Variateurs c.a. à contrôle vectoriel

SieiDrive

AVy

Spécifications et installation

Nous vous remercions pour avoir choisi un produit Gefran.

Nous serons heureux de recevoir à l'adresse e-mail techdoc@gefran.com toute information qui pourrait nous aider à améliorer ce catalogue.

Avant l'installation du produit, lire attentivement le chapitre concernant les consignes de sécurité.

Pendant sa période de fonctionnement conserver la notice dans un endroit sûr et à disposition du personnel technique.

Gefran S.p.A. se réserve le droit d'apporter des modifications et des variations aux produits, données et dimensions, à tout moment et sans préavis.

Les informations fournies servent uniquement à la description des produits et ne peuvent en aucun cas revêtir un aspect contractuel.

Tous droits réservés.

Ce manuel est actualisé d'après la version logicielle V1.X00.

Toute modification du caractère générique "X" n'a aucune incidence sur les fonctionnalités de l'appareil.

Le code d'identification de la version logicielle peut être prélevé sur la plaque signalétique du variateur ou sur l'étiquette des mémoires FLASH insérées sur la carte de régulation.

2

Table des Matières

	Légende relative aux symboles de sécurité	7
0.	PRÉCAUTIONS DE SECURITÉ	8
1.	MISE EN SERVICE RAPIDE	11
	1.1. SCHEMA DE CABLAGE FONCTIONNEL	
	1.2. PRÉSENTATION	
	1.3. BORNES DE COMMANDE	13
	1.3.1 Section maximale des câbles pour les bornes de commande	
	1.4. BORNES DE PUISSANCE	
	1.4.1 Section maximale des câbles pour les bornes de puissance	
	1.5 BORNES DU CODEUR (CONNECTEUR XE)	
	1.5.1 Connexion des types de codeur	
	1.5.2 Réglage des cavaliers	
	1.5.3 Longueur maximale des câbles pour les bornes du codeur	
	1.6. LISTE DES CAVALIERS ET DES MICRO-INTERRUPTEURS	
	1.7. FONCTIONNEMENT DU CLAVIER	
	1.7.1 LED et touches	
	1.7.2 Déplacement à l'intérieur d'un menu	
	1.8. CONTRÔLES AVANT LA MISE SOUS TENSION	
	1.9. RÉGLAGE RAPIDE	
	1.9.1 Potentiomètre moteur	
	1.10 FONCTIONS OPTIONNELLES	
	1.11 GUIDE DE RÉGLAGE RAPIDE POUR LES VARIATEURS CONFIGURÉS EN USINE (OU	= /
	PRÉCONFIGURÉS)	28
	1.12 DÉPANNAGE	
	Liste des dépassements	
	LISTE DES MESSAGES D'ERREUR LIES AU REGLAGE AUTOMATIQUE	
	Messages de défaut sortis sur l'afficheur	
	Autres défauts	
2.	FONCTIONNEMENT ET CARACTERISTIQUES (APERÇU)	36
3.	PROCÉDURE D'INPECTION, IDENTIFICATION DES COMPOSANTS ET	
٠.	SPÉCIFICATIONS STANDARD	37
	3.1. A PROPOS DES PROCÉDURES D'INSPECTION DE LIVRAISON	
	3.1.1. Généralités	
	3.1.2. Code type du convertisseur	
	3.1.3. Plaque signalétique	
	Figure 3.1.3.1: Plaque signalétique	
	Figure 3.1.3.2: Plaque signalétique avec indices de modification du micrologiciel et du matériel	
	Figure 3.1.3.3: Disposition des plaques signalétiques	
	3.2. IDENTIFICATION DES COMPOSANTS	
	Figure 3.2.1: Schéma de principe d'un convertisseur de fréquence	39
	Figure 3.2.2 : Vue du variateur et de ses composants	40
	3.3. SPÉCIFICATIONS STANDARD	
	3.3.1. Conditions ambiantes admissibles	41
	Table 3.3.1.1: Spécifications environnementales	
	Mise au rebut de l'appareil	42

	3.3.2. Connexion de l'entrée/sortie c.a.	42
	Table 3.3.2.1:Spécifications relatives à l'entrée/sortie c.a	
	3.3.3. Courant d'entrée c.a.	
	3.3.4. Sortie c.a	44
	Table 3.3.3.1: Courant nominal du variateur	45
	3.3.5. Unité de commande à boucle ouverte et à boucle fermée	46
	3.3.6. Précision	47
_		
4.	DIRECTIVES D'INSTALLATION	
	4.1. SPÉCIFICATIONS MÉCANIQUES	
	Figure 4.1.1 : Dimensions du variateur (types 1007 3150)	
	Figure 4.1.2 : Méthodes de montage (types 1007 3150)	49
	Table 4.1.1 : Dimensions et poids du variateur (types 1007 3150)	
	Figure 4.1.3 : Dimensions du variateur (types 4185 82000)	
	Figure 4.1.4: Méthodes de montage (types 4185 82000)	
	Table 4.1.2 : Dimensions et poids du variateur (types 4185 82000)	
	Figure 4.1.5 : Positionnement du clavier	51
	4.2. PERTE EN WATTS, DISSIPATION THERMIQUE, VENTILATEURS INTERNES ET OUVERTURE	г 1
	MINIMUM D'ARMOIRE RECOMMANDÉS POUR LE REFROIDISSEMENT	
	Table 4.2.1 : Dissipation thermique et débit d'air requis	
	Table 4.2.2: Ouverture minimum d'armoire recommandée pour le refroidissement	
	4.2.1 Alimentation électrique des ventilateurs	52
	Figure 4.2.1 : Branchement des ventilateurs du type UL sur les variateurs AVy7900, AVy71100 et AVy71320	50
	Figure 4.2.2 : Branchement des ventilateurs du type UL sur les variateurs AVy6750, AVy81600 et	52
	AVy82000	52
	Figure 4.2.3: Exemple de branchement externe	
	4.3. ESPACE LIBRE POUR LE MONTAGE	
	Figure 4.3.1 : Angle d'inclinaison max.	
	Figure 4.3.2 : Espace libre	
	4.4. MOTEURS ET CODEURS	
	4.4.1. Moteurs	54
	4.4.2. Codeur	
	Table 4.4.2.1 : Section et longueur de câble recommandée pour le branchement de codeurs	
	Table 4.4.2.2 : Configuration des codeurs au moyen des cavaliers S11S23	
	Table 4.4.2.3: Connexions des codeurs	
	Table 4.4.2.4: Brochage du connecteur haute densité XE pour un codeur sinusoïdal ou numérique	58
_	PROCÉDURE DE CÂBLAGE	EO
ວ.		
	5.1. ACCÈS AUX CONNECTEURS	
	5.1.1 Démontage des couvercles	
	Figure 5.1.1 : Démontage des couvercles (types 1007 à 3150)	
	Figure 5.1.2 : Démontage des couvercles (types 4185 à 82000)	
	5.2. PARTIE PUISSANCE	
	5.2.1. Carte de puissance PV33	
	Figure 5.2.1.1 : Carte de puissance PV33-1 (types 1007 à 1030)	
	Figure 5.2.1.2 : Carte de puissance PV33-2 (types 2040 à 2075)	
	Figure 5.2.1.3 : Carte de puissance PV33-3 (types 3110 et 3150)	
	Figure 5.2.1.4 : Carte de puissance PV33-4 (types 4185 à 5550)	
	Figure 5.2.1.6 : Carte de puissance PV33-6 (types 8/1600 à 8/2000)	
	5.2.2. Affectation des bornes de la partie puissance / section de câble	
	Table 5 2 2 1 · Rornes de la partie puissance	64

5.3.1 Carte de régulation RV33 Figure 5.3.1.1 : Commutateurs et cavaliers sur la carte de régulation RV33-4 Table 5.3.1.1 : LED et Points test sur la carte de régulation RV33-5 Table 6.3.1.2 : Cavaliers sur la carte de régulation RV33-6 Table 6.3.1.3 : Réglages des micro-interrupteurs S3 de la carte de régulation RV33-6 5.3.2 : Affectation des bornes sur la partie régulation RV33-6 5.3.2 : Affectation des bornes sur la partie régulation RV33-6 Table 6.3.2.1 : Affectation des bornes sur la partie régulation RV33-7 Table 6.3.2.2 : Section de câble maximale admissible sur les bornes enfichables de la partie régulation RV33-7 Table 6.3.2.2 : Section de câble maximale admissible sur les bornes enfichables de la partie régulation RV33-7 Table 6.3.2.2 : Section de câble maximale admissible sur les bornes enfichables de la partie régulation RV33-7 Table 6.3.2.2 : Potentiels de la partie régulation (E/S numériques : NPN)-9 S4.1 : Description de l'interface série RS 485-7 Table 5.4.2 : Description du connecteur de l'interface série RS 485-7 Table 6.4.2.1 : Brochage du connecteur enfichable XS pour l'interface série RS 485-7 Table 6.4.2.1 : Brochage du connecteur enfichable XS pour l'interface série RS 485-7 Table 5.5.1 : Connexions AVy-7 Figure 5.5.1.2 : Connexion parallèle côté AC (entrée) et DC (circuit intermédiaire) de plusieurs variateurs 74-7 S.6.1 Fusibles externes de la partie puissance. 5.6.1 Fusibles externes de la partie puissance. 5.6.3 : Types de fusibles externes pour l'entrée c.a. 5.6.5 : Selfs de sortie c.a. triphasées. 5.7 : Table 5.6.3 1 : Types de fusibles externes pour l'entrée c.c. 7.6 : Table 6.6.3 1 : Types de fusibles externes pour l'entrée c.c. 7.6 : Table 6.7.2 1 : Valeurs recommandées pour les sells de sortie. 7.7 : Table 5.7.1 : Selfs d'entrée c.a. triphasées. 7.7 : Table 5.7.1 : Valeurs recommandées pour les sells de sortie. 7.8 : Table 5.2 : Cycle de freinage limite avec profil tie puissance triangulaire typique. 8.7 : Table 6.8.2 : Cycle de freinage externe. 8.8 : Figure 5.8.2 :	Table 5.2.2.2 : Section maximale de câble pour les bornes de puissance	
Figure 5.3.1.1 : Commutateurs et cavaliers sur la carte de régulation RV33.4 Table 5.3.1.2 : Cavaliers sur la carte de régulation RV33	5.3. PARTIE RÉGULATION	
Table 5.3.1.1 : LED et Points test sur la carte de régulation RV33 Table 5.3.1.2 : Réglages des micro-interrupteurs S3 de la carte de régulation RV33 Table 5.3.2.3 : Réglages des micro-interrupteurs S3 de la carte de régulation RV33 S6 5.3.2 : Affectation des bornes sur la partie régulation Table 5.3.2.1 : Affectation des borniers enfichables Table 5.3.2.2 : Section de câble maximale admissible sur les bornes enfichables de la partie régulation RV33 Table 5.3.2.3 : Longueurs maximales des câbles de commande Figure 5.3.1.2 : Potentiels de la partie régulation (E/S numériques : NPN) S9 5.4 : INTERFACE SÉRIE 70 5.4.1 : Description de l'interface série Figure 5.3.1.1 : Interface série RS485 71 Table 5.4.2 : Description du connecteur de l'interface série RS 485 71 Table 5.4.2 : Description du connecteur enfichable XS pour l'interface série RS 485 71 5.5 : SCHÉMA DE CÂBLAGE STANDARD 72 Figure 5.5.1.1 : Séquence de commande 73 5.5.2 Connexion parallèle côté AC (entrée) et DC (circuit intermédiaire) de plusieurs variateurs 74 5.6. PROTECTION DES CIRCUITS 5.6.1 Fusibles externes de la partie puissance. 75 5.6.2 Fusibles externes de la partie puissance. 75 Table 5.6.1.1 : Types de fusibles externes pour l'entrée c.a. 75 5.6.2 Fusibles internes 76 Table 5.6.2.1 : Types de fusibles externes pour l'entrée c.a. 77 Table 5.6.1.1 : Selfs d'entrée c.a. 77 Table 5.7.2 : Selfs de sortie 78 5.7.3 : Filtres d'antiparasitage 79 5.8.1 : Unité de freinage interne 79 Figure 5.8.1 : Fonctionnement avec une unité de freinage (principe) 79 5.8.1 : Unité de freinage interne 79 Figure 5.8.2 : Cycle de freinage externe 79 Figure 5.8.2 : Cycle de freinage evec TBR / TC = 20 % Figure 5.8.2 : Cycle de freinage evec TBR / TC = 20 % Figure 5.8.2 : Cycle de freinage evec TBR / TC = 20 % Figure 5.8		
Table 5.3.1.2: Cavaliers sur la carte de régulation RV33		
Table 5.3.1.3: Réglages des micro-interrupteurs S3 de la carte de régulation RV33		
5.3.2 Affectation des bornes sur la partie régulation. 7able 5.3.2.1: Affectation de sòmiers enfichables. 7able 5.3.2.2: Section de câble maximale admissible sur les bornes enfichables de la partie régulation 68 7able 5.3.2.2: Section de câble maximale admissible sur les bornes enfichables de la partie régulation 68 7able 5.3.2.2: Potentiels de la partie régulation (E/S numériques : NPN). 69 54. INTERFACE SÉRIE		
Table 5.3.2.1 : Affectation des borniers enfichables aur les bornes enfichables de la partie régulation 68 Table 5.3.2.2 : Soetion de câble de câbles de commande		
Table 5.3.2.2 : Section de câble maximale admissible sur les bornes enfichables de la partie régulation 68 Table 5.3.2.3 : Longueurs maximales des câbles de commande	, ,	
Table 5.3.2.3 : Longueurs maximales des câbles de commande		
Figure 5.3.1.2: Protentiels de la partie régulation (E/S numériques : NPN)	·	
5.4.1. Interface SÉRIE 7.0 5.4.1. Description de l'interface série 85485 7.0 Figure 5.4.1.1: Interface série RS485 7.1 Table 5.4.2.1: Brochage du connecteur de l'interface série RS 485 7.1 Table 5.4.2.1: Brochage du connecteur enfichable XS pour l'interface série RS 485 7.1 5.5. SCHÉMA DE CÂBLAGE STANDARD 7.2 5.5.1. Connexions AVV 7.2 Figure 5.5.1.1: Séquence de commande 7.2 Figure 5.5.1.2: Connexion typique 7.3 5.5.2 Connexion parallèle côté AC (entrée) et DC (circuit intermédiaire) de plusieurs variateurs 74 5.6. PROTECTION DES CIRCUITS 7.5 5.6.1. Fusibles externes de la partie puissance 7.5 Table 5.6.1.1: Types de fusibles externes pour l'entrée c.a 7.5 Table 5.6.2.1: Types de fusibles externes pour l'entrée c.c 7.6 Table 5.6.2.1: Types de fusibles externes pour l'entrée c.c 7.6 Table 5.6.3: Fusibles internes 7.6 Table 5.6.3: Types de fusibles internes 7.6 Table 5.6.1.1: Types de fusibles internes 7.6 Table 5.6.2.1: Types de fusibles internes 7.6 Table 5.6.2.1: Valeurs recommandées pour les selfs de sortie 7.7 Table 5.7.1. Selfs d'entrée c.a 7.7 Table 5.7.2 I Valeurs recommandées pour les selfs de sortie 7.7 Table 5.7.2 I Valeurs recommandées pour les selfs de sortie 7.7 5.8. UNITÉS DE FREINAGE 7.9 Figure 5.8.1.1: Branchement d'une unité de freinage (principe) 7.9 5.8.1. Unité de freinage interne 8.0 5.8.2.2 Cycle de freinage externe 8.0 Figure 5.8.2.3: Cycle de freinage externe 8.0 Figure 5.8.2.3: Cycle de freinage externe 8.0 Figure 5.8.2.3: Cycle de freinage genérique avec profil de puissance triangulaire typique 8.1 Figure 5.8.2.3: Cycle de freinage genérique avec profil de puissance triangulaire typique 8.1 Figure 5.8.2.3: Cycle de freinage genérique avec profil de puissance triangulaire typique 8.1 Figure 5.8.2.3: Cycle de freinage genérique avec profil de puissance triangulaire typique 8.1 Figure 5.8.2.3: Cycle de freinage genérique avec profil de puissance triangulaire typique 8.1 Figure 5.8.2.3: Cycle de freinage externe 8.7 Figure 5.8.2.3: Cycle de freinage externe 8.7 Figure 5.8.3.1: Facteur de su		
5.4.1. Description de l'interface série RS485. 70 Figure 5.4.1.1: Interface série RS485. 70 5.4.2. Description du connecteur de l'interface série RS 485. 71 Table 5.4.2.1: Brochage du connecteur enfichable XS pour l'interface série RS 485. 71 5.5. SCHÉMA DE CÂBLAGE STANDARD. 72 5.5.1. Connexions AVy. 72 Figure 5.5.1.1: Séquence de commande 72 Figure 5.5.1.2: Connexion typique 73 5.5.2 Connexion parallèle côté AC (entrée) et DC (circuit intermédiaire) de plusieurs variateurs 74 5.6. PROTECTION DES CIRCUITS 75 5.6.1. Fusibles externes de la partie puissance 75 5.6.1. Fusibles externes de la partie puissance 75 5.6.2 Fusibles externes de la partie puissance 75 5.6.3 Fusibles externes de la partie puissance 75 5.6.3 Fusibles internes 76 5.6.3 Fusibles internes 76 5.6.3 Fusibles internes 76 5.7. SELFS / FILTRES 77 5.7.1. Selfs d'entrée c.a. 77 Table 5.7.1. Selfs d'entrée c.a. 77 Table 5.7.2.1: Valeurs recommandées pour les selfs de sortie 77 Table 5.7.2.1: Valeurs recommandées pour les selfs de sortie 77 Table 5.7.2.1: Valeurs recommandées pour les selfs de sortie 77 Table 5.7.2.1: Valeurs recommandées pour les selfs de sortie 77 Table 5.7.2.1: Valeurs recommandées pour les selfs de sortie 77 Table 5.7.2.1: Valeurs recommandées pour les selfs de sortie 77 Table 5.7.2.1: Valeurs recommandées pour les selfs de sortie 77 Table 5.7.2.1: Valeurs recommandées pour les selfs de sortie 79 5.8.1. Unité de freinage interne 79 Figure 5.8.1.1: Franchement d'une unité de freinage interne et d'une résistance de freinage externe 79 5.8.2.2: Cycle de freinage externe 79 Table 5.8.2.3: Cycle de freina		
Figure 5.4.1.1 : Interface série RS485		
5.4.2. Description du connecteur de l'interface série RS 485		
Table 5.4.2.1 : Brochage du connecteur enfichable XS pour l'interface série RS 485		
5.5. SCHÉMA DE CÂBLAGE STANDARD		
5.5.1. Connexions AVy		
Figure 5.5.1.1 : Séquence de commande		
Figure 5.5.1.2 : Connexion typique		
5.5.2 Connexion parallèle côté AC (entrée) et DC (circuit intermédiaire) de plusieurs variateurs 74 5.6. PROTECTION DES CIRCUITS		
5.6. PROTECTION DES CIRCUITS 5.6.1. Fusibles externes de la partie puissance		
5.6.1. Fusibles externes de la partie puissance		
Table 5.6.1.1 : Types de fusibles externes pour l'entrée c.a		
5.6.2 Fusibles externes de la partie puissance, côté entrée c.c		
Table 5.6.2.1 : Types de fusibles externes pour l'entrée c.c		
5.6.3 Fusibles internes		
Table 5.6.3.1 : Types de fusibles internes	•	
5.7. SELFS / FILTRES		
5.7.1. Selfs d'entrée c.a	,,	
Table 5.7.1.1 : Selfs d'entrée c.a. triphasées	·	
5.7.2. Selfs de sortie		
Table 5.7.2.1 : Valeurs recommandées pour les selfs de sortie	,	
5.7.3. Filtres d'antiparasitage		
5.8. UNITÉS DE FREINAGE		
Figure 5.8.1 : Fonctionnement avec une unité de freinage (principe)	, , , , , , , , , , , , , , , , , , , ,	
5.8.1. Unité de freinage interne		
Figure 5.8.1.1 : Branchement d'une unité de freinage interne et d'une résistance de freinage externe		
5.8.2 Résistance de freinage externe		
Table 5.8.2.1 : Liste et caractéristiques techniques des résistances externes standard pour AVy-1007 à 5550		
5550		
Figure 5.8.2.2 : Cycle de freinage limite avec profil de puissance triangulaire typique		
Figure 5.8.2.2 : Cycle de freinage avec TBR / TC = 20 %		
Figure 5.8.2.3 : Cycle de freinage générique avec profil triangulaire		
Table 5.8.2.2 : Seuils de freinage pour différents réseaux		
Table 5.8.2.3 : Caractéristiques techniques des unités de freinage internes		
5.8.3. Calcul des résistances de freinage externes génériques à combiner avec l'unité de freinage interne au moyen d'une méthode appropriée		
interne au moyen d'une méthode appropriée		
Figure 5.8.3.1 : Facteur de surcharge de la résistance de puissance		
5.9. CONDENSATEURS TAMPONS DE L'ALIMENTATION DU RÉGULATEUR	Figure 5.8.3.1 : Factour de curcharge de la récistance de puissance	. 04 Ω1
Table 5.9.1 : Temps de réserve du circuit intermédiaire	F Q CONDENISATEURS TAMPONS OF I'ALIMENTATION OUR PÉCUI ATEUR	ሀ4 ብደ
	Figure 5.9.1 : Tamponnement de la tension du régulateur au moyen de condensateurs additionnels du	

