= ORLESSTHANOR |315 - — — 246
EQUAL

OR <=% OR STRING LESS 673 - - — 1040
THAN OR EQUALS

OR <=D OR DOUBLE FLOAT- |338 614
ING LESS THAN OR
EQUAL

OR <=F OR FLOATING LESS | 332 - - - 557
THAN OR EQUAL

OR <=L OR DOUBLE LESS 316 - — - 246
THAN OR EQUAL

OR <=S OR SIGNED LESS 317 - — - 246
THAN OR EQUAL

OR <=SL OR DOUBLE SIGNED |318 246
LESS THAN OR
EQUAL

OR >= OR GREATER THAN | 325 246
OR EQUAL

OR >=% OR STRING GREATER | 675 --- - - 1040
THAN OR EQUALS

OR >=D OR DOUBLE FLOAT- 340 --- --- - 614
ING GREATER THAN
OR EQUAL

OR >=F OR FLOATING 334 - - - 557
GREATER THAN OR
EQUAL

OR >=L OR DOUBLE 326 246
GREATER THAN OR
EQUAL

OR >=S OR SIGNED 327 246
GREATER THAN OR
EQUAL

OR >=SL OR DOUBLE SIGNED |328 246
GREATER THAN OR
EQUAL

ORG ORIGIN SEARCH 889 @ORG - - 802

ORW LOGICAL OR 035 @ORW --- --- 477

ORWL DOUBLE LOGICAL OR | 611 @ORWL - --- 479

110

Alphabetical List of Instructions by Mnemonic Section 2-3
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
ouT OUTPUT Io0UT 166
ouUTB SINGLE BIT OUTPUT |[534 @OuUTB I0UTB 184
OUT NOT OUTPUT NOT --- - IOUT NOT 167
P
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
PID PID CONTROL 190 675
PIDAT PID CONTROL WITH 191 686
AUTOTUNING
PMCR PROTOCOL MACRO | 260 @PMCR 844
PRV HIGH-SPEED 881 @PRV 773
COUNTER PV READ
PULS SET PULSES 886 @PULS 786
PLS2 PULSE OUTPUT 887 @PLS2 789
PUSH PUSH ONTO STACK 632 @PUSH 626
PWM PULSE WITH VARI- 891 @PWM 805
ABLE DUTY FACTOR
PWR EXPONENTIAL 840 @PWR 556
POWER
PWRD DOUBLE EXPONEN- 860 @PWRD 612
TIAL POWER
R
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
RAD DEGREES TO 458 @RAD 554
RADIANS
RADD DOUBLE DEGREES 849 @RADD 591
TO RADIANS
RECV NETWORK RECEIVE |098 @RECV 885
RET SUBROUTINE 093 732
RETURN
RGHT$ GET STRING RIGHT | 653 @RGHT$ 1020
RLNC ROTATE LEFT 574 @RLNC 331
WITHOUT CARRY
RLNL DOUBLE ROTATE 576 @RLNL 332
LEFT WITHOUT
CARRY
ROL ROTATE LEFT 027 @ROL 324
ROLL DOUBLE ROTATE 572 @ROLL 326
LEFT
ROOT BCD SQUARE ROOT | 072 @ROOT 493
ROR ROTATE RIGHT 028 @ROR 327
RORL DOUBLE ROTATE 573 @RORL 329
RIGHT
ROTB BINARY ROOT 620 @ROTB 491
RPLC$ REPLACE IN STRING | 661 @RPLCS$ 1028
RRNC ROTATE RIGHT 575 @RRNC 334
WITHOUT CARRY
RRNL DOUBLE ROTATE 577 @RRNL 336
RIGHT WITHOUT
CARRY
RSET RESET @RSET %RSET IRSET 175
RSTA MULTIPLE BIT RESET | 531 @RSTA 177
RSTB SINGLE BIT RESET 533 @RSTB IRSTB 180
RXD RECEIVE 235 @RXD 858

111

Alphabetical List of Instructions by Mnemonic Section 2-3
S
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
SBN SUBROUTINE ENTRY | 092 --- --- --- 729
SBS SUBROUTINE CALL 091 @SBS --- --- 720
SCL SCALING 194 @ScCL 704
SCL2 SCALING 2 486 @SCL2 708
SCL3 SCALING 3 487 @SCL3 712
SDEC 7-SEGMENT 078 @SDEC 844
DECODER
SDEL STACK DATA DELETE | 642 @SDEL --- --- 671
SEC HOURS TO SECONDS | 065 @SEC 923
SEND NETWORK SEND 090 @SEND --- --- 879
SET SET --- @SET %SET ISET 175
SETA MULTIPLE BIT SET 530 @SETA 177
SETB SINGLE BIT SET 532 @SETB ISETB 180
SETR SET RECORD 635 @SETR 638
LOCATION
SFT SHIFT REGISTER 010 - --- - 309
SFTR REVERSIBLE SHIFT 084 @SFTR --- --- 310
REGISTER
SIGN 16-BIT TO 32-BIT 600 @SIGN 439
SIGNED BINARY
SIN SINE 460 @SIN 538
SIND DOUBLE SINE 851 @SIND --- --- 594
SINS STACK DATA INSERT | 641 @SINS --- --- 668
SLD ONE DIGIT SHIFT 074 @SLD --- --- 338
LEFT
SNUM STACK SIZE READ 638 @SNUM 659
SNXT STEP START 009 808
SPED SPEED OUTPUT 885 @SPED 781
SQRT SQUARE ROOT 466 @SQRT 550
SQRTD DOUBLE SQUARE 857 @SQRTD --- --- 606
ROOT
SRCH DATA SEARCH 181 @SRCH - --- 642
SRD ONE DIGIT SHIFT 075 @SRD 339
RIGHT
SREAD STACK DATA READ 639 @SREAD 662
SSET SET STACK 630 @SSET 623
STC SET CARRY 040 @STC 959
STEP STEP DEFINE 008 --- --- - 808
STUP CHANGE SERIAL 237 @STUP --- --- 863
PORT SETUP
SUM SUM 184 @SUM 653
SWAP SWAP BYTES 637 @SWAP 644
SWRIT STACK DATA WRITE 640 @SWRIT 665
T
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
TAN TANGENT 462 @TAN 542
TAND DOUBLE TANGENT 853 @TAND 598
TCMP TABLE COMPARE 085 @TCMP 265
TIM TIMER --- --- --- --- 207
TIMH HIGH-SPEED TIMER 015 --- --- --- 211
TIMHX HIGH-SPEED TIMER 551 --- --- --- 211

112

Alphabetical List of Instructions by Mnemonic Section 2-3
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
TIML LONG TIMER 542 --- --- --- 222
TIMLX LONG TIMER 553 --- --- --- 222
TIMW TIMER WAIT 813 --- --- --- 998
TIMWX TIMER WAIT 816 --- --- --- 998
TIMX TIMER 505 --- --- --- 207
TKOF TASK OFF 821 @TKOF --- --- 1049
TKON TASK ON 820 @TKON 1045
TMHH ONE-MS TIMER 540 216
TMHHX ONE-MS TIMER 552 216
TMHW HIGH-SPEED TIMER |815 1004
WAIT
TMHWX HIGH-SPEED TIMER 817 --- --- --- 1004
WAIT
TOCV CONVERT ADDRESS | 285 @TocVv 972
TO CV
TRSM TRACE MEMORY 045 --- --- --- 930
SAMPLING
TTIM ACCUMULATIVE 087 --- --- --- 219
TIMER
TTIMX ACCUMULATIVE 555 219
TIMER
TXD TRANSMIT 236 @TXD --- --- 853
U
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
UP CONDITION ON 521 - --- --- 162
W
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
WAIT NOT ONE CYCLE AND 805 994
(operand) WAIT NOT
WAIT (input ONE CYCLE AND 805 --- --- --- 994
condition) WAIT
WAIT (operand) | ONE CYCLE AND 805 994
WAIT
WDT EXTEND MAXIMUM 094 @WDT --- --- 963
CYCLE TIME
WSFT WORD SHIFT 016 @WSFT 316
X
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
XCGL DOUBLE DATA 562 @XCGL 298
EXCHANGE
XCHG DATA EXCHANGE 073 @XCHG 297
XCHG$ EXCHANGE STRING | 665 @XCHG$ --- --- 1033
XFER BLOCK TRANSFER 070 @XFER --- --- 292
XFRB MULTIPLE BIT 062 @XFRB --- --- 290
TRANSFER
XNRL DOUBLE EXCLUSIVE |613 @XNRL 486
NOR
XNRW EXCLUSIVE NOR 037 @XNRW - --- 485

113

Alphabetical List of Instructions by Mnemonic Section 2-3
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
XORL DOUBLE EXCLUSIVE |612 @XORL 483
OR
XORW EXCLUSIVE OR 036 @XORW 481
Z
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
zcp AREA RANGE COM- | 088 274
PARE
ZCPL DOUBLE AREA 116 277
RANGE COMPARE
ZONE DEAD ZONE 682 @ZONE 701
CONTROL
Symbols
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
+ SIGNED BINARY ADD | 400 @+ 373
WITHOUT CARRY
+$ CONCATENATE 656 @+$ 1015
STRING
++ INCREMENT BINARY |590 @++ 356
++B INCREMENT BCD 594 @++B --- 364
++BL DOUBLE 595 @++BL 366
INCREMENT BCD
++L DOUBLE 591 @++L 358
INCREMENT BINARY
+B BCD ADD WITHOUT | 404 @+B 381
CARRY
+BC BCD ADD WITH 406 @+BC 384
CARRY
+BCL DOUBLE BCD ADD 407 @+BCL 386
WITH CARRY
+BL DOUBLE BCD ADD 405 @+BL 382
WITHOUT CARRY
+C SIGNED BINARY ADD | 402 @+C 377
WITH CARRY
+CL DOUBLE SIGNED 403 @+CL 379
BINARY ADD WITH
CARRY
+D DOUBLE FLOATING- |845 @+D 583
POINT ADD
+F FLOATING-POINT 454 @+F 527
ADD
+L DOUBLE SIGNED 401 @+L 375
BINARY ADD
WITHOUT CARRY
- SIGNED BINARY 410 @- 387
SUBTRACT
WITHOUT CARRY
—- DECREMENT BINARY | 592 @-- 360
--B DECREMENT BCD 596 @--B 368
--BL DOUBLE 597 @--BL 370
DECREMENT BCD
--L DOUBLE 593 @--L 362
DECREMENT BINARY
-B BCD SUBTRACT 414 @-B 398
WITHOUT CARRY
-BC BCD SUBTRACT 416 @-BC 403
WITH CARRY