DIRECTIVE CEM	
8. LISTE DES PARAMÈTRES	125
Alarm mapping	124
Test Generator	
Links function	
PAD parameters	
Dimension factor / Face value factor	
DC Braking function	
Brake unit function	
Dual Motor setup	
Multi speed	
Motor potentiometer	
Jog function	
Power loss stop control	
Start and Stop management	
PID function	
Speed adaptive and Speed zero logic	
Speed Threshold / Speed control	
V/Hz functions	
Sensorless parameters	
Motor control	
Speed Feedback	
Torque current regulator	
Inertia / Loss compensation	
Droop compensation	
Speed regulator PI part	
Speed regulator	
Ramp reference Block	
Speed / Torque regulation	
Speed Reference generation	
Analog Inputs/Outputs & Mapping	
Digital inputs/Outputs & Mapping Standard and Option cards	
AVy Inverter Overview	
7. BLOCK DIAGRAM	
T. DLOOK DIAODANA	
Block diagram legend	92
6.4. SERVICE CLIENTÈLE	91
6.3. RÉPARATIONS	
6.2. MISE EN SERVICE	
6.1. MISE EN GARDE	
6. MAINTENANCE	
C MAINTENIANICE	04
Table 5.11.1 : Temps de décharge du circuit intermédiaire	90
5.11. TEMPS DE DÉCHARGE DU CIRCUIT INTERMÉDIAIRE	90
Table 5.10.3 : Temps de déclenchement du variateur, seuil de 460 V	
Table 5.10.2 : Temps de déclenchement du variateur, seuil de 400 V	
Table 5.10.1 : Temps de déclenchement du variateur, seuil de 230 V	
DONNÉES ET DE LA REMISE EN MARCHE	87
5.10. MAÎTRISE DES BAISSES DE TENSION DE L'AVY AU MOYEN DE LA CONFIGURATION	DES
circuit intermédiaire	

Légende relative aux symboles de sécurité

AVERTSSEMENT / DANGER!

Pour attirer l'attention eu égard à une procédure, méthode, condition ou instruction de fonctionnement qui, si elle n'est pas strictement suivie, pourrait occasionner des blessures du personnel, voire la mort.

ATTENTION / PRUDENCE!

Pour attirer l'attention eu égard à une procédure, méthode, condition ou instruction de fonctionnement qui, si elle n'est pas strictement suivie, pourrait occasionner des endommagements ou la destruction du matériel.

La gravité des blessures ou des dommages qui pourraient résulter de la non-observation de telles indications dépend des différentes conditions. Quoi qu'il en soit, les instructions figurant ci-après devraient toujours être suivies avec la plus grande attention

Note!

Pour attirer l'attention eu égard à une procédure, méthode, condition ou instruction de fonctionnement devant être mise en évidence.

0. PRÉCAUTIONS DE SECURITÉ

ATTENTION!

Conformément aux normes CEE, les commandes AVy et leurs accessoires ne doivent être utilisés qu'après avoir vérifié que la machine ait été construite avec les dispositifs de sécurité exigés par la réglementation 89/392/CEE, dans la mesure où cela concerne l'industrie des machines.

Les systèmes d'entraînement génèrent des mouvements mécaniques. Il incombe à l'utilisateur de garantir que de tels mouvements ne puissent engendrer une situation d'insécurité. Les dispositifs de verrouillage et les limites d'utilisation fournis par le constructeur ne doivent pas être contournés ni modifiés

Danger - Risques de choc électrique et de brûlures:

En cas d'utilisation d'instruments tels qu'un oscilloscope sur un équipement en fonctionnement, le châssis de l'oscilloscope doit être relié à la terre et un amplificateur différentiel devrait être utilisé en entrée. Il convient de sélectionner avec soin les sondes et les fils, et de régler correctement l'oscilloscope afin de pouvoir effectuer des mesures précises. Reportez-vous au manuel d'instructions du fabricant pour une utilisation et un réglage corrects de l'instrument.

DANGER - RISQUES D'INCENDIE ET D'EXPLOSION :

L'installation des variateurs dans des zones à risques, telles que des emplacements comportant des vapeurs ou poussières inflammables, peut provoquer des incendies ou des explosions. Les variateurs doivent être installés à distance des zones dangereuses, même s'ils sont utilisés avec des moteurs dont l'utilisation convient pour ces emplacements.

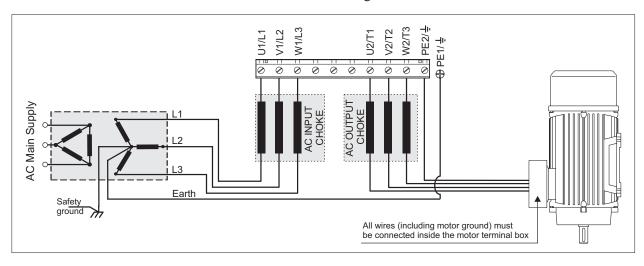
Danger - Risques de Blessures :

Des procédés de levage inappropriés peuvent occasionner des blessures graves ou mortelles. Utilisez exclusivement des engins de levage appropriés, confiés à un personnel qualifié.

Attention - Risques de chocs électriques :

Tous les variateurs et moteurs doivent être reliés à la terre conformément au Code Electrique National.

AVERTISSEMENT:


Réinstallez tous les capots avant de mettre le variateur sous tension. En cas de non-observation, vous risquez des blessures graves voire la mort.

Attention! Alimentation puissance et mise à la terre

Si le réseau n'est pas équilibré par rapport à la terre et qu'il n'y a pas de transformateur raingle/étoile, une mauvaise isolation d'un appareil électrique connecté au même réseau que le variateur peut lui causer des troubles de fonctionnement.

- 1 Les variateurs Gefran sont prévus pour être alimentés par un réseau triphasé équilibré avec un régime de neutre standard (TN ou TT).
- 2 Si le régime de neutre est IT, nous vous recommendons d'utiliser un tranformateur triangle/étoile avec point milieu ramené à la terre.

Vous pouvl ez trouver ci-après des exemples de câblage.

AVERTISSEMENT:

Les variateurs de fréquence réglable sont des appareils électriques mis en oeuvre dans des installations industrielles. Certains composants des variateurs sont sous tension pendant le fonctionnement. Par conséquent, l'installation électrique et l'ouverture de l'appareil ne devraient être effectuées que par un personnel qualifié. Une mauvaise installation de moteurs ou de variateurs peut occasionner des dysfonctionnements de l'appareil ainsi que des lésions corporelles ou des dommages matériels.

Le variateur n'est pas pourvu d'une protection contre la survitesse du moteur.

Suivez les instructions de ce manuel et observez les règles de sécurité locales et nationales en vigueur.

PRUDENCE:

Ne connectez pas d'alimentation dont la fluctuation de tension dépasse la valeur admise par la norme. En cas d'application d'une tension excessive sur le variateur, des composants internes seront endommagés.

Prudence:

Ne faites pas fonctionner le variateur sans conducteur de terre connecté. Le châssis du moteur doit être relié à la terre par l'intermédiaire d'un conducteur de terre séparé de tous les autres conducteurs de terre de l'appareil, afin d'éviter le couplage des perturbations.

Le connecteur de terre doit être dimensionné selon le code NEC ou le Canadian Electrical Code. La connexion doit être réalisée avec un connecteur à boucle fermée certifié selon les normes CSA et UL et dimensionné pour la section de câble correspondante. Le connecteur doit être fixé à l'aide de l'outil de sertissage préconisé par le fabricant de connecteurs.

Prudence:

N'effectuez pas de mesure au mégohmmètre entre les bornes du variateur ou sur les bornes du circuit de commande.

PRUDENCE:

Étant donné que la température ambiante affecte grandement la durée de vie et la fiabilité du variateur, n'installez pas le variateur en des emplacements où la température dépasse la valeur admissible. Laissez le capot de ventilation en place pour des températures inférieures ou égales à 104 °F (40 °C).

PRUDENCE :

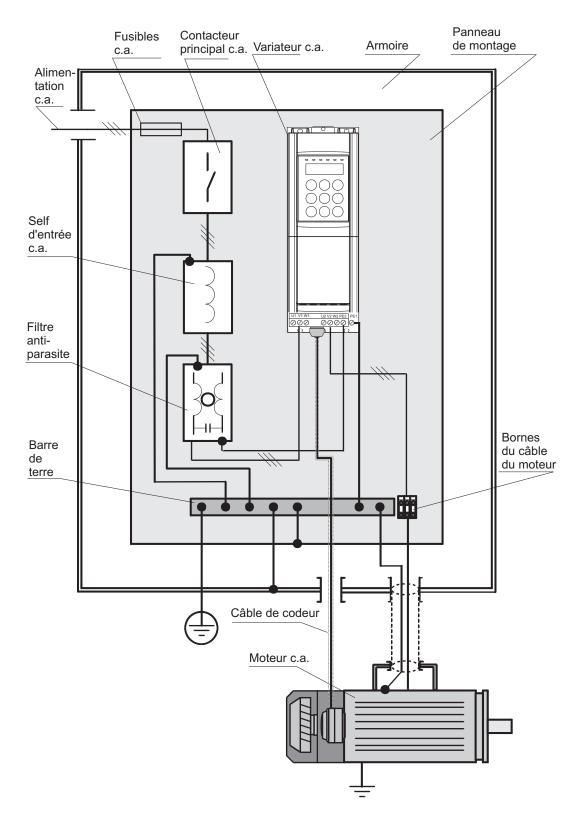
Si l'alarme du variateur est activée, consultez la section du manuel concernant le DÉPANNAGE et, après avoir corrigé le problème, reprenez le fonctionnement. Ne réiniliatisez pas l'alarme automatiquement au moyen d'une séquence externe, etc.

PRUDENCE:

Lors du déballage du variateur, veillez à retirer le(s) sachet(s) déshydratant(s). (Si ceux-ci ne sont pas retirés, ils peuvent se fixer dans le ventilateur ou dans les passages d'air et provoquer une surchauffe de la commande).

PRUDENCE :

Le variateur doit être monté sur une paroi construite avec des matériaux résistants à la chaleur. Pendant le fonctionnement du variateur, la température des ailettes de refroidissement du variateur peut atteindre 194 °F (90 °C).


Note:

- Les termes "convertisseur", "régulateur" et "variateur" sont parfois utilisés indiféremment dans l'industrie. Nous utiliserons dans ce manuel le terme de "variateur".
- 1. N'ouvrez jamais l'appareil ni les capots tant que la tension d'alimentation c.a. est appliquée. Le temps minimum d'attente avant de pouvoir travailler sur les bornes ou à l'intérieur de l'appareil est indiqué dans le paragraphe 4.11 de ce manuel d'instructions.
- 2. Manipulez l'appareil en prenant soin de ne pas toucher ni endommager des composants. Il est interdit de modifier les distances d'isolement ou d'enlever des isolations ou des capots. Si la plaque frontale doit être enlevée en raison d'une température ambiante supérieure à 40 °C, l'utilisateur doit s'assurer qu'aucun contact occasionnel avec un composant sous tension ne puisse se produire.
- 3. Protégez l'appareil contre les conditions ambiantes non-admissibles (température, humidité, chocs, etc.).
- 4. Aucune tension ne doit être appliquée sur la sortie du convertisseur de fréquence (bornes U2, V2 et W2). Il est interdit de raccorder la sortie de plusieurs variateurs en parallèle et de réaliser une connexion directe des entrées avec les sorties (contournement).
- 5. Lors de la reprise d'un moteur en fonctionnement, la fonction "Auto capture" du menu ADD SPEED FUNCT doit être activée (ceci ne s'applique pas au **mode de régulation** "vectoriel sans capteur").
- 6. Aucune charge capacitive (p. ex. condensateurs de compensation de puissance réactive) ne doit être connectée à la sortie du variateur de fréquence (bornes U2, V2 et W2).
- 7. Connectez toujours le variateur à la terre de protection (PE) par le biais des bornes (PE2) et du châssis (PE1). Les variateurs de fréquence et les filtres d'alimentation c.a. présentent des courants de décharge à la terre supérieurs à 3,5 mA. Selon EN 50178, en présence de courants de décharge supérieurs à 3,5 mA, la connexion du conducteur de terre (PE1) doit être fixe et doublée à des fins de redondance.

- 8. La mise en service électrique doit être effectuée par un personnel qualifié. Ce dernier est également responsable de l'existence d'une connexion de terre adéquate et d'un câble d'alimentation protégé conformément aux réglementations locales et nationales. Le moteur doit être protégé contre les surcharges.
- 9. Aucun essai diélectrique ne doit être effectué sur les composants du variateur de fréquence. Il convient d'utiliser un instrument de mesure approprié (résistance interne minimale de $10~k\Omega/V$) pour mesurer les tensions des signaux.
- 10. Si les variateurs ont été stockés pendant plus de deux ans, le fonctionnement des condensateurs du circuit intermédiaire peut être altéré. Avant la mise en service d'appareils ayant été stockés pendant de longues périodes, alimentez-les pendant deux heures sans aucune charge, afin de régénérer les condensateurs (la tension d'entrée doit être appliquée sans que le variateur ne soit activé).
- 11. L'appareil peut démarrer accidentellement en cas de dérangement, même lorsqu'il est désactivé, à moins qu'il n'ait été déconnecté de la tension d'alimentation c.a.

1. MISE EN SERVICE RAPIDE

1.1. SCHEMA DE CABLAGE FONCTIONNEL

Note: PE1 est la terre de protection. Si PE2 est utilisée pour raccorder la terre du moteur, la terre du filtre antiparasite doit être connectée à PE1.

1.2. PRÉSENTATION

Ce guide suppose un démarrage standard au moyen du clavier, pour un variateur et un moteur destinés à fonctionner selon le mode vectoriel sans capteur ou le mode vecteur de flux (avec contre-réaction à codeur numérique ou sinusoïdal). Il est également supposé que l'on utilise un schéma de commande standard, autrement dit que la commande est pilotée à partir de boutons-poussoirs (ou contacts) et que la vitesse est réglée par le biais d'un potentiomètre d'entrée (ou source 0 - 10 V c.c.). Tandis que le variateur supporte plusieurs modes de fonctionnement et permet des douzaines de combinaisons de nombreuses configurations optionnelles spécifiques et complexes, ce guide couvre la plupart des applications qui, en tout cas, ne sont pas démarrées par un ingénieur services. Ce manuel peut toujours être utilisé pour effectuer un certain nombre de changements complexes par rapport à la configuration standard.

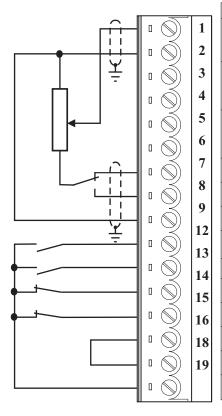
Câblage standard: Reportez-vous au manuel eu égard à la configuration standard suggérée pour le câblage. Veuillez noter que s'il s'agit d'un système conçu et câblé dans notre usine, la configuration du variateur (excepté la mise au point du moteur) a déjà été effectuée et ce guide de mise en service rapide ne s'applique pas. En revanche, vous devrez utiliser le guide de **Réglage rapide** pour les variateurs configurés en usine (AVy) figurant dans ce guide.

NOTE:

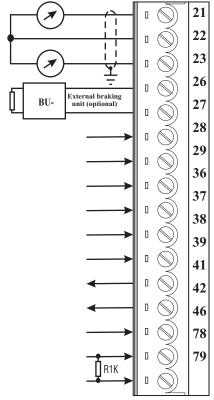
Mémoire : Deux mémoires sont prévues pour la configuration des paramètres. La première est la mémoire active ; c'est celle qui est toujours couramment utilisée par le variateur. Pour la deuxième, il s'agit de la mémoire permanente, qui est celle utilisée par le variateur en cas de coupure suivie d'un réenclenchement de l'alimentation. Veuillez noter que la phase d'enclenchement de l'alimentation est la seule phase où le variateur interroge la mémoire permanente. Tous les fichiers téléchargés ou télédéchargés, toutes les modifications, etc., sont écrits exclusivement dans la mémoire active, le cas échéant lus à partir de la mémoire active. La seule fois où la mémoire permanente est véritablement utilisée, se produit lors de l'initialisation de la mémoire active à la mise sous tension, et lorsqu'elle est modifiée par de nouvelles valeurs au moyen de la commande "Save Parameters" (sauvegarde des paramètres). Lorsque des paramètres sont modifiés pendant la configuration, le variateur utilisera ces paramètres; cependant, ces changements ne seront permanents qu'à partir du moment où vous exécuterez la commande "SAVE PARAMETERS" suivie d'une remise sous tension, faute de quoi les modifications seraient perdues. Cette caractéristique

peut être mise à profit lorsque vous effectuez des essais de fonctionnement, et que vous ne souhaitez pas modifier la configuration permanente.

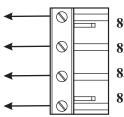
Soulignement : Lorsque des mots sont soulignés ci-après, ceux-ci renvoient à une touche du clavier ainsi désignée.


Guillemets : Les mots placés entre guillemets sont des mots qui apparaissent dans la zone d'affichage en face avant.

Navigation dans les menus : Selon les directions indiquées ci-dessous, vous serez invité à presser des touches afin de sélectionner la commande de menu appropriée. Dans de nombreux cas, la touche devra être pressée plus d'une fois afin d'obtenir la valeur affichée. Notez que l'afficheur comporte deux lignes, la ligne supérieure indiquant systématiquement le niveau immédiatement SUPERIEUR du menu dans lequel vous vous trouvez. Toutes les commandes de menu auxquelles il est fait référence dans ce guide de démarrage apparaissent dans la DEUXIEME LIGNE d'affichage. Les données affichées dans la ligne supérieure sont uniquement à titre d'information et n'ont rien à voir avec les données entrées. Lorsque vous êtes invité à presser la touche [Down arrow] pour entrer dans "Regulation Mode" (mode de régulation), cela signifie qu'il faut maintenir pressée la touche [Down arrow] jusqu'à ce que "Regulation Mode" s'affiche dans la deuxième ligne. En cas de confusion, reportez-vous au manuel où la structure de menus complète est indiquée.


Connexions d'E/S: Le variateur NE FONCTIONNE PAS tant que la validation matérielle (borne d'E/S 12) ainsi que les autres verrouillages ne sont pas activés. Afin de simplifier les choses, il est recommandé de connecter temporairement les entrées numériques comme suit:

Pontez 16 et 18, 19 et 15, 15 et 14, 12 et 13, puis branchez un interrupteur simple entre 13 et 14. La logique est en basse tension, par conséquent si vous n'avez pas d'interrupteur, reliez (ou séparez) simplement deux morceaux de fil dénudé entre eux. A présent, le fait de fermer ou d'ouvrir l'interrupteur validera ou invalidera le variateur (et en même temps le démarrage et l'arrêt), et tous les autres verrouillages nécessaires seront effectués correctement afin de tester le variateur. Si vous pouvez déjà commander les E/S au moyen de la logique connectée et réaliser les mêmes connexions avec vos propres boutons-poussoirs/contacts, le variateur peut être validé au moyen de ces éléments, mais ceci éliminera toute possibilité de résoudre les problèmes de configuration dus au câblage externe.

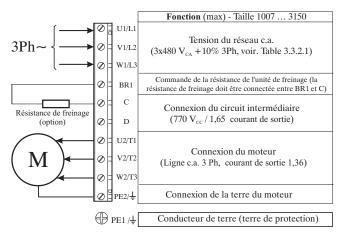

1.3. BORNES DE COMMANDE

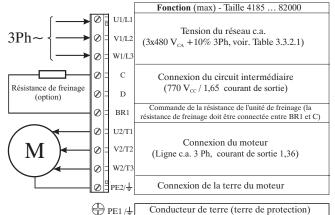
Bornier X1	Fonction	max
Analog input 1	Entrée analogique différentielle programmable/configurable. Signal : borne 1. Point de référence : borne 2. Réglage par défaut : "Ramp ref 1"	±10V
Analog input 2	Entrée analogique différentielle programmable/configurable. Signal : borne 3. Point de référence : borne 4. Réglage par défaut : aucun	0.25mA (20 mA si entrée réf.
Analog input 3	de courant)	
+10V	Tension de référence +10V ; point de référence : borne 9	+10V/10mA
-10V	Tension de référence -10V ; point de référence : borne 9	-10V/10mA
0V	$0V$ interne et point de référence pour $\pm10V$	-
Enable drive	Validation convertisseur ; 0V ou ouvert : convertisseur inhibé ; + 15+ 30V : convertisseur validé	+30V
Start	Commande démarrage convertisseur ; $0V$ ou ouvert : pas de démarrage ; $+15+30V$: démarrage	3.2mA @ 15V
Fast stop	0V ou ouvert : arrêt rapide + 15+ 30V : pas d'arrêt rapide	5mA @ 24V
External fault	0V ou ouvert : défaut externe + 15+ 30V : pas de défaut externe	6.4mA @ 30V
COM D I/O	Point de référence pour entrées/sorties numériques, bornes 1215, 3639, 4142	- <u>- </u>
0 V 24	Point de référence pour sortie d'alimentation + 24V, borne 19	-
+24V OUT	Sortie d'alimentation + 24V. Point de référence : borne 18, 27 ou 28	+2228V 120mA @ 24V

Analog output 1	Sortie analogique programmable ; réglage par défaut : vitesse du moteur. Point de réf. : borne 22	±10V/5mA
0V	0V interne et point de référence pour bornes 21 et 23	-
Analog output 2	Sortie analogique programmable ; réglage par défaut : courant du moteur. Point de réf. : borne 22	±10V/5mA
BU comm. output	Commande d'unités de freinage BU VeCon. Point de réf. : borne 27	+28V/15mA
0 V 24	Point de référence pour commande BU, borne 26	-
RESERVED		-
RESERVED		
Digital input 1	Entrées numériques programmables ; réglage par défaut : aucun	+30V
Digital input 2	Entices numeriques programmables, regiage pai detaut . aucun	3.2mA @ 15V
Digital input 3	Programmable digital input; default setting: none. Configurable as 1st encoder index qualifier ("Digital input 4" parameter must be set 0=OFF).	5mA @ 24V
Digital input 4	Programmable digital input; default setting: none. Configurable as 2nd encoder index qualifier (setting via S30 jumper,) "Digital input 3" parameter must be set 0=OFF	6.4mA @ 30V
Digital output 1		
Digital output 2	Sorties numériques programmables ; réglage par défaut : aucun	+30V/40mA
Supply D O	Alimentation pour sorties numériques sur bornes 41/42. Point de réf. : borne 16	+30V/80mA
Motor PTC	Sonde à coefficient positif de température (PTC) pour surtempérature du moteur (coupure R1k si utilisée)	1.5mA

	Bornier X2	Fonction	courant max.
80	OK relay	Contact du relais de potentiel OK (fermé = OK)	250V AC
82	contact		1 A AC11
83	Relay 2	Contact configurable du relais de potentiel (relais 2)	250V AC
85	contact	Réglage par défaut : ouvert (0) variateur à l'arrêt	1 A AC11

1.3.1 Section maximale des câbles pour les bornes de commande


	Maximum P	ermissible Cable C	Cross-Section	Tightening
Terminals	[m	m^2]	AWG	torque
	flexible	multi-core	AWG	[Nm]
1 79	0.14 1.5	0.14 1.5	28 16	0.4
80 85	0.14 1.5	0.14 1.5	28 16	0.4


Ai4090

NOTE:

Les borniers sont prévus pour le câblage d'un fil par borne. Les chaînages ainsi que les fils/points multiples sont mieux réalisés au moyen d'un bornier monté sur panneau.

1.4. BORNES DE PUISSANCE

1.4.1 Section maximale des câbles pour les bornes de puissance

	1007	1015	1022	1030	2040	2055	2075	3110	3150	4185	4220		
AWG		1	4		12	1	.0	8		6			
[mm2]		2	2			4		8	10		16		
[Nm]				0.5 to 0.6				1.2 t	to 1.5		2		
AWG		1	4		12	1	.0	8	6		10		
[mm2]		2	2			4		8	10		6		
[Nm]				0.5 to 0.6				1.2 t	to 1.5		0.9		
AWG		1	4		12	1	.0	8	6		6		
[mm2]		2	2			4		8	10		16		
[Nm]				0.5 to 0.6				1.2 t	to 1.5		2		
	4300			<==0	5000	71100	F1220	01.000	00000				
				6750	7900	. /!!!!!	71.520	1 81600	82000				
AWG	4			1/0	6750 2/0	7900 4/0	71100 300*	71320 350*	81600 4xAWG2	82000	* = kcmils		
AWG [mm2]		2			2/0 70					150**	-		
	4	2	2	1/0	2/0 70	4/0	300*	350* 185	4xAWG2		* = kcmils **: copper bar		
[mm2]	4 25	2	2 5 4	1/0	2/0 70	4/0 95	300*	350* 185	4xAWG2 4x35		-		
[mm2] [Nm]	4 25 3	3	2 5 4	1/0 50	2/0 70	4/0 95	300* 150	350* 185	4xAWG2 4x35 0-30		-		
[mm2] [Nm] AWG	4 25 3 8	3	2 5 4 1	1/0 50	2/0 70	4/0 95	300* 150	350* 185	4xAWG2 4x35 0-30		-		
[mm2] [Nm] AWG [mm2]	4 25 3 8 10	8 10 1.6	2 5 4 1	1/0 50	2/0 70	4/0 95	300* 150	350* 185 1 als not avail	4xAWG2 4x35 0-30		-		
[mm2] [Nm] AWG [mm2] [Nm]	4 25 3 8 10 1.6	8 10 1.6	2 5 4	1/0 50	2/0 70	4/0 95	300* 150 termina	350* 185 1 1als not avail	4xAWG2 4x35 0-30		-		

avy4040

1.5 BORNES DU CODEUR (CONNECTEUR XE)

	Désignation	Fonction	E/S	Maxi Tension	Maxi Courant
Broche 1	ENC B-	Canal B-	E	5 V digital ou	10 mA digital ou
DIOCHC 1	ENC B-	Signal codeur incrémental B négatif		1 V pp analog	8.3 mA analog
Broche 2		Alimentation codeur +8V	S	+8 V	200 mA
Broche 3	ENC C+	Canal C+	Е	5 V digital ou	10 mA digital ou
Broche 3	ENCCT	Signal codeur incrémental Index positif		1 V pp analog	8.3 mA analog
Broche 4	ENC C-	Canal C-	Е	5 V digital ou	10 mA digital ou
Broche 4	ENC C-	Signal codeur incrémental Index négatif		1 V pp analog	8.3 mA analog
Broche 5	ENC A+	Canal A+	Е	5 V digital ou	10 mA digital ou
broche 3	ENCA+	Signal codeur incrémental A positif	E	1 V pp analog	8.3 mA analog
Broche 6	ENC A-	Canal A-	Е	5 V digital ou	10 mA digital ou
Broche 0	ENC A-	Signal codeur incrémental A négatif		1 V pp analog	8.3 mA analog
Broche 7	GND	Consigne pour alimentation codeur +5V	S	-	-
Broche 8	ENC B+	Canal B+	Е	5 V digital ou	10 mA digital ou
broche 8	ENC D+	Signal codeur incrémental B positif	E	1 V pp analog	8.3 mA analog
Broche 9	AUX+	+5V encoder supply voltage	S	+5 V	200 mA
Broche 10	HALL 1+/SIN+	Canal HALL1 + / SIN+	Е	5 V digital ou	10 mA digital ou
Broche 10	HALL I+/SIN+	Réservé	E	1 V pp analog	8.3 mA analog
Broche 11	HALL 1-/SIN-	Canal HALL 1- / SIN-	Е	5 V digital ou	10 mA digital ou
broche 11	HALL 1-/SIN-	Réservé	E	1 V pp analog	8.3 mA analog
Broche 12	HALL 21/COST	Canal HALL 2+ / COS+	Е	5 V digital ou	10 mA digital ou
Broche 12	HALL 2+/COS+	Réservé		1 V pp analog	8.3 mA analog
D l 12	HALL 2 /COS	Canal HALL 2- / COS-	Е	5 V digital ou	10 mA digital ou
Broche 13	HALL 2-/COS-	Réservé		1 V pp analog	8.3 mA analog
D l 14	HALL 2.	Canal HALL 3 +	Е	5 V digital ou	10 4 -1::4 1
Broche 14	HALL 3+	Réservé		1 V pp analog	10 mA digital
D l 15	HALL 2	Canal HALL 3 -	Е	5 V digital ou	10 4 -1::4 1
Broche 15	HALL 3-	Réservé		1 V pp analog	10 mA digital

1.5.1 Connexion des types de codeur

	Shielded cable	XE CONNECTOR PIN														
Encoder type		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Cable	B-	+8V	C+	C-	A+	A-	0V	B+	+5V	E+	E-	F+	F-	G+	G-
	Internal +5V Encoder Power Supply															
DE	8 pole	•		•	•	•	•	•	•	•						
SE	8 pole	•		•	•	•	•	•	•	•						
		Ir	iterna	ıl +8	V Enc	oder	Power	r Sup	ply							
DE	8 pole	•	•	•	•	•	•	•		•						
SE	8 pole	•	•	•	•	•	•	•		•						

DE: Codeur incrémental numérique 5V avec A / \overline{A} , B / \overline{B} , C / \overline{C}

 \mathbf{SE} : Codeur incrémental sinusoïdal 5V avec A / \overline{A} , B / \overline{B} , C / \overline{C}

1.5.2 Réglage des cavaliers

Encoder / Jumpers setting	S11	S12	S13	S14	S15	S16	S17	S18	S19	S20	S21	S22	S23
DE	OFF	OFF	OFF	OFF	OFF	OFF	ON (*)	1	-	-	-	1	-
SE	ON	ON	ON	ON	ON	ON	-	-	-	-	-	-	-

ai3150

DE : Codeur incrémental numérique 5V avec A / \overline{A} , B / \overline{B} , C / \overline{C}

- **SE**: Codeur incrémental sinusoïdal 5V avec A / A, B / B, C / C

(*) Si le codeur n'est pas fourni avec la voie zéro S17=OFF

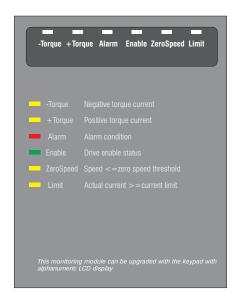
1.5.3 Longueur maximale des câbles pour les bornes du codeur

Cable section [mm ²]	0.22	0.5	0.75	1	1.5
Max Length m [feet]	27 [88]	62 [203]	93 [305]	125 [410]	150 [492]

avy3130

1.6. LISTE DES CAVALIERS ET DES MICRO-INTERRUPTEURS

Désignation	Fonction	Réglage d'origin
S5 - S6	Résistance de terminaison pour l'interface série RS485	ON (*)
	ON = résistance de terminaison présente	
	OFF = pas de résistance de terminaison	
S8	Adaptation du signal de l'entrée analogique 1 (bornes 1 et 2)	OFF
	ON=020 mA / 420 mA	
	OFF=010V / -10+10V	
S9	Adaptation du signal de l'entrée analogique 2 (bornes 3 et 4)	OFF
	ON=020 mA / 420 mA	
	OFF=010V / -10+10V	
S10	Adaptation du signal de l'entrée analogique 3 (bornes 5 et 6)	OFF
	ON=020 mA / 420 mA	
	OFF=010V / -10+10V	
S11 - S12 - S13	Réglage du codeur (jumpers on kit EAM 1618 supplied with the drive)	OFF
S14 - S15 - S16	ON = codeur sinusoïdal SE	
	OFF = codeur numérique DE	
S17	Surveillance de la voie C du codeur numérique	OFF
	ON = voie C surveillée	
	OFF = voie C non-surveillée (nécessaire pour voies simples)	
S18 - S19	Réglage du codeur	В
S20 - S21	Pos. B = Réservé	
	Pos. A = Réservé	
S22 - S23	Validation de l'entrée analogique 3 (alternative avec codeur SESC)	В
	Pos. A = Réservé	
	Pos. B = entrée analogique 3 validée	
	Pos. OFF = en cas d'utilisation d'un résolveur	
S26 - S27	Réservé	ON
S28	Encoder Internal power supply selection	ON/ON
	ON/ON = +5 V	1
	OFF / OFF = +8 V	
S29	Utilisation interne	A
S30	Selon entrée qualificateur codeur	A
	A=de la carte EXP	
S34	B=de l'entrée digitale "3" ou RV33-4 Cavalier pour déconnecter le 0V (partie régulation) de la masse	ON
334	ON = 0V connecté à la masse	(hard-wire)
	OFF = 0V déconnecté de la masse	(nard-wire)
S35	Cavalier pour déconnecter le 0V (du 24V) de la masse	ON
333	ON = 0V connecté à la masse	
	1	(hard-wire)
\$26	OFF = 0V déconnecté de la masse	***************************************
S36 S37	Utilisation interne	non monté
	Utilisation interne	non monté
S38-S39	Utilisation interne	ON
S40-S41	Sélection type d'alimentation, interne ou externe, de la ligne série RS485:	OFF
(**)	ON=Ligne série alimentée par la régulation du drive (pins XS.5 / XS.9)	
	OFF = Ligne série alimentée par une source extérieure (pins XS.5 / XS.9)	


^(*) Sur des connexions multipoints, le cavalier ne doit être placé sur ON uniquement pour le dernier point d'une ligne série (**) voir chapitre 5.4

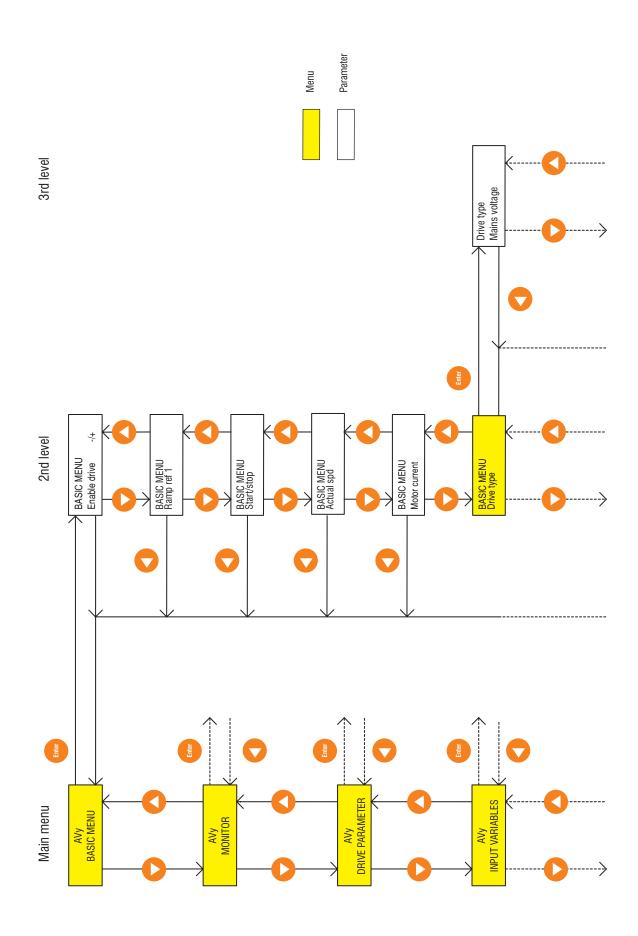
1.7. FONCTIONNEMENT DU CLAVIER

Le clavier est composé d'un afficheur LCD à deux lignes de 16 caractères, de sept LED et de neuf touches de fonction. <u>Il est utilisé</u> :

- pour commander le variateur, dans la mesure où ce mode d'utilisation a été programmé ("Main commands"=DIGITAL)
- pour afficher la vitesse, la tension, les diagnostics, etc., pendant le fonctionnement
- pour régler les paramètres

Note: Tout câble de clavier de longueur supérieure à 20 cm doit être blindé.