114

Alphabetical List of Instructions by Mnemonic Section 2-3
Mnemonic Instruction FUN code Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
-BCL DOUBLE BCD 417 @-BCL --- - 404
SUBTRACT WITH
CARRY
-BL DOUBLE BCD 415 @-BL 399
SUBTRACT
WITHOUT CARRY
-C SIGNED BINARY 412 @-Cc 393
SUBTRACT WITH
CARRY
—-CL DOUBLE SIGNED 413 @-CL --- - 395
BINARY SUBTRACT
WITH CARRY
-D DOUBLE FLOATING- | 846 @-D 585
POINT SUBTRACT
-F FLOATING-POINT 455 @-F --- - 529
SUBTRACT
* SIGNED BINARY 420 @x 406
MULTIPLY
xB BCD MULTIPLY 424 @x*B ——- - 413
*BL DOUBLE BCD 425 @xBL --- --- 415
MULTIPLY
*D DOUBLE FLOATING- 847 @x*D 587
POINT MULTIPLY
*F FLOATING-POINT 456 @xF 531
MULTIPLY
*L DOUBLE SIGNED 421 @xL 408
BINARY MULTIPLY
*U UNSIGNED BINARY 422 @xU --- - 410
MULTIPLY
*UL DOUBLE UNSIGNED | 423 @xuL 412
BINARY MULTIPLY
-L DOUBLE SIGNED 411 @-L 389
BINARY SUBTRACT
WITHOUT CARRY
/ SIGNED BINARY 430 @/ 417
DIVIDE
B BCD DIVIDE 434 @/B 425
/BL DOUBLE BCD DIVIDE | 435 @/BL - - 427
D DOUBLE FLOATING- | 848 @/D 589
POINT DIVIDE
IF FLOATING-POINT 457 @IF 533
DIVIDE
I DOUBLE SIGNED 431 @IL 419
BINARY DIVIDE
v UNSIGNED BINARY | 432 @/u 421
DIVIDE
JUL DOUBLE UNSIGNED | 433 @/UL 423
BINARY DIVIDE

115

List of Instructions by Function Code Section 2-4
2-4 List of Instructions by Function Code
Function code Mnemonic Instruction Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
LD LOAD @LD %LD ILD 142
LD NOT LOAD NOT ILD NOT 144
AND AND @AND %AND IAND 146
AND NOT AND NOT IAND NOT 148
OR OR @OR %O0R IOR 150
--- OR NOT OR NOT --- --- IOR NOT 151
- AND LD AND LOAD --- --- --- 153
--- OR LD OR LOAD --- --- --- 155
ouT OUTPUT 1oUT 166
--- OUT NOT OUTPUT NOT --- --- IOUT NOT 167
SET SET @SET %SET ISET 175
RSET RESET @RSET %RSET IRSET 175
TIM TIMER 207
TIMX TIMER 207
CNT COUNTER 231
000 NOP NO OPERATION - 187
001 END END - --- --- 186
002 IL INTERLOCK - --- --- 187
003 ILC INTERLOCK CLEAR - --- --- 187
004 JMP JUMP --- --- --- 191
005 JME JUMP END --- --- --- 191
006 FAL FAILURE ALARM @FAL - --- 934
007 FALS SEVERE FAILURE 942
ALARM
008 STEP STEP DEFINE 808
009 SNXT STEP START --- --- --- 808
010 SFT SHIFT REGISTER --- --- --- 309
011 KEEP KEEP --- --- IKEEP 168
012 CNTR REVERSIBLE --- --- --- 234
COUNTER
013 DIFU DIFFERENTIATE UP IDIFU 173
014 DIFD DIFFERENTIATE IDIFD 173
DOWN
015 TIMH HIGH-SPEED TIMER --- --- - 211
016 WSFT WORD SHIFT @WSFT --- --- 316
017 ASFT ASYNCHRONOUS @ASFT --- --- 313
SHIFT REGISTER
019 MCMP MULTIPLE COMPARE | @MCMP 263
020 CMP UNSIGNED COMPARE | --- ICMP 252
021 MOV MOVE @MoV MOV 279
022 MVN MOVE NOT @MVN --- --- 281
023 BIN BCD-TO-BINARY @BIN --- --- 429
024 BCD BINARY-TO-BCD @BCD --- --- 432
025 ASL ARITHMETIC SHIFT @ASL --- --- 317
LEFT
026 ASR ARITHMETIC SHIFT @ASR 321
RIGHT
027 ROL ROTATE LEFT @ROL --- --- 324
028 ROR ROTATE RIGHT @ROR --- --- 327
029 COM COMPLEMENT @COM 488
034 ANDW LOGICAL AND @ANDW --- - 474
035 ORW LOGICAL OR @ORW 477

116

List of Instructions by Function Code Section 2-4
Function code Mnemonic Instruction Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification

036 XORW EXCLUSIVE OR @XORW - - 481

037 XNRW EXCLUSIVE NOR @XNRW - - 485

040 STC SET CARRY @STC 959

041 CLC CLEAR CARRY @CLC - - 960

045 TRSM TRACE MEMORY 930
SAMPLING

046 MSG DISPLAY MESSAGE @MSG 913

058 BINL DOUBLE BCD-TO- @BINL 430
DOUBLE BINARY

059 BCDL DOUBLE BINARY-TO- | @BCDL 433
BCD

060 CMPL DOUBLE UNSIGNED | --- 254
COMPARE

062 XFRB MULTIPLE BIT @XFRB 290
TRANSFER

063 LINE COLUMN TO LINE @LINE 457

064 COLM LINE TO COLUMN @COLM 459

065 SEC HOURS TO SECONDS | @SEC --- 923

066 HMS SECONDS TO HOURS | @HMS --- 925

067 BCNT BIT COUNTER @BCNT --- --- 513

068 BCMP UNSIGNED BLOCK @BCMP 268
COMPARE

069 APR ARITHMETIC @APR - - 497
PROCESS

070 XFER BLOCK TRANSFER @XFER 292

071 BSET BLOCK SET @BSET 295

072 ROOT BCD SQUARE ROOT @ROOT 493

073 XCHG DATA EXCHANGE @XCHG - --- 297

074 SLD ONE DIGIT SHIFT @SLD -—- - 338
LEFT

075 SRD ONE DIGIT SHIFT @SRD 339
RIGHT

076 MLPX DATA DECODER @MLPX --- 440

077 DMPX DATA ENCODER @DMPX - - 445

078 SDEC 7-SEGMENT @SDEC - - 844
DECODER

079 FDIV FLOATING POINT @FDIV 509
DIVIDE

080 DIST SINGLE WORD @DIST 300
DISTRIBUTE

081 COLL DATA COLLECT @COLL - - 302

082 MOVB MOVE BIT @MovB - - 285

083 MOVD MOVE DIGIT @MOVvD 287

084 SFTR REVERSIBLE SHIFT @SFTR 310
REGISTER

085 TCMP TABLE COMPARE @TCMP - - 265

086 ASC ASCIl CONVERT @ASC 449

087 TTIM ACCUMULATIVE - - - 219
TIMER

088 ZCP AREA RANGE COM- 274
PARE

090 SEND NETWORK SEND @SEND --- - 879

091 SBS SUBROUTINE CALL @SBS - - 720

092 SBN SUBROUTINE ENTRY | --- - - 729

093 RET SUBROUTINE - -—- - 732
RETURN

117

List of Instructions by Function Code Section 2-4
Function code Mnemonic Instruction Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification

094 wDT EXTEND MAXIMUM | @WDT 963
CYCLE TIME

096 BPRG BLOCK PROGRAM 983
BEGIN

097 IORF /0 REFRESH @IORF 825

098 RECV NETWORK RECEIVE | @RECV - 885

099 MCRO MACRO @MCRO 725

114 CPS SIGNED BINARY --- --- ICPS 257
COMPARE

115 CPSL DOUBLE SIGNED 260
BINARY COMPARE

116 ZCPL DOUBLE AREA 277
RANGE COMPARE

160 NEG 2'S COMPLEMENT @NEG --- --- 435

161 NEGL DOUBLE 2'S @NEGL --- --- 437
COMPLEMENT

162 HEX ASCIl TO HEX @HEX 453

180 FCS FRAME CHECKSUM @FCS 656

181 SRCH DATA SEARCH @SRCH - --- 642

182 MAX FIND MAXIMUM @MAX --- --- 646

183 MIN FIND MINIMUM @MIN - --- 650

184 SUM SUM @SUM 653

190 PID PID CONTROL - --- --- 675

191 PIDAT PID CONTROL WITH --- --- --- 686
AUTOTUNING

194 SCL SCALING @SCL 704

195 AVG AVERAGE 716

222 IORD INTELLIGENT 1/O @IORD --- --- 831
READ

223 IOWR INTELLIGENT 1/O @IOWR --- --- 834
WRITE

226 DLNK CPU BUS UNIT I/O @DLNK 837
REFRESH

235 RXD RECEIVE @RXD --- --- 858

236 TXD TRANSMIT @TXD --- --- 853

237 STUP CHANGE SERIAL @STUP --- --- 863
PORT SETUP

260 PMCR PROTOCOL MACRO @PMCR 844

269 FPD FAILURE POINT 950
DETECTION

281 EMBC SELECT EM BANK @EMBC --- --- 961

282 CCs SAVE CONDITION @CCs 965
FLAGS

283 CCL LOAD CONDITION @CCL 967
FLAGS

284 FRMCV CONVERT ADDRESS | @FRMCV --- --- 968
FROM CV

285 TOCV CONVERT ADDRESS | @TOCV 972
TO CV

287 IOSP DISABLE PERIPH- @I0SP --- --- 976
ERAL SERVICING

288 IORS ENABLE PERIPH- 978
ERAL SERVICING

300 AND = AND EQUAL - --- --- 246

300 LD = LOAD EQUAL --- --- --- 246

300 OR = OR EQUAL 246

301 AND =L AND DOUBLE EQUAL | --- --- --- 246

118

List of Instructions by Function Code Section 2-4
Function code Mnemonic Instruction Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification

301 LD =L LOAD DOUBLE - - - 246
EQUAL

301 OR =L OR DOUBLE EQUAL - - - 246

302 AND =S AND SIGNED EQUAL | --- 246

302 LD =S LOAD SIGNED EQUAL | --- 246

302 OR =S OR SIGNED EQUAL 246

303 AND =SL AND DOUBLE 246
SIGNED EQUAL

303 LD =SL LOAD DOUBLE - - - 246
SIGNED EQUAL

303 OR =SL OR DOUBLE SIGNED | --- 246
EQUAL

305 AND <> AND NOT EQUAL - - - 246

305 LD <> LOAD NOT EQUAL - - - 246

305 OR <> OR NOT EQUAL - - - 246

306 AND <>L AND DOUBLE NOT - - - 246
EQUAL

306 LD <>L LOAD DOUBLE NOT 246
EQUAL

306 OR <>L OR DOUBLE NOT - - - 246
EQUAL

307 AND <>S AND SIGNED NOT 246
EQUAL

307 LD <>S LOAD SIGNED NOT 246
EQUAL

307 OR <>S OR SIGNED NOT 246
EQUAL

308 AND <>SL AND DOUBLE 246
SIGNED NOT EQUAL

308 LD <>SL LOAD DOUBLE - - - 246
SIGNED NOT EQUAL

308 OR <>SL OR DOUBLE SIGNED | --- 246
NOT EQUAL

310 AND < AND LESS THAN - - - 246

310 LD < LOAD LESS THAN - - - 246

310 OR < OR LESS THAN - -—- - 246

311 AND <L AND DOUBLE LESS - - - 246
THAN

311 LD <L LOAD DOUBLE LESS | --- 246
THAN

311 OR <L OR DOUBLE LESS - - - 246
THAN

312 AND <S AND SIGNED LESS 246
THAN

312 LD <S LOAD SIGNED LESS | --- 246
THAN

312 OR<S OR SIGNED LESS 246
THAN

313 AND <SL AND DOUBLE 246
SIGNED LESS THAN

313 LD <SL LOAD DOUBLE - - - 246
SIGNED LESS THAN

313 OR <SL OR DOUBLE SIGNED | --- 246
LESS THAN

315 AND <= AND LESS THAN OR | --- - - 246
EQUAL

315 LD <= LOAD LESS THAN OR | --- 246
EQUAL

315 OR <= OR LESS THAN OR 246
EQUAL

119

List of Instructions by Function Code Section 2-4
Function code Mnemonic Instruction Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification

316 AND <=L AND DOUBLE LESS --- --- --- 246
THAN OR EQUAL

316 LD <=L LOAD DOUBLE LESS | --- --- --- 246
THAN OR EQUAL

316 OR <=L OR DOUBLE LESS 246
THAN OR EQUAL

317 AND <=S AND SIGNED LESS --- --- --- 246
THAN OR EQUAL

317 LD <=S LOAD SIGNED LESS | --- 246
THAN OR EQUAL

317 OR <=S OR SIGNED LESS --- --- --- 246
THAN OR EQUAL

318 AND <=SL AND DOUBLE 246
SIGNED LESS THAN
OR EQUAL

318 LD <=SL LOAD DOUBLE --- --- --- 246
SIGNED LESS THAN
OR EQUAL

318 OR <=SL OR DOUBLE SIGNED | --- --- --- 246
LESS THAN OR
EQUAL

320 AND > AND GREATER THAN | --- 246

320 LD > LOAD GREATER 246
THAN

320 OR > OR GREATER THAN --- --- --- 246

321 AND >L AND DOUBLE --- --- --- 246
GREATER THAN

321 LD >L LOAD DOUBLE 246
GREATER THAN

321 OR >L OR DOUBLE --- --- --- 246
GREATER THAN

322 AND >S AND SIGNED 246
GREATER THAN

322 LD >S LOAD SIGNED --- --- --- 246
GREATER THAN

322 OR >S OR SIGNED 246
GREATER THAN

323 AND >SL AND DOUBLE 246
SIGNED GREATER
THAN

323 LD >SL LOAD DOUBLE 246
SIGNED GREATER
THAN

323 OR >SL OR DOUBLE SIGNED | --- --- --- 246
GREATER THAN

325 AND >= AND GREATER THAN | --- 246
OR EQUAL

325 LD >= LOAD GREATER --- --- --- 246
THAN OR EQUAL

325 OR >= OR GREATER THAN |- 246
OR EQUAL

326 AND >=L AND DOUBLE --- --- --- 246
GREATER THAN OR
EQUAL

326 LD >=L LOAD DOUBLE 246
GREATER THAN OR
EQUAL

326 OR >=L OR DOUBLE 246
GREATER THAN OR
EQUAL

327 AND >=S AND SIGNED --- --- --- 246
GREATER THAN OR
EQUAL

120

List of Instructions by Function Code Section 2-4
Function code Mnemonic Instruction Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification

327 LD >=S LOAD SIGNED --- --- --- 246
GREATER THAN OR
EQUAL

327 OR >=S OR SIGNED 246
GREATER THAN OR
EQUAL

328 AND >=SL AND DOUBLE 246
SIGNED GREATER
THAN OR EQUAL

328 LD >=SL LOAD DOUBLE --- --- --- 246
SIGNED GREATER
THAN OR EQUAL

328 OR >=SL OR DOUBLE SIGNED | --- --- --- 246
GREATER THAN OR
EQUAL

329 AND =F AND FLOATING 557
EQUAL

329 LD =F LOAD FLOATING --- --- --- 557
EQUAL

329 OR =F OR FLOATING EQUAL | --- 557

330 AND <>F AND FLOATING NOT | --- 557
EQUAL

330 LD <>F LOAD FLOATING NOT | --- 557
EQUAL

330 OR <>F OR FLOATING NOT |- 557
EQUAL

331 AND <F AND FLOATING LESS | --- 557
THAN

331 LD <F LOAD FLOATING 557
LESS THAN

331 OR <F OR FLOATING LESS 557
THAN

332 AND <=F AND FLOATING LESS | --- 557
THAN OR EQUAL

332 LD <=F LOAD FLOATING 557
LESS THAN OR
EQUAL

332 OR <=F OR FLOATING LESS --- --- --- 557
THAN OR EQUAL

333 AND >F AND FLOATING 557
GREATER THAN

333 LD >F LOAD FLOATING --- --- --- 557
GREATER THAN

333 OR >F OR FLOATING 557
GREATER THAN

334 AND >=F AND FLOATING 557
GREATER THAN OR
EQUAL

334 LD >=F LOAD FLOATING 557
GREATER THAN OR
EQUAL

334 OR >=F OR FLOATING 557
GREATER THAN OR
EQUAL

335 AND =D AND DOUBLE FLOAT- | --- --- --- 614
ING EQUAL

335 LD =D LOAD DOUBLE 614
FLOATING EQUAL

335 OR =D OR DOUBLE FLOAT- --- --- --- 614
ING EQUAL

336 AND <>D AND DOUBLE FLOAT- | --- 614
ING NOT EQUAL

336 LD <>D LOAD DOUBLE 614
FLOATING NOT
EQUAL

121

List of Instructions by Function Code Section 2-4
Function code Mnemonic Instruction Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification

336 OR <>D OR DOUBLE FLOAT- | --- 614
ING NOT EQUAL

337 AND <D AND DOUBLE FLOAT- | --- - - 614
ING LESS THAN

337 LD <D LOAD DOUBLE 614
FLOATING LESS
THAN

337 OR <D OR DOUBLE FLOAT- | --- 614
ING LESS THAN

338 AND <=D AND DOUBLE FLOAT- | --- - - 614
ING LESS THAN OR
EQUAL

338 LD <=D LOAD DOUBLE 614
FLOATING LESS
THAN OR EQUAL

338 OR <=D OR DOUBLE FLOAT- 614
ING LESS THAN OR
EQUAL

339 AND >D AND DOUBLE FLOAT- | --- - - 614
ING GREATER THAN

339 LD >D LOAD DOUBLE 614
FLOATING GREATER
THAN

339 OR>D OR DOUBLE FLOAT- |- 614
ING GREATER THAN

340 AND >=D AND DOUBLE FLOAT- | --- 614
ING GREATER THAN
OR EQUAL

340 LD >=D LOAD DOUBLE 614
FLOATING GREATER
THAN OR EQUAL

340 OR >=D OR DOUBLE FLOAT- |- 614
ING GREATER THAN
OR EQUAL

350 AND TST AND BIT TEST - --- - 163

350 LD TST LOAD BIT TEST - --- - 163

350 OR TST OR BIT TEST 163

351 AND TSTN AND BIT TEST NOT - --- - 163

351 LD TSTN LOAD BIT TEST NOT | --- --- - 163

351 OR TSTN OR BIT TEST NOT 163

400 + SIGNED BINARY ADD | @+ 373
WITHOUT CARRY

401 +L DOUBLE SIGNED @+L --- - 375
BINARY ADD
WITHOUT CARRY

402 +C SIGNED BINARY ADD | @+C 377
WITH CARRY

403 +CL DOUBLE SIGNED @+CL 379
BINARY ADD WITH
CARRY

404 +B BCD ADD WITHOUT |@+B 384
CARRY

405 +BL DOUBLE BCD ADD @+BL --- - 382
WITHOUT CARRY

406 +BC BCD ADD WITH @+BC 384
CARRY

407 +BCL DOUBLE BCD ADD @+BCL 386
WITH CARRY

410 - SIGNED BINARY @- 387
SUBTRACT
WITHOUT CARRY

411 -L DOUBLE SIGNED @-L 389
BINARY SUBTRACT
WITHOUT CARRY

122

List of Instructions by Function Code Section 2-4
Function code Mnemonic Instruction Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification

412 -C SIGNED BINARY @-C 393
SUBTRACT WITH
CARRY

413 -CL DOUBLE SIGNED @-CL 395
BINARY SUBTRACT
WITH CARRY

414 -B BCD SUBTRACT @-B 398
WITHOUT CARRY

415 -BL DOUBLE BCD @-BL 399
SUBTRACT
WITHOUT CARRY

416 -BC BCD SUBTRACT @-BC 403
WITH CARRY

417 -BCL DOUBLE BCD @-BCL --- --- 404
SUBTRACT WITH
CARRY

420 X SIGNED BINARY @ 406
MULTIPLY

421 XL DOUBLE SIGNED @xL --- - 408
BINARY MULTIPLY

422 xU UNSIGNED BINARY @xU 410
MULTIPLY

423 UL DOUBLE UNSIGNED @xUL --- --- 412
BINARY MULTIPLY

424 *B BCD MULTIPLY @%B 413

425 *BL DOUBLE BCD @*BL 415
MULTIPLY

430 / SIGNED BINARY @/ 417
DIVIDE

431 /L DOUBLE SIGNED @/L --- - 419
BINARY DIVIDE

432 /U UNSIGNED BINARY @/VU 421
DIVIDE

433 /UL DOUBLE UNSIGNED @/UL --- --- 423
BINARY DIVIDE

434 /B BCD DIVIDE @/B 425

435 /BL DOUBLE BCD DIVIDE | @/BL 427

448 FSTR FLOATING POINT TO | @FSTR 561
ASCII

449 FVAL ASCII TO FLOATING @FVAL --- - 566
POINT

450 FIX FLOATING TO 16-BIT | @FIX 520

451 FIXL FLOATING TO 32-BIT | @FIXL 522

452 FLT 16-BIT TO FLOATING | @FLT 523

453 FLTL 32-BIT TO FLOATING | @FLTL 525

454 +F FLOATING-POINT @+F 527
ADD

455 -F FLOATING-POINT @-F 529
SUBTRACT

456 *F FLOATING-POINT @xF 531
MULTIPLY

457 IF FLOATING-POINT @IF 533
DIVIDE

458 RAD DEGREES TO @RAD 554
RADIANS

459 DEG RADIANS-TO @DEG --- --- 536
DEGREES

460 SIN SINE @SIN 538

461 cos COSINE @cos 540

462 TAN TANGENT @TAN 542

463 ASIN ARC SINE @ASIN 544

123

List of Instructions by Function Code Section 2-4
Function code Mnemonic Instruction Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification
464 ACOS ARC COSINE @ACOS 546
465 ATAN ARC TANGENT @ATAN --- --- 548
466 SQRT SQUARE ROOT @SQRT 550
467 EXP EXPONENT @EXP --- --- 552
468 LOG LOGARITHM @LOG 554
470 BINS SIGNED BCD-TO- @BINS --- --- 462
BINARY
471 BCDS SIGNED BINARY-TO- | @BCDS 468
BCD
472 BISL DOUBLE SIGNED @BISL --- --- 465
BCD-TO-BINARY
473 BDSL DOUBLE SIGNED @BDSL 470
BINARY-TO-BCD
486 SCL2 SCALING 2 @SCL2 708
487 SCL3 SCALING 3 @SCL3 712
490 CMND DELIVER COMMAND | @CMND --- --- 890
498 MOVL DOUBLE MOVE @MOVL --- --- 282
499 MVNL DOUBLE MOVE NOT @MVNL --- --- 284
502 BCMP2 EXPANDED BLOCK @BCMP2 270
COMPARE
510 CJP CONDITIONAL JUMP | --- 195
511 CJPN CONDITIONAL JUMP | --- --- --- 195
512 FOR FOR-NEXT LOOPS --- --- --- 201
513 NEXT FOR-NEXT LOOPS - --- --- 201
514 BREAK BREAK LOOP --- --- --- 204
515 JMPO MULTIPLE JUMP --- --- --- 199
516 JMEO MULTIPLE JUMP END | --- --- --- 199
520 NOT NOT 161
521 UP CONDITION ON - 162
522 DOWN CONDITION OFF - 162
530 SETA MULTIPLE BIT SET @SETA 177
531 RSTA MULTIPLE BIT RESET | @RSTA 177
532 SETB SINGLE BIT SET @SETB ISETB 180
533 RSTB SINGLE BIT RESET @RSTB --- IRSTB 180
534 ouTB SINGLE BIT OUTPUT |@OUTB --- I0UTB 184
540 TMHH ONE-MS TIMER --- --- --- 216
542 TIML LONG TIMER - --- --- 222
543 MTIM MULTI-OUTPUT --- --- --- 226
TIMER
545 CNR RESET TIMER/ @CNR 238
COUNTER
546 CNTX COUNTER - --- --- 231
547 CNRX RESET TIMER/ --- --- --- 238
COUNTER
548 CNTRX REVERSIBLE 234
COUNTER
550 TIMX TIMER --- --- --- 207
551 TIMHX HIGH-SPEED TIMER - --- --- 211
552 TMHHX ONE-MS TIMER --- --- --- 216
553 TIMLX LONG TIMER - --- --- 222
554 MTIMX MULTI-OUTPUT 226
TIMER
555 TTIMX ACCUMULATIVE 219
TIMER
560 MOVR MOVE TO REGISTER | @MOVR --- --- 304

124

List of Instructions by Function Code Section 2-4
Function code Mnemonic Instruction Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification

561 MOVRW MOVE TIMER/ @MOVRW --- --- 306
COUNTER PV TO
REGISTER

562 XCGL DOUBLE DATA @XCGL 298
EXCHANGE

570 ASLL DOUBLE SHIFT LEFT | @ASLL - - 319

571 ASRL DOUBLE SHIFT @ASRL - - 322
RIGHT

572 ROLL DOUBLE ROTATE @ROLL 326
LEFT

573 RORL DOUBLE ROTATE @RORL - - 329
RIGHT

574 RLNC ROTATE LEFT @RLNC 331
WITHOUT CARRY

575 RRNC ROTATE RIGHT @RRNC 334
WITHOUT CARRY

576 RLNL DOUBLE ROTATE @RLNL - - 332
LEFT WITHOUT
CARRY

577 RRNL DOUBLE ROTATE @RRNL - --- 336
RIGHT WITHOUT
CARRY

578 NSFL SHIFT N-BIT DATA @NSFL 341
LEFT

579 NSFR SHIFT N-BIT DATA @NSFR - - 343
RIGHT

580 NASL SHIFT N-BITS LEFT @NASL 345

581 NASR SHIFT N-BITS RIGHT | @NASR 350

582 NSLL DOUBLE SHIFT @NSLL 348
N-BITS LEFT

583 NSRL DOUBLE SHIFT @NSRL --- --- 353
N-BITS RIGHT

590 ++ INCREMENT BINARY | @++ 356

591 ++L DOUBLE @++L 358
INCREMENT BINARY

592 - — DECREMENT BINARY | @—— - --- 360

593 —-L DOUBLE @--L 362
DECREMENT BINARY

594 ++B INCREMENT BCD @++B 364

595 ++BL DOUBLE @++BL 366
INCREMENT BCD

596 --B DECREMENT BCD @--B --- --- 368

597 ——-BL DOUBLE DECRE- @--BL - - 370
MENT BCD

600 SIGN 16-BIT TO 32-BIT @SIGN 439
SIGNED BINARY

610 ANDL DOUBLE LOGICAL @ANDL - - 476
AND

611 ORWL DOUBLE LOGICAL OR | @ORWL 479

612 XORL DOUBLE EXCLUSIVE | @XORL 483
OR

613 XNRL DOUBLE EXCLUSIVE | @XNRL - - 486
NOR

614 COML DOUBLE @COML 490
COMPLEMENT

620 ROTB BINARY ROOT @ROTB 491

630 SSET SET STACK @SSET 623

631 DIM DIMENSION RECORD | @DIM --- --- 635
TABLE

632 PUSH PUSH ONTO STACK @PUSH 626

633 FIFO FIRST IN FIRST OUT | @FIFO 629

125

List of Instructions by Function Code Section 2-4
Function code Mnemonic Instruction Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification

634 LIFO LAST IN FIRSTOUT | @LIFO 632

635 SETR SET RECORD LOCA- | @SETR 638
TION

636 GETR GET RECORD @GETR 640
NUMBER

637 SWAP SWAP BYTES @SWAP 644

638 SNUM STACK SIZE READ @SNUM - --- 659

639 SREAD STACK DATAREAD | @SREAD 662

640 SWRIT STACK DATAWRITE | @SWRIT 665

641 SINS STACK DATA INSERT | @SINS 668

642 SDEL STACK DATA DELETE | @SDEL 671

650 LENS$ STRING LENGTH @LENS$ 1026

652 LEFT$ GET STRING LEFT | @LEFT$ 1018

653 RGHT$ GET STRING RIGHT | @RGHT$ 1020

654 MID$ GET STRING MIDDLE | @MID$ 1022

656 +$ CONCATENATE @+$ 1015
STRING

657 INS$ INS$ @INS$ 1037

658 DEL$ DELETE STRING @DEL$ --- --- 1031

660 FIND$ FIND IN STRING @FIND$ - --- 1024

661 RPLC$ REPLACE IN STRING | @RPLC$ - --- 1028

664 MOV$ MOV STRING @MOV$ 1013

665 XCHG$ EXCHANGE STRING @XCHG$ - 1033

666 CLR$ CLEAR STRING @CLR$ 1035

670 AND =% AND STRING EQUALS | --- 1040

670 LD =% LOAD STRING 1040
EQUALS

670 OR =$ OR STRING EQUALS | --- 1040

671 AND <>$ AND STRING NOT -—- --- --- 1040
EQUAL

671 LD <>$ LOAD STRING NOT 1040
EQUAL

671 OR <>$ OR STRING NOT -—- --- --- 1040
EQUAL

672 AND <$ AND STRING LESS 1040
THAN

672 LD <% LOAD STRING LESS 1040
THAN

672 OR <$ OR STRING LESS --- --- --- 1040
THAN

673 AND <=$ AND STRING LESS 1040
THAN OR EQUALS

673 LD <=% LOAD STRING LESS 1040
THAN OR EQUAL

673 OR <=$% OR STRING LESS 1040
THAN OR EQUALS

674 AND >$ AND STRING 1040
GREATER THAN

674 LD >$ LOAD STRING 1040
GREATER THAN

674 OR >$ OR STRING GREATER | --- --- --- 1040
THAN

675 AND >=$ AND STRING 1040
GREATER THAN OR
EQUALS

675 LD >=% LOAD STRING 1040
GREATER THAN OR
EQUALS

126

List of Instructions by Function Code Section 2-4
Function code Mnemonic Instruction Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification

675 OR >=$ ORSTRING GREATER | --- 1040
THAN OR EQUALS

680 LMT LIMIT CONTROL @LMT --- --- 696

681 BAND DEAD BAND @BAND 698
CONTROL

682 ZONE DEAD ZONE @ZONE 701
CONTROL

690 MSKS SET INTERRUPT @MSKS 744
MASK

691 CLI CLEAR INTERRUPT | @CLI 755

692 MSKR READ INTERRUPT | @MSKR 750
MASK

693 DI DISABLE @Dl --- --- 760
INTERRUPTS

694 El ENABLE 762
INTERRUPTS

700 FREAD READ DATA FILE @FREAD --- --- 899

701 FWRIT WRITE DATA FILE @FWRIT --- --- 906

730 CADD CALENDAR ADD @CADD --- --- 916

731 CSuB CALENDAR @CSuUB --- --- 920
SUBTRACT

735 DATE CLOCK ADJUSTMENT | @DATE 928

750 GSBS GLOBAL SUBROU- @GSBS 732
TINE CALL

751 GSBN GLOBAL SUBROU- --- --- --- 740
TINE ENTRY

752 GRET GLOBAL SUBROU- |- 743
TINE RETURN

801 BEND BLOCK PROGRAM --- --- --- 983
END

802 IF CONDITIONAL 988
BRANCHING BLOCK

802 IF CONDITIONAL 988
BRANCHING BLOCK

802 IF NOT CONDITIONAL --- --- --- 988
BRANCHING BLOCK
NOT

803 ELSE ELSE 988

804 IEND IF END --- --- --- 988

805 WAIT ONE CYCLE AND 994
WAIT

805 WAIT ONE CYCLE AND 994
WAIT

805 WAIT NOT ONE CYCLE AND 994
WAIT NOT

806 EXIT CONDITIONALBLOCK | --- 991
EXIT

806 EXIT CONDITIONALBLOCK | --- 991
EXIT

806 EXIT NOT CONDITIONALBLOCK | --- --- --- 991
EXIT NOT

809 LOOP LOOP 1007

810 LEND LOOP END - 1007

810 LEND LOOP END - --- --- 1007

810 LEND NOT LOOP END NOT --- - --- 1007

811 BPPS BLOCK PROGRAM --- --- --- 985
PAUSE

812 BPRS BLOCK PROGRAM 985
RESTART

813 TIMW TIMER WAIT --- --- --- 998

127

List of Instructions by Function Code Section 2-4
Function code Mnemonic Instruction Upward Downward Immediate Page
Differentiation Differentiation Refreshing
Specification