1.7.1 LED et touches


Les LED présentes sur le clavier sont utilisées pour diagnostiquer rapidement l'état de fonctionnement du variateur.

Désignation	Couleur	Fonction
-Torque	jaune	La LED est allumée lorsque le variateur fonctionne avec un couple négatif
+Torque	jaune	La LED est allumée lorsque le variateur fonctionne avec un couple positif
ALARM	rouge	La LED s'allume pour signaler un dérangement
ENABLE	vert	La LED est allumée lorsque le variateur est validé
Zero speed	jaune	La LED s'allume pour signaler la vitesse zéro
Limit	jaune	La LED est allumée lorsque le variateur fonctionne à la limite de courant
Shift	jaune	La LED est allumée lorsque les fonctions secondaires du clavier sont validées

ai5010

Touches de commande	Désignation	Fonction
	[START]	La touche START (MARCHE) commande l'état de validation (fonction de commande d'arrêt = ON) et l'état RUN (EXECUTION) du variateur (Main commands = DIGITAL, commandes principales = NUMERIQUE). Lorsque Main commands est configuré sur TERMINALS (BORNES), cette touche n'est pas active.
0	[STOP]	La touche STOP (ARRET) commande l'arrêt du variateur à partir de l'état RUN lorsque Main commands est configuré sur DIGITAL. (Une action pendant 2 secondes invalide le variateur). Lorsque Main commands est réglé sur TERMINALS, cette touche n'est pas active.
Jog	[Increase] / [Jog]	La touche Plus augmente la référence de vitesse pour la fonction potentiomètre du moteur. Lorsque la touche Shift est sélectionnée, c'est la commande JOG (pas à pas) qui est active.
	[Decrease] / [Rotation control]	La touche Moins diminue la référence de vitesse pour la fonction potentiomètre du moteur. Lorsque la touche Shift est sélectionnée, c'est la commande Rotation control (commande du sens de rotation) qui est active; cette fonction change le sens de rotation du moteur en mode pas à pas et pour la fonction potentiomètre du moteur.
Help	[Down arrow] / [Help]	Down arrow (flèche vers le bas) - Utilisée pour changer la sélection des menus ou des paramètres. En mode réglage de paramètre et réglage de référence, cette touche modifie la valeur du paramètre ou de la référence. Help (Aide) – Fonction non disponible (Lorsque cette touche est pressée conjointement avec la touche Shift, le message "Help not found" (Aide non disponible) est affiché).
Alarm	[Up arrow] / [Alarm]	Up arrow (flèche vers le haut) - Utilisée pour changer la sélection des menus ou des paramètres. En mode réglage de paramètre et réglage de référence, cette touche modifie la valeur du paramètre ou de la référence. Alarm (Défaut) - Affichage des défauts enregistrés (avec touche Shift sélectionnée). Utilisez les flèches UP/DOWN (HAUT/BAS) pour faire défiler les dix derniers défauts.
Escape	[Left arrow] / [Escape]	Left arrow (flèche vers la gauche) - Lors de l'édition de paramètres numériques, cette touche permet de sélectionner le chiffre du paramètre à modifier. Dans les autres cas, cette touche permet de sortir du mode réglage. Escape - Utilisée pour sortir du mode réglage et du mode affichage des défauts (Reset) (lorsque la touche Shift est sélectionnée).
Home	[Enter] / [Home]	[Enter] - Utilisée pour entrer une nouvelle valeur d'un paramètre dans le mode réglage des paramètres. Home - Utilisée pour aller directement au BASIC MENU (MENU DE BASE) (lorsque la touche Shift est sélectionnée).
Shift	[Shift]	La touche Shift donne accès aux fonctions secondaires du clavier (Rotation control, Jog, Help, Alarm, Escape, Home).

1.7.2 Déplacement à l'intérieur d'un menu

1.8. CONTRÔLES AVANT LA MISE SOUS TENSION

Les points suivants doivent être contrôlés avant de mettre le variateur sous tension :

Masses / Mise à la masse

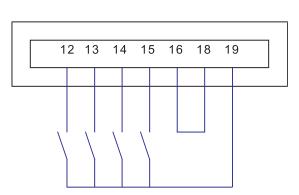
- Vérifiez les connexions de masse entre le variateur et le moteur.
- · Vérifiez que l'entrée c.a., la sortie c.a. et les câbles de commande ne sont pas court-circuités à la masse.

Connexions

· Vérifiez les connexions de l'entrée c.a. (U1/L1, V1/L2, W1/L3), sortie c.a. (U2/T1, V2/T2, W2/T3), circuit intermédiaire (C,D) (avec une unité de freinage externe optionnelle), thermistance du moteur (78,79), relais OK (80,82 no), relais 2 (83,85 no) et de la carte de régulation (1.....46, XS, XE).

12 VALIDATION VARIATEUR (fermé à l'état actif)

13 MARCHE (fermé à l'état actif)


14 ARRET RAPIDE (ouvert à l'état actif)

15 DEFAUT EXTERNE (ouvert à l'état actif)

16 Commun pour bornier

18 Commun + 24 V

19 +24 V c.c. (interne)

Réglage des cavaliers et des micro-interrupteurs sur la carte de régulation

- · Validation variateur (borne 12) et Marche (borne 13) OPEN (OUVERT)
- · Arrêt rapide (borne 14) et défaut externe (borne 15) CLOSED (FERME)

. Notez les informations figurant sur la plaque signalétique du moteur, les informations du codeur ainsi que les caractéristiques mécaniques.

CARACTERISTIQUES DU MOTEUR

HP (kW)	Cos phi (power factor)	
Amps	Tach type	
Volts	Tach PPR	
Hz	Motor rotation for machine fwd direction [CW/CCW]	
rpm	Gearbox ratio	

Dai54123

1.9. RÉGLAGE RAPIDE

- 1. Après une vérification complète du câblage et des niveaux de tension d'entrée, suivie de la mise sous tension :
 - ·Vérifiez que les tensions suivantes sont présentes :
 - +10V entre la borne 7 et la borne 9 (sur la carte de régulation)
 - -10V entre la borne 8 et la borne 9 (sur la carte de régulation)
 - +24...30V entre la borne 19 et la borne 18 (sur la carte de régulation)
 - •Contrôlez la tension du circuit intermédiaire en pressant [Down arrow] afin d'afficher "MONITOR", puis pressez [Enter], puis [Down arrow] pour afficher "measurements", puis [Enter], puis [Down arrow] pour passer à "DC link voltage", puis [Enter].

La valeur doit être conforme aux plages suivantes

480-650 V c.c. pour une entrée 400 V c.a.

550-715 V c.c. pour une entrée 460 V c.a.

Si la valeur n'est pas dans ces plages, contrôlez la tension du réseau, car il est peu probable que le variateur fonctionnera correctement dans pareil cas.

- 2. Restauration des valeurs d'origine : Si vous n'êtes plus tout à fait sûr de la configuration du variateur, il est nécessaire de restaurer les valeurs d'origine ou de copier un fichier depuis un PC afin de vous assurer que vous redémarrez à partir d'une configuration connue. Pour restaurer les valeurs d'origine, procédez ainsi :
 - Restauration de la mémoire de travail : Pressez [Left arrow] pour revenir à "MONITOR", puis [Down arrow] pour "SPEC FUNCTIONS" et ensuite [Enter]. Pressez [Down arrow] pour "Load Default" et [Enter]. A présent, les valeurs d'origine relatives à l'ensemble des paramètres sont chargées dans la mémoire de travail, cependant les valeurs précédentes figurent toujours en mémoire permanente.

3. Réglage de la tension du réseau :

Pressez [Left arrow] afin d'afficher "SPEC FUNCTIONS", puis [Up arrow] pour "BASIC MENU", puis [Enter], puis [Down arrow] pour "Drive type", puis [Enter] pour "Mains voltage" et [Enter]. A présent, utilisez les touches [Up arrow] / [Down arrow] pour modifier la

tension à la valeur la plus proche de votre tension d'entrée c.a. nominale. Ensuite, pressez [Enter] pour prendre en compte la valeur.

4. Adaptation de la température ambiante maximale :

· Pressez [**Down arrow**] afin d'afficher "Ambient temp", puis [**Enter**]. A présent, au moyen des touches [**Up arrow**] / [**Down arrow**], réglez la température ambiante maximale : 40 °C ou 50 °C, puis [**Enter**].

5. Chargement des valeurs d'origine du moteur :

Pressez [Left arrow] pour revenir à "BASIC MENU", puis [Down arrow] pour "DRIVE PARAMETER", puis [Enter], puis [Down arrow] pour "Motor Parameter", [Enter], puis [Down arrow] pour "Load Motor Par" et [Enter]. Utilisez les touches [Up arrow]/[Down arrow] jusqu'à ce que l'afficheur indique la tension moteur correcte, puis pressez [Enter]. Pour les moteurs 460 V c.a., sélectionnez 460, et pour les moteurs 380/400 V c.a., sélectionnez 400.

6. Réglage des caractéristiques réelles du moteur:

- · Pressez [Left arrow] jusqu'à ce que "DRIVE PARAMETER" s'affiche, puis [Enter] pour afficher "Mot plate data" et [Enter] pour "Nominal Voltage", puis une nouvelle fois [Enter] pour afficher la valeur. Au moyen des touches [Up arrow]/[Down arrow], modifiez la valeur et pressez [Left arrow] pour sélectionner la position du caractère suivant. Lorsque la valeur est correcte, pressez [Enter].
- · Pressez [Down arrow] pour afficher "Nominal speed", [Enter], puis utilisez les touches [Up arrow] / [Down arrow] pour afficher la vitesse nominale indiquée sur la plaque signalétique du moteur. Pressez [Enter] pour régler les données. Veuillez noter que certains constructeurs de moteurs à contrôle vectoriel indiquent la vitesse synchrone (exactement 600, 900, 1500, 1800, 3600) pour la vitesse nominale, sans tenir compte de la vitesse de glissement qui résulte d'un fonctionnement sur le réseau 50 Hz. Si c'est le cas, vous DEVEZ entrer une vitesse de glissement dans ce paramètre. Réglez une vitesse inférieure de 20 tr/mn à la vitesse synchrone pour ces cas de figure.
- · Pressez **[Down arrow]** pour afficher "Nom frequency" et **[Enter]**, puis réglez la fréquence nominale indiquée sur la plaque signalétique (généralement 50 ou 60 Hz) au moyen des touches **[Up arrow]** / **[Down arrow]**. Pressez

[Enter] pour prendre en compte la valeur.

- · Pressez [Down arrow] pour afficher "Nominal current" et [Enter], puis réglez le courant nominal indiqué sur la plaque signalétique (courant nominal) au moyen des touches [Up arrow] / [Down arrow]. Pressez [Enter] pour prendre en compte la valeur.
- · Pressez [Down arrow] pour afficher "Cos phi" et [Enter], puis réglez le facteur de puissance nominal figurant sur la plaque signalétique au moyen des touches [Up arrow] / [Down arrow] (acceptez la valeur proposée par défaut si vous ne la connaissez pas). Pressez [Enter] pour prendre en compte la valeur.
- · Pressez [Down arrow] pour afficher "Base Voltage" et [Enter], puis réglez la tension de base au moyen des touches [Up arrow] / [Down arrow] (généralement la tension nominale). Pressez [Enter] pour prendre en compte la valeur. Reportez-vous au manuel pour la tension et la fréquence de base en cas d'utilisation du moteur au-delà de la vitesse synchrone normale.
- · Pressez [Down arrow] pour afficher "Base Frequency" et [Enter], puis réglez la fréquence de base au moyen des touches [Up arrow] / [Down arrow] (généralement la fréquence nominale). Pressez [Enter] pour prendre en compte la valeur.
- · Pressez [Down arrow] pour afficher "Take motor par" et [Enter], puis réglez tous les paramètres du moteur. Ce faisant, si le message "Over-range error XXX" (valeur hors plage) apparaît, cela signifie que la valeur entrée n'est pas correcte. Le variateur N'A PAS ACCEPTE les valeurs que vous avez entrées. La cause la plus commune de cette erreur et lorsque l'on essaie d'entrer une valeur pour "Nominal Current" (courant nominal) qui soit inférieure de 30 % à la valeur nominale du variateur. Ceci n'est pas autorisé car cela occasionnerait des problèmes lors de la commande d'un grand variateur couplé à un très petit moteur. Essayez de revenir au début de l'étape 6, puis répétez les entrées. Si cela ne fonctionne pas, reportez-vous à la liste des débordements au chapitre 1.12, "Dépannage" ou contactez le service clientèle.

7. Réglage des valeurs de base du variateur :

- · Pressez **[Left arrow]** jusqu'à ce que "drive parameter" s'affiche, puis **[Down arrow]** pour afficher "configuration", puis **[Enter]**.
- · Pressez [**Down arrow**] pour afficher "Speed Base Value" et [**Enter**], puis réglez la vitesse à pleine charge indiquée sur la plaque signalétique du moteur, pressez [**Enter**].

- · Pressez [Down arrow] pour afficher "full load current" et [Enter], puis réglez le courant nominal à pleine charge du VARIATEUR (et non du moteur) au moyen des touches [Up arrow] / [Down arrow], puis pressez [Enter] pour valider.
- **8. Réglage du mode de régulation :** (modes V/f, contrôle vectoriel sans capteur ou contrôle vectoriel de flux)
 - · Pressez [Up arrow] pour afficher "Regulation mode", puis [Enter] et, au moyen des touches [Up arrow] / [Down arrow], sélectionnez "sensorless vect" (contrôle vectoriel sans capteur) ou "Field oriented" (contrôle vectoriel de flux), puis pressez [Enter].
 - · Si le mode "Field oriented" est sélectionné :
 - · Pressez [Down arrow] jusqu'à ce que "Motor spd fbk" s'affiche, puis pressez [Enter], [Down arrow] pour "Encoder 1 type", puis [Enter]. Au moyen des touches [Up arrow]/[Down arrow], sélectionnez le type de codeur sinusoïdal ou numérique, puis [Enter].
 - · Pressez [**Down arrow**] pour afficher "Encoder 1 pulses", puis [**Enter**] et réglez la valeur (impulsions par tour) de votre codeur (généralement 1024) au moyen des touches [**Up arrow**]/[**Down arrow**], pressez [**Enter**].

9. Limites de vitesse :

· Pressez [Left arrow] jusqu'à ce que "Basic Menu" s'affiche, puis [Down arrow] pour "Limits", puis [Enter] pour "Speed Limits", puis [Enter] pour "Speed Amount", puis [Enter] pour "Speed Min Amount". Pressez [Down arrow] pour "Speed Max Amount", puis [Enter]. Modifiez la valeur de 5000 tours par minute à la vitesse maximale du moteur au moyen des touches [Up arrow]/[Down arrow], comme précédemment (pour maintenant, réglez la valeur à 105 % de la vitesse nominale du moteur). Pressez [Enter].

10. Préparation en vue du réglage automatique :

Le clavier est utilisé à cette fin, mais les E/S doivent être connectées correctement ainsi que les fonctions de validation/invalidation matérielles.

11. Sauvegarde des paramètres :

· Pressez [Left arrow] jusqu'à ce que "limits" s'affiche, puis [Up arrow] jusqu'à "Basic Menu", puis [Enter], puis [Down arrow] pour "Save parameters", puis [Enter].

Le message "wait" (attendre) apparaît sur

l'afficheur jusqu'à ce que les valeurs soient mémorisées en mémoire permanente.

12. Réglage automatique :

Assurez-vous que l'alimentation est sous tension et que le variateur n'est pas activé.

Fermez l'interrupteur sur la borne 12 (24 V c.c. sur la validation matérielle).