814 CNTW COUNTER WAIT - - - 1001

815 TMHW HIGH-SPEED TIMER -—- - - 1004
WAIT

816 TIMWX TIMER WAIT 998

817 TMHWX HIGH-SPEED TIMER | --- 1004
WAIT

818 CNTWX COUNTER WAIT - - - 1001

820 TKON TASK ON @TKON - - 1045

821 TKOF TASK OFF @TKOF -—- - 1049

840 PWR EXPONENTIAL @PWR - --- 556
POWER

841 FIXD DOUBLE FLOATING | @FIXD 577
TO 16-BIT BINARY

842 FIXLD DOUBLE FLOATING @FIXLD -—- - 578
TO 32-BIT BINARY

843 DBL 16-BIT BINARY TO @DBL 580
DOUBLE FLOATING

844 DBLL 32-BIT BINARY TO @DBLL 581
DOUBLE FLOATING

845 +D DOUBLE FLOATING- @+D - --- 583
POINT ADD

846 -D DOUBLE FLOATING- @-D 585
POINT SUBTRACT

847 *xD DOUBLE FLOATING- @xD -—- - 587
POINT MULTIPLY

848 /D DOUBLE FLOATING- @/D 589
POINT DIVIDE

849 RADD DOUBLE DEGREES @RADD - - 591
TO RADIANS

850 DEGD DOUBLE RADIANS TO | @RADD - --- 593
DEGREES

851 SIND DOUBLE SINE @SIND --- 594

852 COSD DOUBLE COSINE @COSD --- 596

853 TAND DOUBLE TANGENT @TAND - - 598

854 ASIND DOUBLE ARC SINE @ASIND --- --- 600

855 ACOSD DOUBLE ARC @ACOSD 602
COSINE

856 ATAND DOUBLE ARC TAN- | @ATAND 604
GENT

857 SQRTD DOUBLE SQUARE @SQRTD 606
ROOT

858 EXPD DOUBLE EXPONENT | @EXPD -—- - 608

859 LOGD DOUBLE LOGARITHM | @LOGD 610

860 PWRD DOUBLE EXPONEN- @PWRD 612
TIAL POWER

880 INI MODE CONTROL @INI - - 769

881 PRV HIGH-SPEED @PRV - - 773
COUNTER PV READ

882 CTBL COMPARISON TABLE | @CTBL 777
LOAD

885 SPED SPEED OUTPUT @SPED - - 781

886 PULS SET PULSES @PULS 786

887 PLS2 PULSE OUTPUT @PLS2 --- --- 789

888 ACC ACCELERATION CON- | @ACC 795
TROL

889 ORG ORIGIN SEARCH @ORG --- --- 802

891 PWN PULSE WITH VARI- @PWN 805
ABLE DUTY FACTOR

128

SECTION 3
| nstructions

This section describes each of the instructions that can be used in programming CS/CJ-series PLCs. Instructions are
described in order of function, as classified in Section 2 Summary of Instructions.

3-1 Notation and Layout of Instruction Descriptionst 137
3-2 Instruction Upgradesand New INStrUCLIONSo oot e e e 140
3-2-1 Upgradesfor Version-1 CS-seriesCPU UNItSot 140
3-2-2 Upgradesfor CS1-H/CIL-H CPU UNItS. oo i 140
3-3 Sequence INpUL INSLIUCLIONS oot e e e et e e 142
3-3-1 LOAD: LD . 142
3-3-2 LOAD NOT: LD NOT ..ot e e e e e 144
3-3-3 AND: AN D . .o 146
3-3-4 AND NOT: AND NOT . . .ottt e e e e 148
335 ORI OR. .t 150
3-3-6 ORNOT: ORINOT . ..ottt e e e 151
3-3-7 ANDLOAD: AND LD. . ..t e e 153
3-3-8 ORLOAD: ORLD. .. 155
3-3-9 Differentiated and Immediate Refreshing Instructions. 157
3-3-10 Operation Timing for /O Instructions et 159
3311 TR BIES . .ottt 159
3-3-12 NOT:NOT(520) . . oo vo et ettt e e e e e e e e e e e e e e 161
3-3-13 CONDITION ON/OFF: UP(521) and DOWN(522), 162
3-3-14 BITTEST: TST(350) and TSTN(35L) oo vt 163
3-4 Sequence OULPUL INSEIUCHIONS oot e e e 166
3-4-1 OUTPUT: OUT ottt e e e e e e e 166
3-4-2 OUTPUT NOT: OUT NOT ...ttt e e et 167
3-4-3 KEEP: KEEP(OLL)ottt e e e e e e 168
3-4-4 DIFFERENTIATE UP/DOWN: DIFU(013) and DIFD(014).o o e 173
345 SETandRESET: SETandRSET....... ... 175
3-4-6 MULTIPLE BIT SET/RESET: SETA(530)/RSTA(531)o 177
3-4-7 SINGLEBIT SET/RESET: SETB(532)/RSTB(533)o 180
3-4-8 SINGLEBIT OUTPUT: OUTB(534)ottt e e 184
3-5 Sequence Control INSITUCLIONSottt e e 186
3-5-1 END:END(OOL) . . .ottt ettt e e et e e 186
3-5-2 NO OPERATION: NOP(000). . . . sttt et e e et et e e e e e e 187
3-5-3 INTERLOCK and INTERLOCK CLEAR: IL(002) and ILC(003) 187
354 JUMPand JUMPEND: IMP(004) and IME(OO5).o vt 191
3-5-5 CONDITIONAL JUMP: CIP(510)/CIPN(BLL)ottt 195
3-5-6 MULTIPLE JUMP and JUMP END: IMPO(515) and IMEO(516) 199
3-5-7 FOR-NEXT LOOPS: FOR(512)/NEXT(513) . .. oottt 201
3-5-8 BREAK LOOP: BREAK(514) . . .ottt e e et 204

129

130

3-6 Timer and Counter INStrUCLIONS.ot v e e e e e e

3-7

36-1 TIMER: TIM/TIMX(50)coviiii i
3-6-2 HIGH-SPEED TIMER: TIMH(O15)/TIMHX(551)
3-6-3 ONE-MSTIMER: TMHH(540)/TMHHX(552).
3-6-4 ACCUMULATIVETIMER: TTIM(087)/TTIMX(555)
365 LONGTIMER: TIML(542)/TIMLX(553). . . .o\ e ettt
3-6-6 MULTI-OUTPUT TIMER: MTIM(543)/MTIMX(554)
3-6-7 COUNTER: CNT/CNTX(546). . ..o oieeeeeeeean
3-6-8 REVERSIBLE COUNTER: CNTR(012)/CNTRX(548)
3-6-9 RESET TIMER/COUNTER: CNR(545)/CNRX(547).
3-6-10 Example Timer and Counter Applications.
3-6-11 Indirect Addressing of Timer/Counter Numbers
Comparison INStructions.o
3-7-1 Input Comparison Instructions (300t0328).
3-7-2 COMPARE:CMP(020) . ..ottt it e
3-7-3 DOUBLECOMPARE: CMPL(060)ccovvvvunnn..
3-7-4 SIGNED BINARY COMPARE: CPS(114)c....
3-7-5 DOUBLE SIGNED BINARY COMPARE: CPSL(115)
3-7-6 MULTIPLE COMPARE: MCMP(019)
3-7-7 TABLECOMPARE: TCMP(085)cvvvieniennnnn.
3-7-8 BLOCK COMPARE: BCMP(068)...........cvvviieenn...
3-7-9 EXPANDED BLOCK COMPARE: BCMP2(502) (CJIM Only)
3-7-10 AREA RANGE COMPARE: ZCP(088)...........c.ovuunn..
3-7-11 DOUBLE AREA RANGE COMPARE: ZCPL(116)..........
Data Movement Instructions.t
3-81 MOVE MOV(02L). ...t
3-82 MOVENOT:-MVN(022)coiiiiiii i
3-8-3 DOUBLEMOVE:MOVL(498).
3-8-4 DOUBLEMOVENOT:MVNL(499)ccovvivin...
3-85 MOVEBIT:MOVB(082).oiiiiiii it
3-86 MOVEDIGIT-MOVD(083)coviiiieiiiiinnann.
3-8-7 MULTIPLE BIT TRANSFER: XFRB(062).
3-8-8 BLOCK TRANSFER: XFER(O70)covvvnnn....
3-89 BLOCK SET:BSET(071) ... viiiiiii e
3-8-10 DATA EXCHANGE: XCHG(073)o i v e e e
3-8-11 DOUBLE DATA EXCHANGE: XCGL(562)
3-8-12 SINGLE WORD DISTRIBUTE: DIST(080)................
3-8-13 DATA COLLECT: COLL(08L)vviieeiiiiaaaaann
3-8-14 MOVETOREGISTER: MOVR(60)cvveaaan...
3-8-15 MOVE TIMER/COUNTER PV TO REGISTER: MOVRW(561)

205
207
211
216
219
222
226
231
234
238
240
243
246
246
252
254
257
260
263
265
268
270
274
277
279
279
281
282
284
285
287
290
292
295
297
298
300
302
304
306

3-9

3-10

Data Shift INSITUCLIONSo e e e e e e e e
391 SHIFT REGISTER: SFT(010)o teee e ettt e e e e e
3-9-2 REVERSIBLE SHIFT REGISTER: SFTR(084)ot ie e
3-9-3 ASYNCHRONOUS SHIFT REGISTER: ASFT(017). . oo v o
394 WORD SHIFT: WSFT(016). vee e e et et e
3-9-5 ARITHMETICSHIFT LEFT: ASL(025). . ..o i
3-9-6 DOUBLESHIFT LEFT: ASLL(570). . .ottt
3-9-7 ARITHMETICSHIFT RIGHT: ASR(026)cvvi it
3-9-8 DOUBLE SHIFT RIGHT: ASRL(571) ..ottt e
399 ROTATELEFT: ROL(027). . . .ttt e e e e e e e
3-9-10 DOUBLE ROTATELEFT: ROLL(572).ttt
3-9-11 ROTATERIGHT: ROR(028) . . .\ vttt et e e e et
3-9-12 DOUBLE ROTATERIGHT: RORL(573) ...\ ivi e e
3-9-13 ROTATELEFT WITHOUT CARRY: RLNC(574)t
3-9-14 DOUBLE ROTATE LEFT WITHOUT CARRY: RLNL(576).
3-9-15 ROTATE RIGHT WITHOUT CARRY: RRNC(575). oo i i eie e
3-9-16 DOUBLE ROTATE RIGHT WITHOUT CARRY: RRNL(577)
3-9-17 ONEDIGIT SHIFT LEFT: SLD(074) . ..ottt et
3-9-18 ONEDIGIT SHIFT RIGHT: SRD(075). « ot v voe e et e e i e ee e
3-9-19 SHIFT N-BITDATA LEFT: NSFL(578) . . .o vt
3-9-20 SHIFT N-BIT DATA RIGHT: NSFR(579). . . o« oo ee e e
3-9-21 SHIFT N-BITSLEFT: NASL(580) . ..o vitii i e e e e
3-9-22 DOUBLE SHIFT N-BITSLEFT: NSLL(582).cvviiii i iieeenn
3-9-23 SHIFT N-BITSRIGHT: NASR(581)o oottt e e e
3-9-24 DOUBLE SHIFT N-BITSRIGHT: NSRL(583)oviiii e eenn
Increment/Decrement INSITUCLIONSottt e e e e ettt et
3-10-1 INCREMENT BINARY: ++(590)ottt e
3-10-2 DOUBLEINCREMENT BINARY: ++L(591)t n
3-10-3 DECREMENT BINARY: ——(592). . . . ottt
3-10-4 DOUBLE DECREMENT BINARY: ——L(593). ...« v i
3-10-5 INCREMENT BCD: ++B(594)ottt
3-10-6 DOUBLEINCREMENT BCD: ++BL(595) vviiii i i e
3-10-7 DECREMENT BCD: —=—B(596) ...\ \ ittt et
3-10-8 DOUBLE DECREMENT BCD: ——BL(597). . ..o vt

308
309
310
313
316
317
319
321
322
324
326
327
329
331
332
334
336
338
339
341

345
348
350
353
356
356
358
360
362
364
366
368
370

131

132

311

3-12

Symbol Math Instructions. oL

3-11-1 SIGNED BINARY ADD WITHOUT CARRY: +(400) i
3-11-2 DOUBLE SIGNED BINARY ADD WITHOUT CARRY: +L(401)

3-11-3 SIGNED BINARY ADD WITH CARRY: +C(402). .

3-11-4 DOUBLE SIGNED BINARY ADD WITH CARRY: +CL(403)

3-11-5 BCD ADD WITHOUT CARRY: +B(404).........

3-11-6 DOUBLEBCD ADD WITHOUT CARRY: +BL(405)oi it

3-11-7 BCD ADD WITH CARRY: +BC(406)
3-11-8 DOUBLE BCD ADD WITH CARRY: +BCL (407). .

3-11-9 SIGNED BINARY SUBTRACT WITHOUT CARRY: H(410)ccvvvnn ..
3-11-10 DOUBLE SIGNED BINARY SUBTRACT WITHOUT CARRY: —L(411)
3-11-11 SIGNED BINARY SUBTRACT WITH CARRY: —C(412).. ...
3-11-12 DOUBLE SIGNED BINARY WITH CARRY: —CL(413).t

3-11-13 BCD SUBTRACT WITHOUT CARRY: —B(414). ..

3-11-14 DOUBLE BCD SUBTRACT WITHOUT CARRY: -BL(415)

3-11-15 BCD SUBTRACT WITH CARRY: -BC(416).

3-11-16 DOUBLE BCD SUBTRACT WITH CARRY: -BCL(417).t

3-11-17 SIGNED BINARY MULTIPLY: *(420)...........
3-11-18 DOUBLE SIGNED BINARY MULTIPLY: *L(421) .
3-11-19 UNSIGNED BINARY MULTIPLY: *U(422)

3-11-20 DOUBLE UNSIGNED BINARY MULTIPLY: *UL(423).o oo

3-11-21 BCD MULTIPLY: *B(424).ot
3-11-22 DOUBLE BCD MULTIPLY: *BL(425)...........
3-11-23 SIGNED BINARY DIVIDE: /(430)
3-11-24 DOUBLE SIGNED BINARY DIVIDE: /L(431)....
3-11-25 UNSIGNED BINARY DIVIDE: /U(432)
3-11-26 DOUBLE UNSIGNED BINARY DIVIDE: /UL(433)
3-11-27 BCDDIVIDE: /B(434).o oo
3-11-28 DOUBLE BCD DIVIDE: /BL(435)..............
Conversion INStructions.o vt
3-12-1 BCD-TO-BINARY:BIN(023)
3-12-2 DOUBLE BCD-TO-DOUBLE BINARY: BINL(058)
3-12-3 BINARY-TO-BCD: BCD(024)..................

3-12-4 DOUBLE BINARY-TO-DOUBLEBCD: BCDL(059)covviiieiiineenn.

3-12-5 2'SCOMPLEMENT: NEG(160)
3-12-6 DOUBLE 2'S COMPLEMENT: NEGL(161)
3-12-7 16-BIT TO 32-BIT SIGNED BINARY: SIGN(600) .
3-12-8 DATA DECODER: MLPX(076)
3-12-9 DATA ENCODER: DMPX(077) ..o ..
3-12-10 ASCII CONVERT: ASC(086)o ..
3-12-11 ASCII TOHEX: HEX(162)o oo
3-12-12 COLUMN TO LINE: LINE(063).
3-12-13 LINE TO COLUMN: COLM(064)
3-12-14 SIGNED BCD-TO-BINARY: BINS(470)
3-12-15 DOUBLE SIGNED BCD-TO-BINARY: BISL(472)..
3-12-16 SIGNED BINARY-TO-BCD: BCDS(471).
3-12-17 DOUBLE SIGNED BINARY-TO-BCD: BDSL (473)

372
373
375
377
379
381
382
384
386
387
389
393
395
398
399
403
404
406
408
410
412
413
415
417
419
421
423
425
427
428
429
430
432
433
435
437
439
440
a45
449
453
457
459
462
465
468
470

3-13

3-14

3-15

LOgiC INStIUCHIONS . . . oot e e e
3-13-1 LOGICAL AND: ANDW(034) .. oottt
3-13-2 DOUBLE LOGICAL AND: ANDL(B10) . ..ottt e e
3-13-3 LOGICAL OR: ORW(035) . . vttt ettt et e e i i
3-13-4 DOUBLELOGICAL OR: ORWL(B11). ...ttt et e
3-13-5 EXCLUSIVE OR: XORW(036). . .+« e ottt et e e it
3-13-6 DOUBLE EXCLUSIVEOR: XORL(612).\ttt
3-13-7 EXCLUSIVENOR: XNRW(037) . .ottt et
3-13-8 DOUBLE EXCLUSIVENOR: XNRL(B13) v it
3-13-9 COMPLEMENT: COM(029)ttt ettt e e e e e e
3-13-10 DOUBLE COMPLEMENT: COML(B14)o\ttt
Special Math INSITUCHIONS oo e e
3-14-1 BINARY ROOT: ROTB(620). ottt ettt e e et et
3-14-2 BCD SQUARE ROOT: ROOT(072). . ..ottt et e e e e e e e
3-14-3 ARITHMETIC PROCESS: APR(069). oottt et
3-14-4 FLOATING POINT DIVIDE: FDIV(079) . . . oo et e
3-14-5 BIT COUNTER: BCNT(067). . . .o vttt e e et et e e e e e i
Floating-point Math INStrUCtioNSo e
3-151 FLOATING TO 16-BIT: FIX(450). . .o ettt e e
3-152 FLOATING TO32-BIT: FIXL(451) ...ttt
3-15-3 16-BIT TOFLOATING: FLT(452) . ..ottt
3-154 32-BIT TOFLOATING: FLTL(453) . . .ot
3-15-5 FLOATING-POINT ADD: +F(454) . . . oottt e
3-156 FLOATING-POINT SUBTRACT: —F(455)o e et
3-15-7 FLOATING-POINT MULTIPLY: XF(456)o
3-15-8 FLOATING-POINT DIVIDE: [F(457) . . o oo oot
3-159 DEGREESTO RADIANS: RAD(458) . ..o ittt
3-15-10 RADIANSTO DEGREES: DEG(459) vttt it
3-15-11 SINE: SIN(460) . . oo ettt e e e e e e e
3-15-12 COSINE: COS(4B1L) . . .« v vt e et ettt e e e e e e e e
3-15-13 TANGENT: TAN(462)ottt et e e e e e e e
3-15-14 ARC SINE: ASIN(4B3) . . .o it ettt e e e
3-15-15 ARC COSINE: ACOS(464) . . . o o ettt ettt e et e e e e
3-15-16 ARC TANGENT: ATAN(465)ottt
3-15-17 SQUARE ROOT: SQRT(466)ottt i ettt
3-15-18 EXPONENT: EXP(467) ottt e et et e e e e e e
3-15-19 LOGARITHM: LOG(468) . . . -+« ettt et e ettt
3-15-20 EXPONENTIAL POWER: PWR(840) ittt
3-15-21 Single-precision Floating-point Comparison Instructions
3-15-22 FLOATING-POINT TOASCI: FSTR(448)o
3-15-23 ASCII TO FLOATING-POINT: FVAL(449)ot

474
474
476
477
479
481
483
485
486
488
490
491
491
493
497
509
513
515
520
522
523
525
527
529
530
533
535
536
538
540
542

546

550
552
554
556
557
561
566

133

134

3-16 Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJ1M, or CS1D Only)........
DOUBLE FLOATING TO 16-BIT: FIXD(841).ot o e e ie e
DOUBLE FLOATING TO32-BIT: FIXLD(842)coii i
16-BIT TO DOUBLE FLOATING: DBL(843) .. .o o oot e e e i i
32-BIT TODOUBLE FLOATING: DBLL(844) oot

317

3-18

3-16-1
3-16-2
3-16-3
3-16-4
3-16-5
3-16-6
3-16-7
3-16-8
3-16-9

3-17-1
3-17-2
3-17-3
3-17-4
3-17-5
3-17-6
3-17-7
3-17-8
3-17-9

3-18-1
3-18-2
3-18-3
3-18-4
3-18-5
3-18-6
3-18-7
3-18-8
3-18-9

DOUBLE FLOATING-
DOUBLE FLOATING-
DOUBLE FLOATING-
DOUBLE FLOATING-

POINT ADD: +D(845) oo oo
POINT SUBTRACT: =D(846) . . .+« oo eeeeeaee
POINT MULTIPLY: xD(847) (CS1-H/CJ1-H/CJIM Only) ..
POINT DIVIDE: /D(848)o eeeeeaee