- · Lorsque l'interrupteur de validation est fermé, pressez [Left arrow] jusqu'à ce que "Basic Menu" s'affiche, puis [Down arrow] pour "Drive Parameter", puis [Enter], puis [Down arrow] pour "motor parameters" et [Enter]. Pressez "[Down arrow] pour "Self Tuning" et [Enter] pour afficher "self tune 1". Pressez [Enter] pour afficher "start part 1" et [Enter], "start part 1 ?" et [Enter] une nouvelle fois. Le clavier doit indiquer une LED "enable" allumée; si ce n'est pas le cas, vérifiez que les cavaliers (ou interrupteurs externes) sont réglés de telle sorte que le 24 V c.c. est appliqué sur les bornes 12, 13, 14, 15 par rapport à 16 ou 18.
- · A présent, vous devez voir apparaître "measuring Rs" (résistance du stator). Attendez jusqu'à ce que le message "end" s'affiche, puis désactivez le variateur (ouvrez l'interrupteur relié à la borne 12), puis pressez deux fois [Left arrow] pour afficher "self tune 1", ensuite pressez [Enter], puis [Down arrow] jusqu'à ce que "take val part 1" s'affiche, puis [Enter]. L'afficheur indique "wait" jusqu'à ce que les valeurs soient mémorisées.

NOTE: Les messages "xxx range error" ou "timeout" peuvent également survenir avec certaines plages de paramètres extrêmes. Répétez la procédure dans pareil cas. Si les messages d'erreur réapparaissent, reportez-vous au paragraphe "Dépannage".

13. Réglage automatique partie 2 :

La partie initiale du réglage automatique, pouvant être réalisée sans que le moteur ne tourne, vient d'être accomplie. A présent, afin d'obtenir les meilleurs réglages possibles, le moteur doit pouvoir tourner librement, sans qu'aucune charge ne soit couplée à l'arbre. Pour ce faire, nous utilisons le mode de réglage automatique 2a. Si, pour quelque raison que ce soit, le moteur ne peut pas tourner librement sans charge, un niveau de réglage "fermé" peut tout de même être obtenu en sélectionnant le mode de réglage automatique 2b.

· A présent, pressez [Left arrow] pour afficher "self tune 1", puis [Down arrow] pour "self tune

2a" ou "self tune 2b", puis pressez [Enter]. Activez le variateur au moyen de l'interrupteur relié à la borne 12. Pressez [Enter], "start part 2a?" ou "start part 2b?" puis [Enter], ensuite le message "measure sat 2a (ou b)" apparaît et l'arbre moteur se met à tourner (si "self tune 2a" est sélectionné). Attendez jusqu'à ce que l'afficheur indique "end", pressez [Left arrow] pour afficher "self tune 2a (ou b)", puis [Enter] et pressez [Down arrow] pour afficher "take val part 2a (ou b)". Désactivez le variateur (ouvrez l'interrupteur relié à la borne 12), puis pressez [Enter].

NOTE: Les messages "xxx range error" ou "timeout" peuvent également survenir avec certaines plages de paramètres extrêmes. Répétez la procédure dans pareil cas. Si les messages d'erreur réapparaissent, reportez-vous au paragraphe "Dépannage". Si, pour une raison quelconque, vous ne souhaitez pas conserver ces valeurs en mémoire permanente, mais simplement essayer de faire fonctionner le variateur avec ces valeurs, il n'est pas nécessaire de les sauvegarder en mémoire permanente. Néanmoins, en cas de cycle de mise hors/ sous tension, ces valeurs seront perdues à moins que l'étape suivante ne soit réalisée.

14. Réglage automatique partie 3 :

La troisième partie de la procédure de réglage automatique (réglage du régulateur de vitesse) identifie la valeur d'inertie totale pour l'arbre moteur, la valeur de frottement, puis calcule les gains de la part proportionnelle et intégrale du régulateur de vitesse. Le moteur doit pouvoir tourner librement, sans qu'aucune charge ne soit couplée à l'arbre.

AVERTISSEMENT!

Cette procédure nécessite la libre rotation de l'arbre moteur couplé à la charge. La commande Start/Stop est ignorée, c'est pourquoi il n'est pas possible de l'utiliser sur les variateurs avec plage limitée.

PRUDENCE!

L'essai est exécuté en utilisant la valeur limite du couple réglée dans le paramètre "Test T curr lim". Le couple est appliqué progressivement, sans rampe (profil), c'est pourquoi la transmission mécanique ne doit pas présenter de jeu significatif et doit être compatible avec le fonctionnement à la limite de couple réglée dans le paramètre "Test T curr lim". L'utilisateur peut réduire la limite de couple à une valeur appropriée par l'intermédiaire du paramètre "Test T curr lim".

Note!

- Pour les applications pour lesquelles l'inertie du système couplé à l'arbre moteur est nettement plus importante que la valeur d'inertie du moteur, augmentez le paramètre "Test T curr lim" afin d'éviter l'erreur "Time out" (temps imparti).
- Cette procédure ne convient pas pour l'utilisation avec des mécanismes de "levage" ou entraînements "d'ascenseurs".
- Une boucle de réaction à codeur est nécessaire lorsque le mode contrôle vectoriel de flux est sélectionné.
- Réglez la limite de courant (BASIC MENU\ T Current lim +/-) à une valeur compatible avec la taille du moteur et la charge. (Exemple : lorsque la puissance du moteur correspond au 1/3 de la puissance du variateur, la limite doit être réduite en comparaison avec la valeur par défaut).
- Sélectionnez la valeur du courant de couple devant être utilisée pendant le test au moyen du paramètre **Test T curr lim.**
- · A présent, pressez [Left arrow] pour afficher "self tune 2a" ou "self tune 2b", puis [Down arrow] pour "self tune 3" et pressez [Enter] pour "Fwd-Rev spd tune", puis [Enter]; ensuite, réglez le sens de rotation de l'arbre moteur pour ce test : Forward (avant) ou Reverse (arrière) au moyen des touches [Up arrow] / [Down arrow]. Pressez [Enter] pour valider la sélection.
- · Activez le variateur au moyen de l'interrupteur relié à la borne 12 [et fermez l'interrupteur entre la borne 13 et la borne 19 si la fonction de commande de vitesse est validée (valeur par défaut)]. Pressez [**Down arrow**] pour "Start part 3" puis pressez [Enter], "start part 3 ?" puis [Enter], ensuite le message "measure speed" apparaît et le moteur se met à tourner. Attendez jusqu'à ce que l'afficheur indique "end", pressez [Left arrow] pour afficher "self tune 3", puis [Enter], et pressez [Down arrow] pour afficher "take val part 3". Désactivez le variateur, puis pressez [Enter]. C'est ainsi que se termine la procédure de configuration et de réglage initiale avec les valeurs mémorisées uniquement dans la "mémoire de travail"

NOTE:

Les messages "xxx range error" ou "timeout" peuvent également survenir avec certaines plages de paramètres extrêmes. Répétez la procédure dans pareil cas. Si les messages d'erreur réapparaissent, reportez-vous au paragraphe 1.12 "Dépannage".

NOTE:

Si, pour une raison quelconque, vous ne souhaitez pas conserver ces valeurs en mémoire permanente, mais simplement essayer de faire fonctionner le variateur avec ces valeurs, il n'est pas nécessaire de les sauvegarder en mémoire permanente. Néanmoins, en cas de cycle de mise hors/sous tension, ces valeurs seront perdues. Pour enregistrer toutes les valeurs en mémoire permanente, sélectionnez Save parameters puis pressez [Enter].

15. Configuration de fonctionnement :

Avant de procéder à une sauvegarde, sélectionnez tout d'abord la configuration selon laquelle vous souhaitez faire fonctionner le variateur.

Le variateur est réglé en usine pour fonctionner par le biais d'une référence externe +/- 10V au moyen d'un potentiomètre branché aux bornes 1, 2 (cf. table 5.3.2.1). Si vous souhaitez faire fonctionner le moteur au moyen du clavier par l'intermédiaire des touches Increase [+] et Decrease [-] (paramètre **Enable motor pot** = Enabled (validé)), reportez-vous aux instructions suivantes.

Si un changement de la valeur par défaut du temps de rampe d'accélération / décélération est nécessaire, il est possible de régler la valeur souhaitée au moyen de Acc delta time / Acc delta speed et Dec delta time / Dec delta speed.

1.9.1 Potentiomètre moteur

Touches de commande	Séquence	Affichage
	Pressez la touche START afin de placer le variateur dans les états de validation et d'exécution .	
0	Pressez la touche STOP afin de commander le variateur de l'état d'exécution à l'état d'arrêt.	
Jog	Pressez cette touche pour afficher la valeur de la référence de courant et pour augmenter la référence de courant et accélérer le variateur.	Motor pot oper +0 [rpm] POS
6	Pressez cette touche pour diminuer la valeur de référence et décélérer le variateur.	Motor pot oper -0 [rpm] NEG
Shift	Pressez SHIFT et [-] pour modifier le sens de rotation de l'arbre moteur.	

Note! (Main commands = DIGITAL)

Validation du variateur, borne 12 au

24 V c.c.

Marche, borne 13 au 24 V c.c.

Initialisation de la référence de vitesse au moyen de la fonction Mot pot (potentiomètre moteur)

- · Pressez la touche [STOP] pour arrêter le moteur.
- Pressez [Left arrow] jusqu'à ce que "Basic menu" s'affiche, puis [Down arrow] pour "Functions".
 [Enter] pour "motor pot", puis [Enter] pour "enab motor pot", pressez [Down arrow] pour "motor pot reset", puis [Enter].

L'afficheur indique "ready" (prêt) jusqu'à ce que la valeur de référence soit réglée à zéro.

Désactivez le potentiomètre moteur (paramètre **Enable motor pot** = désactivé) si vous souhaitez utiliser une tension analogique (potentiomètre ou autre) dans la borne 1 pour la référence de vitesse (déjà réglé en usine).

Fonction Jog (pas à pas)

Note! Cette fonction est déjà activée par défaut (paramètre **Enable jog** =

Enabled) avec une valeur de référence de vitesse = 100 tr/mn.

(Main commands = DIGITAL)

Activez le variateur, borne 12 au 24 V c.c.

Marche, borne 13 au 24 V c.c.

Pressez [SHIFT] et [+] pour démarrer, la vitesse est affichée

Pressez [-] afin de sélectionner le sens de rotation de l'arbre moteur.

Pressez [jog] afin de sélectionner l'autre sens

Pressez [Left arrow] pour sortir du mode pas à pas.

Modification de "jog reference" (réf. pas à pas)

Pressez [Down arrow] jusqu'à ce que "Functions" s'affiche, [Enter], puis [Down arrow] jusqu'à ce que "Jog reference" s'affiche, [Enter]; au moyen des touches [Up arrow]/[Down arrow], modifiez la valeur et pressez [Left arrow] afin de déplacer la position du caractère, réglez la valeur de référence, puis pressez [Enter].

Si vous souhaitez effectuer d'autres modifications de la configuration (voir fonctions optionnelles), **faites-le à ce stade**, puis terminez la procédure avec l'étape suivante afin de mémoriser tous les changements en mémoire permanente.

Sauvegarde de toutes les valeurs en mémoire permanente :

. Pressez [Left arrow] pour revenir à "Configuration", puis [Up arrow] pour "Basic menu" et [Enter]. Pressez [Down arrow] pour "Save parameters" et [Enter]. A présent, les paramètres sont enregistrés en mémoire permanente.

1.10 FONCTIONS OPTIONNELLES

Vérification du codeur : Placez le variateur en mode V/f et démarrez le moteur, validez et démarrez le variateur, puis réglez une référence analogique. Si la référence est positive sur la borne 1 par rapport à la borne 2 (commun), le moteur doit tourner dans le sens des aiguilles d'une montre. Le moteur tournant dans le sens des aiguilles d'une montre (vérifiez le sens de rotation au niveau de l'arbre moteur pointant vers vous) (vous pouvez également réaliser cette opération manuellement pendant que le variateur n'est pas activé), surveillez la valeur affichée du codeur en cliquant "Monitor/measurements/speed/ speed in rpm/Enc 1 speed". La vitesse doit être positive, pas négative. Si celle-ci est négative, il convient d'intervertir A et A- ou B et B- sur le codeur. A présent, retournez au paragraphe "Configuration de fonctionnement"

Limite de courant : La limite de courant a été réglée par défaut à environ 136 % lors de l'étape précédente (la valeur exacte est fonction du facteur de puissance, néanmoins la différence est très faible). La valeur actuellement réglée peut être vérifiée (à partir de "Basic Menu") en pressant la flèche "down/right" afin d'afficher "Limits", puis [Enter], puis la flèche "down/right" pour "current limits", puis [Enter], puis la flèche "down/right" pour "T current lim" et [Enter]. Si vous le souhaitez, le paramètre T current limit peut être modifié à une valeur plus importante (ou plus faible). N'oubliez pas que les limites maximales sont basées sur la capacité du variateur, et non sur celle du moteur. "T current" est la composante du couple générée par le courant total. Des réglages excessifs de 200 % sont certes possibles, bien que le moteur puisse ne pas être capable d'exploiter ce courant. La plupart des moteurs ne disposent que d'un courant nominal de 150 % pendant 1 minute. Le variateur se protège lui-même par le biais d'une température, d'une tension et d'un algorithme I²T intelligents, quelle que soit la valeur que vous réglez pour ce paramètre. Le variateur fournira 150 % de la valeur programmée dans "Configuration/Full Load Current" pendant 1 minute (200 % pendant un court instant).

Configuration des E/S : Ce variateur peut être configuré pratiquement selon toutes les façons possibles.

Le variateur standard est doté de trois entrées analogiques standard et met à votre disposition deux sorties analogiques ainsi que six entrées numériques et deux sorties numériques, qui peuvent être affectées et configurées. Par défaut, le variateur affecte les sorties analogiques pour la vitesse et la charge réelles (courant de couple), mais peut nécessiter certaines mises à l'échelle. Afin de configurer le variateur pour deux entrées analogiques (l'une pour la vitesse et l'autre pour la charge) à des fins de mesurage ou autres, procédez ainsi :

Reportez-vous au paragraphe "Bornes de commande" de ce guide où vous trouverez une description des connexions de la partie commande et comment les réaliser. Une description et une explication plus détaillées des E/S figurent dans ce manuel. Par défaut, les sorties analogiques sont configurées selon un facteur d'échelle 1, ce qui signifie que la sortie délivre 10 volts pour la valeur maximale du paramètre. Autrement dit, si la sortie analogique 1 est réglée à la vitesse maximale, la vitesse max. sera calibrée à 10 V c.c. (tension de sortie maximale disponible) dans "Speed Base Value" (se trouvant sous Configuration). Si vous souhaitez une sortie délivrant 5 volts à la vitesse maximale, réglez dans ce cas le facteur d'échelle à 0,5. Si la sortie a été configurée selon le couple de courant (le courant générant le couple, qui est une composante du courant total du moteur qui produit actuellement le couple), la valeur 10 V c.c. va correspondre au courant nominal. Si vous souhaitez que la sortie délivre 10 V c.c. à 150 % de "Full Load Current" (courant à pleine charge, se trouvant sous Configuration), le facteur d'échelle devra être de 0,66. La configuration par défaut, réalisée en usine, est telle que la vitesse de sortie (avec facteur d'échelle de 1) est affectée à la sortie analogique 1 (bornes 21 et 22) et la charge (courant de couple, avec facteur d'échelle de 1) à la sortie analogique 2 (bornes 23 et 22). Veuillez noter que la borne 22 est commune pour les deux sorties. Ce commun peut être mis à la masse, et doit être mis à la masse en un endroit donné, de préférence au niveau de l'indicateur de charge.

Comment désactiver l'entrée analogique 1 en tant que référence de rampe : (Par défaut, les entrées analogiques 2 et 3 sont déjà réglées sur "Off", l'entrée #1 est affectée par défaut à "Ramp ref 1"). Ceci est réalisé pour nous permettre d'utiliser le clavier afin de régler la vitesse de façon numérique.

- · Pressez [Up arrow]/[Down arrow] pour "I/O Config", puis [Enter].
- · Pressez [**Down arrow**] pour "Analog inputs", puis [**Enter**] pour "Analog input 1", puis [**Enter**] pour "Select input 1", puis [**Enter**] pour afficher le réglage, qui doit être "Ramp ref 1".

· Pressez les touches [<u>Up arrow</u>] / [<u>Down arrow</u>] jusqu'à ce que "OFF" s'affiche, puis pressez [<u>Enter</u>].

Comment activer l'entrée analogique 2 en tant que référence de rampe

Pressez [Up arrow]/[Down arrow] pour "I/O Config" et [Enter], puis la flèche "down/right" pour "Analog inputs", puis [Enter] pour "Analog input 1", puis [Down arrow] pour "analog input 2", puis [Enter] pour "select input 2", puis une nouvelle fois [Enter] pour afficher la valeur réglée (dans ce cas "OFF"). Utilisez les touches [Up arrow] / [Down arrow] pour afficher "Ramp ref 1" (si ce réglage n'est pas déjà utilisé, ou "Ramp ref 2"), puis pressez [Enter]. Cela signifie que l'entrée analogique 2 (bornes 3 et 4) sera la rampe (accélération/décélération) pour la référence de vitesse du variateur.

Le manuel AVy sur cédérom indique la configuration complète des E/S ainsi que les autres configurations du variateur. Si cela n'est pas suffisant, veuillez appeler le service clientèle qui vous aidera à réaliser votre configuration spécifique.

1.11 GUIDE DE RÉGLAGE RAPIDE POUR LES VARIATEURS CONFIGURÉS EN USINE (OU PRÉCONFIGURÉS)

Lorsque la configuration du variateur a déjà été effectuée et que vous êtes simplement en train de régler un moteur qui n'a pas encore été réglé, vous pouvez ignorer l'essentiel de la procédure précédente, étant donné qu'elle a déjà été réalisée; néanmoins, à moins que vous ne soyez absolument certain, nous vous recommandons de repasser malgré tout par ces différentes étapes, ne serait-ce que pour vérifier que les données indiquées pour les différents emplacements sont correctes. Utilisez simplement la touche [Left arrow], plutôt que la touche [Enter], dans toutes les étapes pour lesquelles l'entrée a été jugée correcte. Démarrez avec l'étape 4 de la procédure complète et ne réinitialisez pas les paramètres aux valeurs d'origine. Si vous avez un quelconque doute concernant la façon de sauvegarder ou non la configuration existante, utilisez l'utilitaire de configuration fourni avec le variateur et enregistrez d'abord le fichier sur un PC, de sorte qu'il puisse être réutilisé ultérieurement. En principe, le fichier de configuration relatif aux variateurs configurés en usine est déjà enregistré sur votre disquette comportant l'utilitaire de configuration.

1.12 DÉPANNAGE

Liste des dépassements

CODE	CAUSES
10;54	Le rapport entre les impulsions du codeur 1 [416] et le nombre de paires de pôles du moteur doit être supérieur à 128
3;4	La valeur de la résistance statorique [436] est trop grande. Le moteur n'est pas compatible avec le type de variateur utilisé.
5;8;9;15	La valeur de l'inductance de fuite [437] est trop grande. Le moteur n'est pas compatible avec le type de variateur utilisé.
16; 24	La valeur de la résistance rotorique [166] est trop grande. Le moteur n'est pas compatible avec le type de variateur utilisé.
17	Les valeurs de tension nominale [161] et de fréquence nominale [163] produisent un flux nominal moteur trop grand (hors plage).
	- Vérifiez ces valeurs : la valeur de la tension nominale est trop grande et/ou la valeur de la fréquence nominale est trop faible.
18	Les valeurs de tension de base [167] et de fréquence de base [168] produisent un flux nominal moteur trop grand (hors plage).
	- Vérifiez ces valeurs : la valeur de la tension de base est trop grande et/ou la valeur de la fréquence de base est trop faible.
23	Le rapport entre le flux nominal (tension nominale, fréquence nominale) et le flux de travail (tension de base, fréquence de base) est trop grand.
	- Vérifiez les valeurs de paramètre ci-dessus.
	La valeur du courant magnétisant [165] est trop grande.
	- Vérifiez que cette valeur est inférieure au paramètre "Full load curr".
27	La valeur de la tension de base est trop grande. La valeur maximale est de 500 V.
28	La valeur de la fréquence de base est trop grande. Cette valeur doit être inférieure à 500 Hz.
59	Le courant magnétisant de travail [726] est trop grand.
	- Vérifiez que la valeur du flux nominal (tension nominale et fréquence nominale) est inférieure à la valeur du flux de travail (tension de base et fréquence de base). Contrôlez la valeur de ces paramètres.
	La valeur du courant magnétisant est trop grande.
	- Vérifiez que cette valeur est inférieure au paramètre "Full load curr".
64	La valeur du paramètre "Motor cont curr" [656] relatif à la fonction de protection thermique du moteur (menu "Ovld mot contr") produit un courant continu trop faible en comparaison du type de convertisseur utilisé. Cette erreur peut également être due à un réglage trop bas du paramètre relatif au courant nominal [164] ($\leq 0.3 \times I_{2N}$).
66	La valeur de la vitesse nominale [162] est incorrecte.
	La valeur réglée produit une valeur de glissement trop faible (ou trop grande).

LISTE DES MESSAGES D'ERREUR LIES AU REGLAGE AUTOMATIQUE

- Messages génériques

Description <u>Note</u>

"Drive disabled": Fournit l'entrée de validation en appliquant un état haut sur la borne 12.

"Take values part 1" ou "Take values part 2a" ou "Take values part 2b" ou "Not ready":

"Take values part 3" ne peut être exécuté car le mesurage n'a pas été réalisé

correctement. Répétez la procédure de réglage automatique.

"Time out": Le mesurage n'a pas été réalisé dans le temp imparti. "Start part...?": Pressez [ENTER] pour confirmer le début du mesurage.

"Tuning aborted": Mesurage interrompu par l'utilisateur (les touches [SHIFT] / [Escape] ont été

actionnées).

Allez au menu de CONFIGURATION et définissez **Main commands** = digital. "Set Main cmd=Dig":

Allez au menu de CONFIGURATION ET DÉFINISSEZ Control mode = Local. "Set Ctrl=Local":

"Reg mode NOK": Le **réglage automatique partie 3** ne peut être effectué que si le **mode de régulation**

= contrôle vectoriel de flux ou mode de régulation = contrôle vectoriel sans capteur. Allez au menu de base (BASIC MENU) et réglez correctement le mode

de régulation.

La procédure de **réglage automatique partie 3** a détecté une valeur d'inertie du "Inertia range":

moteur trop basse; c'est la raison pour laquelle elle ne peut pas calculer les gains du régulateur de vitesse. Essayez de répéter la procédure de réglage automatique

afin de corriger l'éventuelle erreur de mesure accidentelle.

Si cette erreur persiste (l'inertie est réellement inférieure à la valeur minimale mesurable), évitez d'exécuter la commande "Take val part 3". Le fonctionnement du régulateur de vitesse est également stable avec les valeurs de gain réglées en usine. Il est possible d'optimiser la vitesse de rétroaction au moyen du réglage

manuel du régulateur.

- Messages d'erreur liés au mesurage

Ces messages peuvent survenir lorsque des valeurs extrêmes de paramètres doivent être identifiées. Il peut s'avérer utile de relancer la procédure de réglage automatique lorsque l'un des messages suivants se produit. Si des messages persistent, il convient d'adopter des procédures de réglage manuel en guise d'alternative.

<u>Description</u>	<u>Note</u>
"No break point"	La procédure de réglage automatique partie 1 a échoué. Contrôlez l'intégrité des connexions entre le convertisseur et le moteur avant de réessayer la procédure partie 1.
"Over speed"	La procédure de réglage automatique partie 3 a détecté une vitesse largement supérieure à la valeur désirée. Causes possibles : la charge occasionne une dérive de la vitesse ou un mauvais réglage de boucles internes en cas d'utilisation du mode contrôle vectoriel sans capteur. Essayez de répéter la procédure de réglage automatique partie 1 ou les opérations de réglage manuel correspondantes.
"Drive stalled":	Augmentez la valeur du paramètre Test T curr lim et répétez la procédure de réglage

automatique partie 3

Un couple résistant nominal a été détecté à l'arrêt. La procédure de réglage "Load applied":

automatique partie 3 est impossible pour ce type de charge.

Réduisez la valeur du paramètre **Test T curr lim** pour la procédure de **réglage** "T curr too high":

automatique partie 3

"Friction null": La valeur de frottement est nulle ou inférieure à la limite de précision du système

de commande.

Messages de défaut sortis sur l'afficheur

MESSAGE DE DEFAUT

CAUSES POSSIBLES

Afficheur éteint Contrôlez la connexion du câble entre la carte du régulateur et le clavier.

BU overload Le facteur d'utilisation du freinage est en dehors de la plage allouée

Bus loss Dérangement dans la connexion de bus (uniquement avec la carte optionnelle du

bus d'interface).

Contrôlez la connexion de bus.

Problème de compatibilité électromagnétique, contrôlez le câblage.

Curr fbk loss Dérangement dans la connexion entre la carte de régulation et le transformateur TA.

Contrôlez le câble de liaison au niveau du connecteur XTA.

DSP error Erreur de programmation du processeur.

Coupez l'appareil et remettez-le sous tension.

En cas d'insuccès : il s'agit probablement d'une erreur interne. Contactez le service

clientèle.

Enable sequer Le variateur est mis sous tension ou réinitialisé (RESET*) avec l'entrée de VALI-

DATION connectée au 24 V (activée) et le variateur est configuré pour fonctionner à partir des bornes. Reportez-vous à CONFIGURATION / commandes principales.

External fault Défaut externe, signalé sur la borne 15.

Si le message "External fault" n'est pas utilisé : connexion manquante entre les

bornes 16 et 18 (point de référence) et/ou 15 et 19.

Si le message "External fault" est utilisé :

- Le signal sur la borne 15 est manquant (15 ... 30 V par rapport à la borne 16). Avec une alimentation externe : les points de référence doivent être interconnectés !

Failure supply

Défaut de la tension d'alimentation = les tensions sont inférieures à la valeur admissible.

PRUDENCE : Coupez l'alimentation avant de démonter les borniers.

Dans la plupart des cas, la cause provient du câblage extérieur. Retirez les borniers enfichables de la carte du régulateur et entrez la commande de remise à zéro (Reset). Si aucun autre défaut n'est signalé, vérifiez votre câblage en vue d'un court-

circuit, dans certains cas avec l'écran de câble.

Si cette action n'a pas corrigé le défaut, essayez une nouvelle remise à zéro (RE-

SET*).

En cas d'insuccès : il s'agit probablement d'une erreur interne. Contactez le service

clientèle.

Heatsink ot (Pour types à partir de 22 kW ... et plus). Température du dissipateur thermique du

variateur trop haute.

Défaillance du ventilateur de l'appareil.

Défaillance du module IGBT dans la partie puissance.

Cycle d'utilisation rapide du courant de surcharge.

Heatsink sensor La température ambiante est trop haute .

Défaillance du ventilateur de l'appareil.

Dissipateur thermique encrassé.

Intake air ot (Pour les types à partir de 22 kW ... et plus). La température de l'air de

refroidissement est trop haute.

Dérangement du/des ventilateur(s) de l'appareil.

Orifice de refroidissement obstrué.

Interrupt error Une interruption non-utilisée est intervenue.

Coupez l'appareil et remettez-le sous tension.

En cas d'insuccès : il s'agit probablement d'une erreur interne. Contactez le service

clientèle.

Module overtemp (Pour les types de 0,75 à 15 kW). La température du module IGBT est trop haute.

Défaillance du ventilateur de l'appareil.

Défaillance du module IGBT dans la partie puissance. Cycle d'utilisation rapide du courant de surcharge.

Output stages Défaut de surintensité interne de la partie puissance IGBT.

Coupez l'appareil et remettez-le sous tension.

En cas d'insuccès, contactez le service clientèle de votre revendeur.

Overcurrent Surintensité dans le circuit du moteur .

Court-circuit ou défaut à la masse au niveau de la sortie du variateur.

Mauvaise optimisation du régulateur de courant.

Ce message apparaît lors de la commutation de l'appareil : le variateur prend en charge un moteur en fonctionnement. La fonction "Auto capture" doit être activée.

Coupez l'appareil et remettez-le sous tension . En cas d'insuccès, contactez le service clientèle.

Overvoltage Surtension dans le circuit intermédiaire due à un retour d'énergie du moteur.

Rallonger la rampe de décélération. Si cela n'est pas possible :

Utilisez une unité de freinage BU... afin de réduire l'alimentation.

Overtemp Motor Surtempérature du moteur (signalée par la thermistance sur les bornes 78/79).

Le câble entre la connexion de thermistance sur le moteur et les bornes 78 et 79 est

interrompu.

Surchauffe du moteur :

- cycle de service excessif

- température ambiante du site du moteur trop haute

- moteur équipé d'un ventilateur externe : défaillance du ventilateur

- moteur non-équipé d'un ventilateur externe : charge trop grande aux vitesses basses. L'effet de refroidissement du ventilateur sur l'arbre moteur est insuffisant pour ce cycle de service. Modifiez le cycle ou installez un ventilateur externe.

Regulation ot La température de la carte de régulation du variateur est trop haute.

Température ambiante trop haute.

Speed fbk loss Perte de la vitesse de rétroaction.

Codeur non-connecté, mal connecté ou non-alimenté :

Sélectionnez le paramètre **Enc 1 speed** dans le menu "MONITOR\ Measurement \ Speed \ Speed in rpm".

- Le variateur étant désactivé, faites tourner le moteur dans le sens des aiguilles d'une montre (arbre vu de l'avant). La valeur indiquée doit être positive.
- Si la valeur indiquée ne varie pas ou si des valeurs aléatoires sont affichées, contrôlez l'alimentation et le câblage du codeur.
- Si la valeur indiquée est négative, intervertissez les connexions du codeur. Permutez les voies A+ et A- ou B+ et B-.

Undervoltage

Paramètre de la tension réseau mal réglé (évent. réglage sur 460 V, bien que l'appareil fonctionne à 400 V). Remède : réglez correctement le paramètre puis acquittez le défaut au moyen de RESET*.

La tension d'entrée de la partie puissance de l'appareil est trop faible pour les raisons suivantes :

- tension d'entrée c.a. trop faible ou longues baisses de tension
- mauvaises connexions des câbles (p. ex. bornes du contacteur, self, filtre ... mal serrées). Remède : contrôlez les connexions.
- * Pour remettre à zéro les défauts, pressez [Escape] ([Shift] + [Left arrow]). Si les commandes Enable (validation) et Start (marche) sont configurées à partir des bornes (CONFIGURATION / Main.=Terminal), supprimez le potentiel de +24 V sur ces bornes pour la remise à zéro.

Note:

L'opération de remise à zéro des défauts peut également être configurée sur une entrée numérique (correctement configurée).

Autres défauts

DÉFAUT

CAUSES POSSIBLES

Le moteur ne tourne pas

Ce message de défaut est affiché : voir plus haut.

Une fois l'erreur corrigée, entrez la commande d'acquittement des défauts.

L'afficheur est éteint : l'alimentation c.a. est manquante sur les bornes U1/V1/W1 ou défaillance du fusible interne.

Commande Enable (validation) et/ou start (marche) absente(s) (contrôlez la configuration des bornes du régulateur).

Le variateur n'accepte pas les commandes : mode opératoire incorrect ou mal sélectionné.

Le dispositif de protection de l'alimentation a déclenché: dispositif de protection mal calibré ou défaut de configuration d'entrée (cavalier).

L'entrée analogique utilisée pour la valeur de référence n'a pas été affectée ou est affectée différemment.

Le moteur tourne dans le mauvais sens

Polarité incorrecte du signal de la valeur de référence.

AUDIN - 8, avenue de la malle - 51370 Saint Brice Courcelles - Tel : 03.26.04.20.21 - Fax : 03.26.04.28.20 - Web : http://www.audin.fr - Email : info@audin.fr

Moteur mal connecté. PRUDENCE : Si le contrôle automatique du moteur indique un mauvais sens de rotation, les deux câbles du codeur (A+ et A- ou B+ et B-) doivent être intervertis en plus des deux lignes du câble moteur.

Le moteur n'atteint pas la vitesse nominale

Le variateur est en limitation de vitesse. Remède : contrôlez les paramètres **Speed** max amount, **Speed max pos** et **Speed max neg** .

Le variateur fonctionne à la limite de courant (LED allumée). Causes possibles :

- surcharge du moteur
- convertisseur sous-dimensionné
- caractéristiques V/f mal réglées
- réduction du paramètre "T current lim" sélectionnée par la réduction du couple

La valeur entrée pour le nombre d'impulsions du codeur est trop grande. Remède : contrôlez les paramètres concernés (codeur 1 impulsion) et réglez la bonne valeur.

Une valeur corrective réduit la valeur de la référence principale. Remède : contrôlez la configuration .

En cas de fonctionnement via le bornier : valeur trop basse du paramètre "Speed base" (vitesse de base) .

Le moteur accélère immédiatement à la vitesse maximale

Valeur de référence réglée via les bornes : vérifiez si la valeur varie entre la valeur min. et max.. Potentiomètre utilisé pour le réglage de la valeur de référence : une connexion 0V est-elle présente ?

Codeur non-connecté, mal connecté ou non-alimenté :

Sélectionnez le paramètre **Enc 1 speed** dans le menu "MONITOR \ Measurement \ Speed \ Speed in rpm".

- Le variateur étant désactivé, faites tourner le moteur dans le sens des aiguilles d'une montre (arbre vu de l'avant). La valeur indiquée doit être positive.
- Si la valeur indiquée ne varie pas ou si des valeurs aléatoires sont affichées, contrôlez l'alimentation et le câblage du codeur.
- Si la valeur indiquée est négative, intervertissez les connexions du codeur. Permutez les voies A+ et A- ou B+ et B-.

Le moteur accélère trop lentement

Valeur de rampe mal réglée.

Moteur fonctionne avec courant max.

- surcharge du moteur
- variateur sous-dimensionné
- caractéristiques V/f mal réglées

Le moteur décélère trop lentement

Valeur de rampe mal réglée.

Le moteur tourne lentement, bien que la valeur de référence = zéro

Paramètre de vitesse minimale sélectionné.

Interférence due à une entrée analogique inutilisée. Remède : réglez les entrées analogiques inutilisées sur OFF

Déconnectez la valeur de référence sur l'entrée analogique utilisée.

- Si le variateur est à l'arrêt, l'effet est dû à la résistance du câble 0V.
- Si le variateur est toujours en fonctionnement : effectuez la compensation de décalage de l'entrée analogique. Réglez le paramètre **Offset input xx** de sorte que le variateur s'arrête.

La tension de sortie varie fortement en charge

La valeur pour **Rotor resistance** n'est pas correcte. Reportez-vous au paragraphe "Contrôle et réglage manuel de la résistance rotorique pour le mode contrôle vectoriel de flux" dans le manuel d'instructions AVy sur cédérom.

Le moteur ne fournit pas le couple maximal ni la puissance maximale

La valeur pour **Magnetizing curr** est inférieure à la valeur nécessaire pour le moteur connecté.

- Le rapport Output voltage / Output frequency (tension de sortie / fréquence de sortie) dans le menu "MONITOR / Measurements" doit être à peu près égal au rapport Base voltage / Base frequency (tension de base / fréquence de base)
- Le variateur fonctionne à la limite de courant.
- Vérifiez si la valeur pour **Full load curr** dans le menu CONFIGURATION est correctement réglée.
- Contrôlez la valeur de la limitation du courant
- La valeur pour les paramètres **Magnetizing curr** et/ou **Rotor resistance** n'est pas correcte. Optimisez le réglage comme décrit dans le manuel d'instructions.

En phase d'accélération avec courant maximal, la vitesse n'est pas linéaire

Réduisez proportionnellement les paramètres **Speed I** et **Speed P**. Si cette action n'apporte aucune amélioration, optimisez le régulateur.

La vitesse oscille

Contrôlez les paramètres **Speed P** et **Speed I**.

Si le point de fonctionnement est à l'intérieur de la plage de réglage du flux, contrôlez les paramètres **Flux P** et **Flux I**

Valeur incorrecte de la résistance rotorique.

Remède : Optimisez le réglage comme décrit dans le manuel d'instructions AVy sur cédérom.

Le variateur ne réagit pas à la régulation de vitesse adaptative

Régulation de vitesse adaptative non validée. **Enable spd adap** = Enabled (activée) Référence adaptative non affectée à une entrée analogique en cas d'utilisation d'une référence adaptative.