DOUBLE DEGREESTO RADIANS: RADD(849)covi i
3-16-10 DOUBLE RADIANSTO DEGREES: DEGD(850) vvvveieiieeeeeeeen e
3-16-11 DOUBLE SINE: SIND(851)ottt et e et e et
3-16-12 DOUBLE COSINE: COSD(852) . .+ ..o ettt et eeee et e e et ee e
3-16-13 DOUBLE TANGENT: TAND(853) . . . oo i v ii e e e et e
3-16-14 DOUBLE ARC SINE: ASIND(854) .. .ottt et et
3-16-15 DOUBLE ARC COSINE: ACOSD(855) . . -+« v vt oeee ettt et eiie e
3-16-16 DOUBLE ARC TANGENT: ATAND(856)ot oot et e e i e
3-16-17 DOUBLE SQUARE ROOT: SQRTD(857) .+ .\t v i ii it et e e e
3-16-18 DOUBLE EXPONENT: EXPD(858) . . . ot oo v et ee et e et ee e
3-16-19 DOUBLE LOGARITHM: LOGD(859)ot i e et e e
3-16-20 DOUBLE EXPONENTIAL POWER: PWRD(860)vvtviiieiininnnnnn
3-16-21 Double-precision Floating-point Input Instructions.,
Table Data Processing INSIrUCtiONS.o e et e e e
SET STACK: SSET(630) . - oottt ettt et et e e e e

PUSH ONTO STACK:

FIRST IN FIRST OUT:

LAST IN FIRST OUT:

PUSH(32) « + + + v v vt eeeeeeee
FIFO(B33) - e et ettt
LIFO(B34) . ..o e e

DIMENSION RECORD TABLE: DIM(631). . ..ot oi e e e e i
SET RECORD LOCATION: SETR(635) . ..o\ viiie it i i eieeeee e
GET RECORD NUMBER: GETR(636)t v vtoi v et ie i i eieeanens
DATA SEARCH: SRCH(A8L)ttt e et et
SWAP BYTES: SWAP(B37). . . o v ittt et
3-17-10 FIND MAXIMUM: MAX(182) . . .ottt ettt e et et
3-17-11 FIND MINIMUM: MIN(183) ...ttt e e e
3-17-12 SUM: SUM(184)
3-17-13 FRAME CHECKSUM: FCS(180) . .+ . vt o vt ettt e e e e it ie i e
3-17-14 STACK SIZE READ: SNUM(B38) . ..o\ i vt ei it et i e e
3-17-15 STACK DATA READ: SREAD(639). . .« vt it e e e e it e i
3-17-16 STACK DATA OVERWRITE: SWRIT(640)ottt ie e
3-17-17 STACK DATA INSERT: SINS(641).ottt et
3-17-18 STACK DATA DELETE: SDEL(642) oot i e e i
Data Control Instructions
PID CONTROL: PID(190) . .« . vttt et et e et e e et et et
PID CONTROL WITH AUTOTUNING: PIDAT(192)coveiii i
LIMIT CONTROL: LMT(680) . ..ottt ettt e i et ie i
DEAD BAND CONTROL: BAND(68L)ot oottt ee et i e
DEAD ZONE CONTROL: ZONE(682)ottt etiee i

SCALING: SCL(194).

SCALING 2: SCL2(A86) . . . oo oo e
SCALING 3: SCL3(A87) . . oo oot et

AVERAGE: AVG(195)

570
577
578
580
581
583
585
586
589
591
593
594
596
598
600
602
604
606
608
610
612
614
617
623
626
629
632
635
638
640
642

646
650
653
656
659
662
665
668
671
675
675
686
696
698
701
704
708
712
716

3-19 Subroutines. i

3-20

321

3-22

3-23

3-24

3-25

3-26

3-27
3-28

3-19-1
3-19-2
3-19-3
3-19-4
3-19-5
3-19-6
3-19-7

3-20-1
3-20-2
3-20-3
3-20-4
3-20-5
3-20-6

SUBROUTINE CALL: SBS(091)
MACRO: MCRO(099)
SUBROUTINE ENTRY: SBN(092). .
SUBROUTINE RETURN: RET(093)

GLOBAL SUBROUTINE CALL: GSBS(750) . ..o vov e e eie e e
GLOBAL SUBROUTINE ENTRY: GSBN(751).o veie e e e
GLOBAL SUBROUTINE RETURN: GRET(752) ovvi i i eie i eeeee e
Interrupt Control Instructions.
SET INTERRUPT MASK: MSKS(690)oviiti i e
READ INTERRUPT MASK: MSKR(692)civii i

CLEAR INTERRUPT: CLI(691). ...
DISABLE INTERRUPTS: DI(693) . .
ENABLE INTERRUPTS: EI(694). . .
Summary of Interrupt Control

High-speed Counter/Pulse Output Instructions.
MODE CONTROL: INI(880) (CIAM-CPU22/CPU230nNly)oovvennn..

3-21-1
3-21-2
3-21-3
3-21-4
3-21-5
3-21-6
3-21-7
3-21-8
3-21-9

HIGH-SPEED COUNTER PV READ

: PRV(881) (CJIM-CPU22/CPU23 Only)

REGISTER COMPARISON TABLE: CTBL(882) (CJIM-CPU22/CPU23 Only)
SPEED OUTPUT: SPED(885) (CJIM-CPU22/CPU230nly)oeeeeeee...
SET PULSES: PULS(886) (CJIM-CPU22/CPU23 0NlY).,

PULSE OUTPUT: PLS2(887) (CIJ1IM-
ACCELERATION CONTROL: ACC(888) (CJIM-CPU22/CPU230nly)..........

CPU22/CPU230NlY) . ..o

ORIGIN SEARCH: ORG(889) (CJIM-CPU22/CPU230nlY)oeeeeeeee. ..

PULSE WITH VARIABLE DUTY FACTOR: PWM(891) (CJ1IM-CPU22/CPU23 Only)

StepInstructions.
3-22-1 STEPDEFINE and STEP START: STEP(008)/SNXT(009)cvvvvieennn..
Basic I/O Unit Instructions.

3231

I/0 REFRESH: IORF(097).

3-23-2 7-SEGMENT DECODER: SDEC(078) ot e v ttiee et e et eii e
INTELLIGENT /OREAD: IORD(222)o o e ettt
INTELLIGENT HOWRITE: IOWR(223) . . .o oot e et
3-23-5 CPUBUSUNITI/OREFRESH: DLNK(226)cvviiiiiii i s
Serial Communications Instructions.

3-23-3
3-23-4

3-24-1
3-24-2
3-24-3
3-24-4

Serial Communications.
PROTOCOL MACRO: PMCR(260) .
TRANSMIT: TXD(236)
RECEIVE: RXD(235)

3-24-5 CHANGE SERIAL PORT SETUPR: STUP(237)ot i e
Network Instructions.
3-25-1 About SYSMAC NET Link/SYSMAC LINK Operations.coovieen...

3-25-2
3-25-3

3-25-4 DELIVER COMMAND: CMND(490)

NETWORK SEND: SEND(090)
NETWORK RECEIVE: RECV(098).

File Memory Instructions
3-26-1 PrecautionswhenUsingMemory Cardst

3-26-2

READ DATA FILE: FREAD(700). . .

3-26-3 WRITE DATA FILE: FWRIT(701) ..
Display Instructions: DISPLAY MESSAGE: MSG(046).o oo i
Clock Instructions.

3-28-1
3-28-2
3-28-3
3-28-4
3-28-5

CALENDAR ADD: CADD(730).. ..

CALENDAR SUBTRACT: CSUB(73L) ... ottt

HOURS TO SECONDS: SEC(065) . .
SECONDS TO HOURS: HM S(066) .
CLOCK ADJUSTMENT: DATE(735)

720
720
725
729
732
732
740
743
744
744
750
755
760
762
764
769
769
773
7
781
786
789
795
802
805
807
808
825
825
828
831
834
837
842
842

853
858
863
867
867
879
885
890
897
897
899
906
913
916
916
920
923
925
928

135

136

3-29

3-30

3-31

3-32

3-33

Debugging INStrUCtIONS oo
3-29-1 Trace Memory Sampling: TRSM(045)ot e
Failure DiagnosiS INSITUCHIONS. oo ot e e e e i
3-30-1 FAILURE ALARM: FAL(00B). . . ot ottt ettt et e e e e e
3-30-2 SEVERE FAILURE ALARM: FALS(007) ...ttt
3-30-3 FAILURE POINT DETECTION: FPD(269)oiiiiiiii i
Other INSITUCLIONS oot e e e e e e e e e
3-31-1 SET CARRY: STC(040) . . .ottt i et ettt e e e
3-31-:2 CLEARCARRY: CLC(04L) . . .ottt it e et e e e e
3-31-3 SELECT EM BANK: EMBC(28L).ot
3-31-4 EXTEND MAXIMUM CYCLETIME: WDT(094)
3-31-5 SAVE CONDITION FLAGS: CCS(282) . ..ot i ettt i e
3-31-6 LOAD CONDITION FLAGS: CCL(283). ..+ttt ettt i
3-31-7 CONVERT ADDRESSFROM CV: FRMCV(284)ttt
3-31-8 CONVERT ADDRESSTOCV: TOCV(285). . .ottt e i e e
3-31-9 DISABLE PERIPHERAL SERVICING: |0OSP(287) (CS1-H/CJ1-H/CJIM Only). . .
3-31-10 ENABLE PERIPHERAL SERVICING: IORS(288) (CS1-H/CJ1-H/CJ1IM Only) . ..
Block Programming INStruCtions.o o e
3-32-1 INtrOdUCTION. . . oottt
3-32-2 BLOCK PROGRAM BEGIN/END: BPRG(096)/BEND(80L)
3-32-3 BLOCK PROGRAM PAUSE/RESTART: BPPS(811)/BPRS(812)
3-32-4 Branching: IF(802), ELSE(803), and IEND(804).vvii i
3-32-5 CONDITIONAL BLOCK EXIT (NOT): EXIT (NOT)(806)o evvvaaann .
3-32-6 ONE CYCLE AND WAIT (NOT): WAIT(805)/WAIT(B05) NOT.
3-32-7 TIMERWAIT: TIMW(813) and TIMWX(816)ot o
3-32-8 COUNTER WAIT: CNTW(814) and CNTWX(818)t
3-32-9 HIGH-SPEED TIMER WAIT: TMHW(815) and TMHWX(817)
3-32-10 Loop Control: LOOP(809)/LEND(810)/LEND(810) NOTcouvuvnn...
Text String Processing INSrUCtioNSot
3-33-1 Text String Processing OVENVIEWttt e
3-33-2 MOV STRING: MOVB(664) . ..ottt et e e
3-33-3 CONCATENATE STRING: +$(656)« ottt e
3-33-4 GET STRING LEFT: LEFTH(652)« oottt
3-33-5 GET STRING RIGHT: RGHTH(653)ottt
3-33-6 GET STRING MIDDLE: MID$(654).« o vt e e
3-33-7 FIND IN STRING: FINDS(660). v e eeet et et i e e
3-33-8 STRING LENGTH: LENS(650). . . .ottt ettt e e e
3-33-9 REPLACEIN STRING: RPLCH(B6L)o ev ittt
3-33-10 DELETE STRING: DEL$(658) vttt et et e e e
3-33-11 EXCHANGE STRING: XCHGH(665) . . .+« v ooee e et e et
3-33-12 CLEAR STRING: CLRB(666) - . .« . v voeeee e e e et e e
3-33-13 INSERT INTO STRING: INSH(657) . . .« oo ettt e e
3-33-14 String Comparison Instructions (670t0675)t
Task Control INSEFUCHIONS.ot e
3-34-1 TASK ON: TKON(B20) . .ttt e e
3-34-2 TASK OFF: TKOF(82L) ittt e e e e e e