La fonction potentiomètre moteur ne s'exécute pas

Fonction non validée. **Enable motor pot** = Enabled (activée).

En cas de fonctionnement via le bornier : **Motor pot up** et/ou **Motor pot down** et **Motor pot sign** n'ont pas été affectés à des entrées numériques.

Le fonctionnement pas à pas est impossible

Une commande de marche est toujours présente.

Fonction non validée. **Enable jog** = Enabled (activée).

En cas de fonctionnement via le bornier : **Jog** + et/ou **Jog** - n'ont pas été affectés à des entrées numériques.

Les valeurs de la référence de vitesse interne ne sont pas actives

Fonction non validée. **Enab multi spd** = Enabled (activée)

En cas de fonctionnement via le bornier : **Speed sel 0, Speed sel 1** et **Speed sel 2** n'ont pas été affectés à des entrées numériques.

La fonction multirampe ne réagit pas

Fonction non validée. **Enab multi rmp** = Enabled (activée)

En cas de fonctionnement via le bornier : **Ramp sel 0** et **Ramp sel 1** n'ont pas été affectés à des entrées numériques.

2. FONCTIONNEMENT ET CARACTERISTIQUES (APERÇU)

L'AVy est un variateur à contrôle vectoriel de flux, doté d'excellentes propriétés de régulation de vitesse et d'un couple élevé.

Les modes de commande suivants sont disponibles :

- contrôle vectoriel de flux avec capteur de vitesse
- contrôle vectoriel de flux sans capteur de vitesse (mode contrôle vectoriel sans capteur)
- commande tension/fréquence (V/f)

La modulation du vecteur spatial réduit le niveau de bruit à un minimum.

- tension de sortie jusqu'à 98 % de la tension d'entrée
- procédure de réglage automatique pour régulateurs d'intensité, de flux et de vitesse.

Les variateurs sont équipés de transistors IGBT (transistors bipolaires à porte isolée).

La sortie est protégée contre les défauts de mise à la terre et les courts-circuits entre phases.

Alimentation des régulateurs via le bloc d'alimentation en mode commuté à partir du circuit de bus c.c. Alimentation de secours en cas de baisses de tension de faible durée.

Isolation galvanique entre l'unité de commande et les bornes de commande.

Entrées analogiques conçues en tant qu'entrées différentielles.

Commande simple de l'entraînement

- via le bornier
- via le clavier convivial
- via le logiciel tournant sur PC et l'interface série RS485
- via une connexion de bus de terrain (optionnelle)
 DeviceNet, PROFIBUS-DP ou GENIUS.
- outil de configuration du variateur facile à utiliser

Mémorisation dans le registre des défauts des dix derniers dérangements avec durées correspondantes.

Contrôle de surcharge.

Prise en charge d'un moteur en marche (Fly catching).

Trois entrées analogiques entièrement configurables sur l'appareil standard.

Possibilité d'extension des entrées/sorties analogiques/numériques par cartes additionnelles (EXP D8R4, EXP D14A4F).

Entrée des valeurs de référence et affichage des valeurs réelles en tant que pourcentage d'une unité définie par l'utilisateur.

Possibilité de régulation de la vitesse et du courant de couple.

Régulation de vitesse adaptative.

Alarmes en fonction de la vitesse.

Fonction potentiomètre moteur (commande d'augmentation / diminution de la vitesse).

Mode pas à pas.

8 valeurs de référence de vitesse internes (Preset speed).

4 rampes internes.

Régulation PID.

Arrêt automatique en cas de perte de puissance du réseau c.a.

3. PROCÉDURE D'INPECTION, IDENTIFICATION DES COMPOSANTS ET SPÉCIFICATIONS STANDARD

3.1. A PROPOS DES PROCÉDURES D'INSPECTION DE LIVRAISON

3.1.1. Généralités

Les variateurs AVy sont emballés et préparés pour la livraison avec les plus grands soins. Ils ne doivent être transportés qu'avec des équipements de transport appropriés (cf. informations de poids). Observez les instructions imprimées sur l'emballage. Ceci est également valable lorsque l'appareil est déballé et installé dans l'armoire de commande.

Concernant la livraison, contrôlez les points suivants :

- l'emballage en vue de tout dommage extérieur
- la concordance entre le bordereau de livraison et votre commande.

Ouvrez l'emballage à l'aide d'outils appropriés. Vérifiez

- qu'aucune pièce n'a été endommagée pendant le transport
- que le type d'appareil correspond à votre commande

En cas d'un quelconque endommagement ou d'une livraison incomplète ou incorrecte, veuillez en informer immédiatement le responsable du service commercial.

Ces appareils ne doivent être entreposés que dans des locaux secs, conformes aux plages de températures spécifiées.

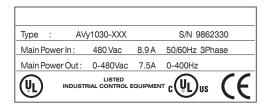
Note!

Un certain taux de condensation est admissible dans la mesure où il résulte de changements de température (cf. paragraphe 3.4.1, "Conditions ambiantes admissibles"). Toutefois, ceci n'est pas valable lorsque l'appareil est en service. Vérifiez toujours qu'il n'y ait pas de condensation dans des appareils qui sont connectés à l'alimentation électrique!

3.1.2. Code type du convertisseur

La spécification technique du variateur AVy est définie dans le code type. Exemple :

Le variateur AVy sélectionné dépend du courant nominal du moteur. Le courant de sortie nominal aux conditions de fonctionnement appropriées doit être supérieur ou égal au courant requis par le moteur.

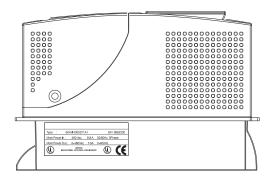

La vitesse du moteur triphasé est déterminée par le nombre de paires de pôles et la fréquence (plaque signalétique, fiche technique) du moteur concerné. Pour le fonctionnement au-delà de la fréquence et de la vitesse nominales du moteur, il faut tenir compte des pertes indiquées par le fabricant (paliers, balourds, etc.). Ceci est également valable pour les spécifications de température en cas de fonctionnement continu en deçà de 20 Hz (mauvaise ventilation du moteur, ne s'applique pas aux moteurs équipés d'une ventilation externe).

—— Procédure d'inspection, identification des composants et spécifications standard ———	37	Ch.3
—— Frocedure a inspection, identification des composants et specifications standard ———	01	UII.U

3.1.3. Plaque signalétique

Vérifiez que toutes les caractéristiques indiquées sur la plaque signalétique jointe au convertisseur, correspondent aux données de votre commande.

Figure 3.1.3.1: Plaque signalétique


Type : Modèle de convertisseur S/N : Numéro de série

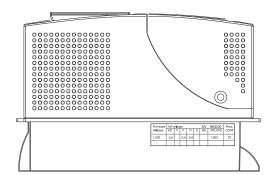
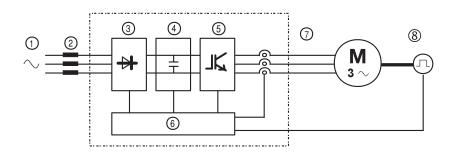

Main Power In : Tension d'alimentation - courant d'entrée c.a. - Fréquence Main Power Out : Tension de sortie - Courant de sortie - Fréquence de sortie

Figure 3.1.3.2: Plaque signalétique avec indices de modification du micrologiciel et du matériel

Firmware	HWr	elea			-	S/N	9862330	Prod.
Release	В	٢	Р	R	S	BU	SW. CFG	CONF
1.000	0.A		0.A	0.A			1.000	D1

Figure 3.1.3.3: Disposition des plaques signalétiques



3.2. IDENTIFICATION DES COMPOSANTS

Un variateur AVy convertit la tension et la fréquence constantes d'une alimentation triphasée en une tension continue, puis convertit cette tension continue en une nouvelle alimentation triphasée de tension et fréquence variables. Cette alimentation triphasée variable peut être utilisée pour le réglage continu de la vitesse de moteurs asynchrones triphasés.

Figure 3.2.1: Schéma de principe d'un convertisseur de fréquence

1 Tension d'entrée c.a.:

2 Self d'entrée c.a.: (cf. paragraphe 5.7.1)

3 Redresseur en pont triphasé : Convertit le courant alternatif en courant continu au moyen

d'un redresseur triphasé double alternance.

4 Circuit intermédiaire c.c. : Composé de la résistance de charge et du condensateur de

lissage.

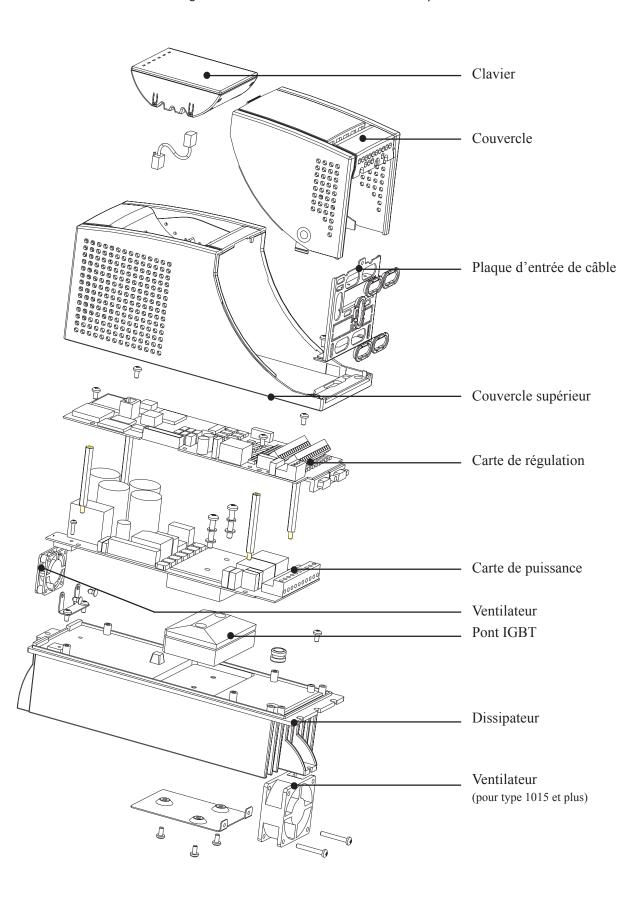
Tension continue $(U_{DC}) = \sqrt{2} x$ tension du réseau (U_{DC})

5 Convertisseur IGBT: Convertit la tension continue en une tension alternative

triphasée de fréquence variable.

6 Unité de commande configurable : Modules pour commande en boucle ouverte et commande

en boucle fermée de la partie commande. Ces modules sont utilisés pour le traitement des commandes de contrôle,


valeurs de référence et valeurs réelles.

7 Tension de sortie : Tension alternative triphasée variable.

8 Codeur : Pour le retour de l'information de vitesse (cf. paragraphe

4.4.2).

Figure 3.2.2 : Vue du variateur et de ses composants

3.3. SPÉCIFICATIONS STANDARD

3.3.1. Conditions ambiantes admissibles

Table 3.3.1.1: Spécifications environnementales

	[°C]	$0 \dots +40; +40 \dots +50$ with derating
T _A Ambient temperature	[°F]	32 +104; +104+122 with derating
Installation location		tion degree 2 or better (free from direct sunligth, vibration, dust, corrosive or inflammable gases, fog, vapour oil and dripped water, avoid saline
Installation location		environment)
		IP20
Degree of protection		IP54 for the cabinet with externally mounted heatsink
_		(size type 1007 to 3150)
Installation altitude	Up t	o 1000 m above sea level; for higher altitudes a current reduction of 1.2%
		for every 100 m of additional height applies.
Temperature:	1)	0. 4000 (200. 40.405)
operat		040°C (32°104°F)
operat		050°C (32°122°F)
sto	orage	-25+55°C (-13+131°F), class 1K4 per EN50178
		-20+55°C (-4+131°F), for devices with keypad
tran	sport	-25+70°C (-13+158°F), class 2K3 per EN50178
		-20+60°C (-4+140°F), for devices with keypad
Air humidity:		
ř	. 5 %	to 85 %, 1 g/m ³ to 25 g/m ³ without moisture condensation or icing (Class
oper	ation	3K3 as per EN50178)
sto	orage	5% to 95 %, 1 g/m ³ to 29 g/m ³ (Class 1K3 as per EN50178)
tran	sport	95 % ³⁾ 60 g/m ⁴⁾
	A ligh	nt condensation of moisture may occur for a short time occasionally if the device is not in operation (class 2K3 as per EN50178)
Air pressure:		
•	ation [kPa]	86 to 106 (class 3K3 as per EN50178)
sto	orage [kPa]	86 to 106 (class 1K4 as per EN50178)
	sport [kPa]	70 to 106 (class 2K3 as per EN50178)
Climatic conditions		IEC 68-2 Part 2 and 3
		EN 50178, UL508C, UL840 degree of pollution 2
Clearance and creepage		
Clearance and creepage Vibration		IEC68-2 Part 6
		IEC68-2 Part 6 EN61800-3 (see "EMC Guidelines" instruction book)

avy2000

Ch.3

Paramètre **Ambient temp** = $40 \, ^{\circ}\text{C} (104 \, ^{\circ}\text{F})$

Température ambiante = $0 \dots 40 \,^{\circ}\text{C} \, (32 \dots 104 \,^{\circ}\text{F})$

Au-dessus de 40 °C : - réduction du courant de 2 % du courant de sortie nominal par °K

- démonter le couvercle supérieur (meilleur que la classe 3K3 selon EN50178)

Paramètre **Ambient temp** = $50 \, ^{\circ}\text{C} (122 \, ^{\circ}\text{F})$

Température ambiante = $0 \dots 50 \, ^{\circ}\text{C} \, (32 \dots 122 \, ^{\circ}\text{F})$

Courant déclassé à 80 % du courant de sortie nominal

Au-dessus de 40 °C (104 °F) : démonter le couvercle supérieur (meilleur que la classe 3K3 selon EN50178)

- L'humidité d'air relative maximale se produit avec une température de @ 40 °C (104 °F) ou lorsque la température de l'appareil varie brusquement de -25 à +30 °C (-13 à +86 °F).
- Humidité d'air absolue maximale lorsque l'appareil est amené brusquement de 70 à 15 °C (158 à 59 °F).

— Procédure d'inspection, identification des composants et spécifications standard — 41

Mise au rebut de l'appareil

Le variateur peut être éliminé en tant que déchets électroniques conformément aux réglementations nationales en vigueur en matière de mise au rebut de composants électroniques.

Les revêtements plastiques des variateurs (jusqu'au type 3150) sont recyclables : le matériau utilisé est >ABS+PC< (acrylonitrile butadiène styrène et polycarbonate).

3.3.2. Connexion de l'entrée/sortie c.a.

Le variateur AVy doit être connecté à une alimentation électrique c.a. capable de délivrer un courant de court-circuit symétrique (à 480 V +10 % Vmax) inférieur ou égal aux valeurs indiquées dans la table cidessus. Pour la mise en oeuvre d'une self d'entrée c.a., reportez-vous au paragraphe 5.7.1.

Aucune connexion externe entre l'alimentation du régulateur et l'alimentation d'entrée c.a. existante n'est nécessaire, étant donné que l'alimentation est prélevée à partir du circuit intermédiaire. Lors de la mise en service, réglez le paramètre **Mains voltage** (tension du réseau) à la valeur de la tension d'entrée c.a. concernée. Ceci fixe automatiquement le seuil du défaut de sous-tension au niveau approprié.

Note!

Dans certains cas, des selfs d'entrée c.a. et éventuellement des filtres antiparasites devraient être installés du côté de l'entrée c.a. de l'appareil. Reportez-vous au paragraphe "Selfs/filtres".

Les variateurs de fréquence et les filtres d'entrée a.c. présentent des courants de décharge à la terre supérieurs à 3,5 mA. EN 50178 spécifie qu'avec des courants de décharge supérieurs à 3,5 mA, la connexion du conducteur de terre (PE1) doit être fixe.