930
930
934
934
942
950
959
959
960
961
963
965
967
968
972
976
978
978
979
983
985
988
991
994
998
1001
1004
1007
1012
1012
1013
1015
1018
1020
1022
1024
1026
1028
1031
1033
1035
1037
1040
1045
1045
1049

Notation and Layout of I nstruction Descriptions

Section 3-1

3-1

Notation and Layout of Instruction Descriptions

Instructions are described in groups by function. Refer to 2-3 Alphabetical List
of Instructions by Mnemonic for a list of instructions by mnemonic that lists the
page number in this section for each instruction.

The description of each instruction is organized as described in the following
table.

Item

Contents

Name and Mnemonic

The heading of each section consists of the name of the instruction followed by the
mnemonic with the function code in parentheses. Example: MOVE BIT: MOVB(082)

Purpose

The basic purpose of the instruction is described after the section heading.

Names

Ladder Symbol and Operand

The ladder symbol used to represent the instruction on the CX-Programmer is
shown, as in the example for the MOVE BIT instruction given below. The name of
each operand is also provided with the ladder symbol.

MOVB(082)

S S: Source word or data

C C: Control word

D D: Destination word

Variations

Variations

The variations that can be used to control execution of the instruction under special
conditions are given using the mnemonic form. Any variation that is not supported by
an instruction is given as “Not supported.”

» Executed Each Cycle for ON Condition: The instruction is executed as long as

it receives an ON execution condition.

Executed Once for Upward Differentiation: The instruction is executed during
the next cycle only after the execution condition changes from OFF to ON.
Executed Once for Downward Differentiation: The instruction is executed dur-
ing the next cycle only after the execution condition changes from ON to OFF.

» Always Executed: The instruction does not require an execution condition and

is executed each cycle.

Creates ON Condition....: The instruction is executed each cycle to create an
execution condition for the next instruction.

Variations Executed Each Cycle for ON Condition | MOVB(082)

Variations

Variations

Executed Once for Upward Differentia- | @MOVB(082)

tion

Executed Once for Downward Differenti-
ation

Not supported

Immediate
Refreshing
Specification

Immediate refreshing can be specified for some instructions to refresh 1/O when the
instruction is executed. If immediate refreshing is supported, the specification is
given using the mnemonic form. If immediate refreshing is not support by an instruc-
tion “Not supported” is given.

Immediate Refreshing Specification Not supported.

Applicable Program Areas

The program areas in which the instruction can be used are specified. “OK” indicates
the areas in which the instruction can be used.

Block program
areas

Step program
areas

Subroutines

Interrupt tasks

OK

OK

OK

OK

137

Notation and Layout of I nstruction Descriptions Section 3-1

Item

Contents

Operands

Where necessary, the meaning of words and bits used in specific operands, such
as control words, is given.

15 8 7 0
clL_m | n |

Source bit: 00 to OF

(0 to 15 decimal)
Destination bit: 00 to OF
(0 to 15 decimal)

Operand Specifications

The memory areas addresses that can be used each operand are listed in a table
like the following one. The letters used in the column headings on the left are the
same as those used in the ladder symbol. “---" is used to indicate when an area can-
not be specific for an operand.

Area S Cc D
CIO Area CIO 0000 to CIO 6143
Work Area WO000 to W511
Holding Bit Area HOO0O0 to H511
Auxiliary Bit Area A000 to A959 A448 to A959
Timer Area TOO000 to T4095
Counter Area C0000 to C4095
DM Area DO00000 to D32767
EM Area without E00000 to E32767
bank
Description The function of the instruction and the operands used in the instruction are
described.
Flags The flags table indicates the status of the condition flags immediately after execution
of the instruction. Any flags that are not listed are not affected by the instruction.
“OFF” indicates that a flag is turned OFF immediately after execution of the instruc-
tion regardless of the results of executing the instruction.
Name Label Operation
Error Flag ER ON if control data is within ranges.
OFF in all other cases.
Equals Flag = OFF
Negative Flag N OFF
Precautions Special precautions required in using the instruction are provided. Be sure to read
and follow these precautions.
Example An example of using the instruction with specific operands is provided to further
explain the function of the instruction.
Constants Constants input for operands are given as listed below.

138

Operand Descriptions and Operand Specifications

» Operands Specifying Bit Strings (Normally Input as Hexadecimal):
Only the hexadecimal form is given for operands specifying bit strings,
e.g., only “#0000 to #FFFF” is specified as the S operand for the
MOV(021) instruction. On the CX-Programmer, however, bit strings can
be input in decimal form by using the & prefix.

» Operands Specifying Numeric Values (Normally Input as Decimal, Includ-
ing Jump Numbers):
Both the decimal and hexadecimal forms are given for operands specify-
ing numeric values, e.g., “#0000 to #FFFF” and “&0 to &65535” are given
for the N operand for the XFER(070) instruction.

Notation and Layout of I nstruction Descriptions

Section 3-1

Condition Flags

» Operands Indicating Control Numbers (Except for Jump Numbers):
The decimal form is given for control numbers, e.g., “0 to 1023” is given
for the N operand for the SBS(091) instruction.

Examples

In the examples, constants are given using the CX-Programmer notation, e.g.,
operands specifying numeric values are given in decimal for with an & prefix,

as shown in the following example.

|— XFER

&10
D00100
D00200

The input methods for constants for the Programming Devices are given in the

following table.

ing bit strings (nor-
mally input as

mal with an &
prefix or input

Operand CX- Programming Console
Programmer
Operands specify- Input as deci- | The Cont/# Key can be pressed to input hexa-

decimal values by default with an # prefix. The
CHG Key can then be pressed to rotate

hexadecimal) as hexadeci- | between hexadecimal (with # prefix), signed
Operands specify- mal with an # | decimal (with +/-), and unsigned decimal (with
ing numeric values prefix. (See | & prefix),

(normally inputas | N°te:)

decimal)

_Operands specify- Input as deci- | Input directly in decimal form.

ing control numbers | mal with an # | ¢ the & prefix is automatically added, the CHG
(except for jump prefix. (See | key can be pressed to rotate between
numbers) note.) unsigned decimal (with & prefix), hexadecimal

(with # prefix), and signed decimal (with +/-)

If no prefix is displayed, the value must be
entered in decimal form.

Note When operands are input on the CX-Programmer, the input ranges will be dis-
played along with the appropriate prefixes.

Programming Console labels are used for condition flags in this section. With
the CX-Programmer, the condition flags are registered in advance as global

symbols with “P_" in front of the symbol name.

Flag Programming Console label CX-Programmer label
Error Flag ER P_ER
Access Error AER P_AER
Flag
Carry Flag CY P_CY
Greater Than > P_GT
Flag
Equals Flag = P_EQ
Less Than Flag |< P_LT
Negative Flag N P_N
Overflow Flag OF P_OF
Underflow Flag |UF P_UF
Greater Than or |>= P_GE
Equals Flag
Not Equal Flag | <> P_NE

139

Instruction Upgrades and New I nstructions Section 3-2

Flag Programming Console label CX-Programmer label
Less Than or <= P_LE
Equals Flag
Always ON Flag | ON P_On
Always OFF OFF P_Off
Flag

3-2 Instruction Upgrades and New Instructions

This section lists the instruction upgrades for CS1 CPU Units with the -EV1
suffix and CS1-H/CJ1-H CPU Units.

3-2-1 Upgrades for Version-1 CS-series CPU Units

The following instructions have been upgraded for the version-1 CPU Units.
Refer to the page number provided for details.

Functions supported only by version-1 CPU Units are indicated by “(-EV1
only)”

Name Mnemonic | Function Function Upgrade Page
code
READ DATA FILE FREAD 700 Both CSV and text (.txt) data | The contents of control data | 899
WRITE DATA FILE EWRIT 701 formats are now supported. | has been changed by adding [ggg
(Previously, only binary data | the data format, presence of
was supported.) carriage returns, and car-
riage return position specifi-
cations.
DELIVER COMMAND |CMND 490 The CPU Unit can now send | The ability to send FINS 890
FINS command to itself. command to the CPU Unit
(Previously, this was not pos- | €xecuting CMND(490) was
sible.) added.

3-2-2 Upgrades for CS1-H/CJ1-H CPU Units

New Instructions

140

The following instructions have been added to the CS1-H and CJ1-H CPU
Units.

Sequence Output Instructions

SINGLE BIT SET, SETB(532)
SINGLE BIT RESET, RSTB(533)
SINGLE BIT OUTPUT, OUTB(534)

Data Comparison Instructions

AREA RANGE COMPARE, ZCP(088)
DOUBLE AREA RANGE COMPARE, ZCPL(116)

Floating Point Calculation and Conversion Instructions

Floating Point Data Comparison Instructions: =F, <>F, <F, <=F, >F, and >=F (329 to
334)

FLOATING POINT TO ASCII, FSTR(448)
ASCII TO FLOATING POINT, VAL(449)

Double-precision Floating Point Calculation and Conversion Instructions

Double-precision Comparison Instructions: =D, <>D, <D, <=D, >D, and >=D (335 to
340)

DOUBLE FLOATING TO 16-BIT BINARY, FIXD(841)
DOUBLE FLOATING TO 32-BIT BINARY, FIXLD(8420)
16-BIT BINARY TO DOUBLE FLOATING, DBL(843)
32-BIT BINARY TO DOUBLE FLOATING, DBLL