H	\dashv	4 252	100	⊢	0 125	0 125	0 200	0 200	0 250	0 250			4 400	╀	2 348	6 317		:	ı. n.a.		T					Н	\dashv	8 318					00/77 00	
H	4	157.5 204	75 90	┝	100 100	75 100	132 160	110 160	150 200	150 200			250 324	+	217 282	198 256		4	454 n.a.							Н	\dashv	214 268		papu	17300 22400			
\vdash	┪	132 15	55 7	┝	75 10	L	110 13	90 1.	150 1	125 15			210 24	⊢	183 2	166 19			382 4							Н	\dashv	188 2		For these types an external inductance is recommended	200 17	71	700	000
\vdash		116.5	55 5	⊢	75 7	2 09	90 1	6 06	125 1	100		200	185 2	╄	160 1	146	4		338 3							158 1	4	153 1		ınce is r	4 4	800	800 I4	70 5500 6400 7900 7800 12809 14 Ac mains), 460 V _{DC} for 460 V _{AC} mains)
\vdash	-	89.2	37	⊢	, 05	20	75	55	100	75 1			1 42 1	⊢	124 1	112 1		8	258 3	0.87						Н	4	120 1		inducta	4000	71 0086	9800 12800 14500	21 Junge 160 V _{AC}
5550	┪	72	30	30	40	40	55	55	75	09			114	104	66	06			208							86	110	96		external	0000	006/	006/	/900 J
5450	64	58.3	22	22	30	30	45	45	09	50			93	85	81	74			170				3Ph			84	94	82		pes an e	0	6400	6400	6400 , 460 V
-	4	20	22	18.5	30	25	37	37	20	40	voltage)		79	72	89	62			144		(H)) NS	+10%, 3			69	77	99		hese ty			5500	5500 mains
H	┪	38.2	18.5	15	25	20	30	30	40	30	Input		63	╀	54	20			116		C (1)	igher f	480 V +	÷ί		Н	\dashv	53		For t	200.	01 4200	$3200 4200 820 V_{DC}$	
4	4	6 29	111	11	15	15	5 22	╙	30) 25	0.98 x U _{LN} (AC Input voltage)		77	╀	40	36			98 (0 8 @ 50°C (122°E)	0.7 for higher f _{sw}	-15% 4	50/60 Hz		Н	_	5 37			_ L			90 320 820 DC (for
Ĥ	-	20.3 24.6	7.5 10	7.5 9	10 10	10 10	15 18.5	15 18.5	20 25	20 20	0.98 x		33 30	╀	28.7 34	26 31			02 09	6	4		230 V -1			Н	-	24.5 32.	35.4	40			2250 2700	50 27(), 400 V
\vdash	-	15.3 20	5.5 7	⊢	7.5 1	7.5	11 1	11 1	15 2	15 2			24.8	╄	21.6 28	19.6			45 6	0.93 0.90	-		2			Н	\rightarrow	17.8 24	27.9 35	-		700	1700 22	1700 2250 2700 3200 420 820 $V_{\rm DC}$ 820 $V_{\rm DC}$ Ac mains), 400 $V_{\rm DC}$ (for 400 $V_{\rm DC}$
16	-	10.9	4	┢	5	, 2	7.5	7.5	10	10		500	177 2	-	15.4 2	14 1	∞	16	32.2	0.87	_					Н	-	13.8	21.5	-			1200 1	1200 1 230 V AG
Н	╛	7.7	3	3	4	4	5.5	5.5	7.5	7.5			12.6	-	11	10			23	96.0						9.5	_	9.3	15.5		4 H		820	— ≒
2040	6.5	5.9	2.2	2.2	3	3	4	4	5	5			96	8.7	8.3	7.6			17.4		1					7	7.9	6.7	11	12		650	650	650 230 V
	ņ	4.5	1.5	1.5	2	2	3	3	3	3			7.5	8.9	6.5	5.9			13.6							5.5	6.2	5.4	7.9	-	41	_	200	⊣ ।
\vdash	╅	3.4	1.1	1.1	1.5	1.5	2.2	2.2	3	2			56	⊢	4.9	Н			10.2	0.87						4	\dashv	3.9	8.9	-	41		380	—
\vdash	+	1 2.4	7 0.75	-	0	0 1	5 1.5	5 1.5	2	5 1.5			4	.,	3.5	3.2			1 7.2							Н	+	7 2.9	4.4	₩	41		0 270	
ш	A] 1.6	[A]	N] 0.37	N] 0.37	p] 0.50	p] 0.50	N 0.75	N] 0.75	p] 1	p] 0.75	7	[z]	1 2.4	╁	k] 2.1	1.9	[z]	[z]	4.4	Į L				[z		Н	\dashv	1.7	3.6	Н	JL		(A) 160	
VAI	[kVA]	[kVA]	ss 1 [kW]	ss 2 [kW]	ss 1 [Hp]	ss 2 [Hp]	ss 1 [kW]	ss 2 [kW]	s 1 [Hp]	s 2 [Hp]	\geq	[Hz]	s 1 [A]		s 1 [A]	s 2 [A]	[kHz]	[kHz]	[A]	/ac	1re	ncy	Σ	[Hz]		[A]		ss1 [A]	[A] [A]		7		[kVA]	
Type Investor Output (IEC 146 shoet) Continuous comino	Inverter Output (IEC 146 class1), Continuous service	Inverter Output (IEC 146 class2),150% overload for 60s	Γ _N mot (recommended motor output): @ U _{LN} = 230 Vac; f _{SW} = default; IEC 146 class 1	@ U_{LN} =230Vac; f_{SW} =default; IEC 146 class 2	@ U_{LN} =230Vac; f_{SW} =default; IEC 146 class 1	@ U_{LN} =230 Vac ; f_{SW} =default; IEC 146 class 2	@ U_{LN} =400Vac; f_{SW} =default; IEC 146 class 1	@ U_{LN} =400Vac; f_{SW} =default; IEC 146 class 2	@ U_{LN} =460Vac; IEC 146 class 1	$(0.01)^{+0.0} = 460 \text{Vac}$; IEC 146 class 2	U ₂ Max output voltage	f ₂ Max output frequency	I _{2N} Rated output current: $(0.11 \text{ U}_{1.N} = 230.400 \text{ Vac}) = \text{default}$: IEC 146 class 1	@ $U_{LN} = 230-400 \text{ Vac}$; $f_{sw} = \text{default}$; IEC 146 class 2	@ U_{LN} =460Vac; f_{SW} =default; IEC 146 class 1	@ U_{LN} =460Vac; f_{SW} =default; IEC 146 class 2	f _{sw} switching frequency (Default)	f _{Sw} switching frequency (Higher)	lovld (short term overload current, 200% of $L_{\rm 2N}$ for $0.5s$ on $60s)$	Derating factor: K., at 460/480Vac	K for ambient temperature	K _F for switching frequency	U _{IN} AC Input voltage	AC Input frequency	I _N AC Input current for continuous service : - Connection with 3-phase reactor	@ 230Vac; IEC 146 class1	@ 400Vac; IEC 146 class1	(@ 460Vac; IEC 146 class1	- Connection without 3-phase reactor (a) 230Vac; IEC 146 class1	@ 400Vac; IEC 146 class1		Max short circuit power without line reactor (Zmin=1%)	Max short circuit power without line reactor (Zmin=1%) Overvoltage threshold	Max short circuit power without line reactor (Zmin=1%) Overvoltage threshold Undervoltage threshold
	_										n	<u>-</u> :	7 D				_							_									1	1 1

—— Procédure d'inspection, identification des composants et spécifications standard ——

3.3.3. Courant d'entrée c.a.

Note!

Le courant d'entrée du variateur dépend de l'état et des conditions de fonctionnement du moteur connecté, ainsi que de la mise en oeuvre de bobines de réactance d'entrée. La table 3.3.2.1 indique les valeurs correspondant à un fonctionnement nominal continu (IEC 146 classe 1), en tenant compte du facteur de puissance pour chaque type de convertisseur.

3.3.4. Sortie c.a.

La sortie du variateur AVy est protégée contre les défauts à la terre et les courts-circuits entre phases. La fréquence de commutation est contante dans la plage de vitesse et dépend du type de variateur.

Note!

Il est interdit de connecter une tension externe aux bornes de sortie du variateur ! Il est permis de déconnecter le moteur de la sortie du variateur, après que le variateur ait été désactivé.

La valeur du courant de sortie continu (I_{CONT}) dépend de la tension d'entrée c.a. (K_{V}), de la température ambiante (K_{T}) et de la fréquence de commutation (K_{F}) :

 $I_{CONT} = I_{2N} \times K_{V} \times K_{T} \times K_{F}$ (les valeurs du facteur de réduction de charge sont répertoriées dans la table 3.3.2.1)

avec une capacité de surcharge $I_{MAX} = 1,36 \text{ x } I_{CONT}$ pendant 60 secondes

Les réductions de charge applicables sont réglées automatiquement lors de la sélection des valeurs appropriées de la tension d'entrée c.a., de la température ambiante et de la fréquence de commutation.

Puissances recommandées pour les moteurs

La coordination des puissances nominales des moteurs avec les types de variateurs présentés dans la table ci-dessous, se rapporte à l'utilisation de moteurs quadripolaires standard dont la tension nominale est égale à la tension nominale de l'alimentation d'entrée.

Concernant ces moteurs présentant différentes tensions, le type de variateur à utiliser est déterminé par le courant nominal du moteur.

Le courant nominal du moteur ne peut pas être inférieur à 0,3 x I_{2N} . Le courant magnétisant du moteur ne doit pas être supérieur à I_{CONT} .

Note!

Dans des conditions de fonctionnement avec surcharge supérieure à 150 %, le courant nominal doit être déclassé.

La table 3.3.3.1 indique les valeurs du courant nominal pour des courbes de fonctionnement typiques (température ambiante = 40 °C [104 °F], fréquence de commutation standard). En ce qui concerne les cycles de courant nominal appliqués après la surcharge, la durée minimale est également spécifiée.

Pour les cycles plus courts que la durée minimale spécifiée, le courant suivant la surcharge doit être réduit à un niveau inférieur à la valeur nominale, de telle sorte que la moyenne des valeurs efficaces tout au long du cycle ne dépasse pas le courant continu I_{CONT} .

Des critères similaires sont applicables dans le cas de facteurs de réduction de charge additionnels.

Table 3.3.3.1: Courant nominal du variateur

Type	r	1007	1015	1022	1030	2040	2055	2075	3110	3150	4185	4220	4300	4370	5450	5550	0529	0062	71100	71320	81600	82000
- I_{2N} Rated output current (@ $U_{LN}\!=\!230\text{-}400\text{Vac})$:																						
Continuous service, no overload (IEC 146 class 1)	<u>A</u>	2.4	4	5.6	7.5	9.6	12.6	17.7	24.8	33	39	47	63	62	93	114	142	185	210	250	324	400
Overload service 150%x60s followed by $I_{\rm N}$, min. cycle time 360s (IEC 146 class2)	[A]	2.2	3.6	5.1	8.9	8.7	11.5	16.1	22.5	29.9	35	43	57	72	85	104	129	168	191	228	295	364
Overload service 200%x10s followed by $I_{\rm N}$, min. cycle time 30s	[A]	1.6	2.7	3.8	5.1	6.5	9.8	12.0	16.9	22.4	27	32	43	54	63	78	76	126	143	171	221	273
Overload service 200%x60s followed by $I_{\rm N}$, min. cycle time 160s	[A]	1.6	2.7	3.8	5.1	6.5	9.8	12.0	16.9	22.4	27	32	43	54	63	78	76	126	143	171	221	273
Overload service 250%x10s followed by $I_{\rm N}$, min. cycle time 25s	[A]	1.3	2.2	3.0	4.1	5.2	8.9	9.6	13.5	18	21	26	34	43	51	62	78	101	115	137	177	218
Overload service 300%x10s followed by $I_{\rm N}$, min. cycle time 25s	[A]	1.1	1.8	2.5	3.4	4.3	5.7	8.0	11.2	15	18	21	29	36	42	52	9	84	96	114	147	182
Overload service 300%x60s followed by $\rm I_N$, min.cycle time 130s	<u>A</u>	1.1	1.8	2.5	3.4	4.3	5.7	8.0	11.2	15	18	21	29	36	42	52	99	84	96	114	147	182
- I_{2N} x $K_{\rm V}$ Rated output current (@ $U_{LN}{=}460/480 \mbox{Vac})$:																						
Continuous service, no overload (IEC 146 class 1)	<u>A</u>	2.1	3.5	4.9	6.5	8.3	11	15.4	21.6	28.7	34	41	55	69	81	66	124	161	183	218	282	348
Overload service 150%x60s followed by $\rm I_N$, min. cycle time 360s (IEC 146 class2)	[A]	1.9	3.2	4.4	5.9	7.6	10	14	19.6	56	31	37	50	63	74	06	112	146	166	198	257	317
Overload service 200%x10s followed by $I_{\rm N}$, min. cycle time 30s	[A]	1.4	2.4	3.3	4.4	5.6	7.5	10.5	14.7	19.5	23	28	37	47	55	89	84	110	125	148	192	238
Overload service 200%x60s followed by $I_{\rm N}$, min. cycle time 160s	[A]	1.4	2.4	3.3	4.4	5.6	7.5	10.5	14.7	19.5	23	28	37	47	55	89	84	110	125	148	192	238
Overload service 250%x10s followed by $I_{\rm N}$, min. cycle time 25s	[A]	1.1	1.9	2.7	3.5	4.5	0.9	8.4	11.7	15.6	19	22	30	38	44	54	29	88	100	119	154	190
Overload service 300%x10s followed by $I_{\rm N}$, min. cycle time 25s	[A]	6.0	1.6	2.2	2.9	3.8	5.0	7.0	8.6	13	15	19	25	31	37	45	56	73	83	66	128	158
Overload service 300%x60s followed by $I_{\rm N}$, min. cycle time 130s	[A]	6.0	1.6	2.2	2.9	3.8	5.0	7.0	8.6	13	15	19	25	31	37	45	56	73	83	66	128	158
									1													avy2020

Procédure d'inspection, identification des composants et spécifications standard

3.3.5. Unité de commande à boucle ouverte et à boucle fermée

Entrées de validation		0 / 1530 V	3,26,4 mA	(5 mA @ 24 V)
Entrées analogiques	configurables	0 ± 10 V 020 mA 420 mA	0,25 mA max 10 V max 10 V max	
		Tension en mode commu	ın max. : 0± 10 V	
Sorties analogiques		0± 10 V	5 mA max. par sortie	
Entrées numériques		0 / 1530 V	3,26,4 mA	(5 mA @ 24 V)
Sorties numériques	Alimentation Signaux	+ 1535 V + 1535 V	40 mA max. par sortie	
Entrées du codeur				
Sinusoïdal	Tension	1 V crête-à-crête		
	Courant Nbre d'impulsions par tour Fréquence max. Câble max.	600 min. 9999 max. 80 kHz	voie (résistance d'entrée lé, 4 paires torsadées (cf. 1	ŕ
Numérique	Tension Courant Nbre d'impulsions par tour Type Fréquence max.	5 V 10 mA 600 min. 9999 max. signal normal et inversé 150 kHz		
Alimentation électrique	ue int.			
+ 10 V	Capacité de charge 10 mA	+ 5 V Borne 7 - 10 V	160 mA 10 mA	Fiche Borne 8
		+ 24 V	120 mA	Borne 19

	Capacite de charge	1 J V	100 111/4	1 ICHC
+ 10 V	10 mA	Borne 7		
		- 10 V	10 mA	Borne 8
		+ 24 V	120 mA	Borne 19
	Tolérance	+ 10 V	± 3 % 1)	
		- 10 V	$\pm 3 \% ^{1)}$	
		+ 24 V	+ 20 30 V, non-stabili	sé
		XE pour codeur numério	que, PIN 7/9	

La tolérance entre les amplitudes positives et négatives est de \pm 0,5 %

3.3.6. Précision

O	1		
Output f	frequency:	[00]	≤ 50 ppm/°C typical
	temperature dependent stability error	[°C]	0.001 Hz at 50 Hz
	resolution	[Hz]	0.001 Hz at 30 Hz
		<u> </u>	0.003 112 at 300 112
Internal	reference value voltage:	[V]	± 10V, terminals 7 and 8
1110011101	- temperature dependent stability error	[°C]	100 ppm/°C typical
Referen	ce values:		11 - 71
	resolution via keypad / Interface bus		16 bit or 15 bit + sign
	resolution via terminals (1/2, 3/4, 5/6)		11 bit + sign
	linearity via terminals (1/2, 3/4, 5/6)		± 0.1 % of full scale
	•	-	
	Speed limit / Absolute max speed	[rpm]	8000
	Digital reference resolution	[rpm]	0.25
	Field oriented (with sinusoidal Encoder):		
	speed feedback resolution	[rpm]	0.25 (for encoder pulses number ≥ 1900)
			> 0.25(for encoder pulses number <1900)
	accuracy	[%]	typical 0.01%
	control range	[rpm]	better than 1:10000
S	max bandwidth	[rad/s]	300 rad/s [47 Hz] ⁽¹⁾
P	Field enjented (with digital Engedon).		
\mathbf{E}	Field oriented (with digital Encoder): speed feedback resolution	[rpm]	0.5
\mathbf{E}	accuracy	[%]	typical 0.02%
D	control range	[rpm]	better than 1:1000
~	max bandwidth	[rad/s]	300 rad/s [47 Hz] ⁽¹⁾
C		[144,5]	000 144/0 [17 112]
O N	Sensorless vector control:		
T	speed feedback resolution	[rpm]	0.002 x Nominal speed
R	accuracy	[%]	0.3% @ Nominal speed
0			1.3% @ 2% of Nominal speed
L	control range	[rpm]	from 1:50 to 2.5 x Nominal speed
	max bandwidth	[rad/s]	100 rad /s [15,9Hz] ⁽¹⁾
	Constant V/f control:		
	a a course of v	[]	0.3 x nominal motor slip with automatic slip
	accuracy	[rpm]	compensation
	control range	[%]	depending on motor nominal slip, typ. 1:50
	eonvior range	[/~]	deponding on motor nominal onp, typt neo
	Field oriented - Sensorless:		
$_{\mathbf{T}}$ C	resolution	[rpm]	typical 1:1.000
0 0			typical 5% ⁽²⁾
R N	accuracy	[%]	71
\mathbf{o}^{T}	control range	[rpm]	1÷20
U R U O	min. response time (at load step)	[ms]	0.8
E L	max bandwidth		2.4 krad/s [380 Hz]
L			

avy2030

- (1) Le temps de réponse et la bande passante sont influencés par la charge et l'inertie. Les valeurs indiquées sont des valeurs limites
- (2) Cette valeur ne tient pas compte des pertes dans le fer, des pertes mécaniques ni du couple résistant dû à l'interaction des aimants permanents. Avec adaptation de résistance rotorique (Rr) validée.

Ch.3 48

4. DIRECTIVES D'INSTALLATION

4.1. SPÉCIFICATIONS MÉCANIQUES

Figure 4.1.1 : Dimensions du variateur (types 1007 ... 3150)

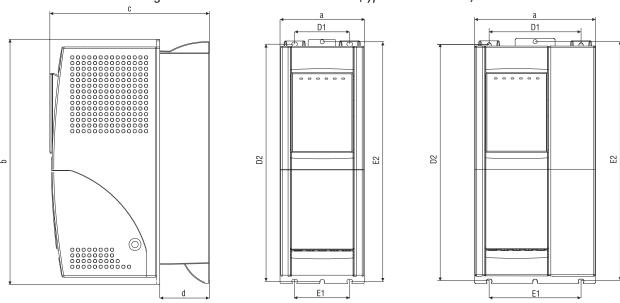


Figure 4.1.2 : Méthodes de montage (types 1007 ... 3150)

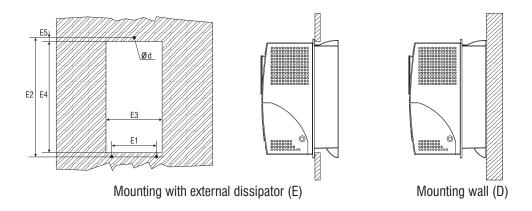


Table 4.1.1 : Dimensions et poids du variateur (types 1007 ... 3150)

	Гуре	1007	1015	1022	1030	2040	2055	2075	3110	3150
Drive dime	nsions:						-			
a	mm (inch)		105.5	5 (4.1)			151.5 (5.9)		208	(8.2)
b	mm (inch)				306.5 (12.0))			323 ((12.7)
c	mm (inch)				199.5 (7.8)				240	(9.5)
d	mm (inch)				62 (2.4)				84 ((3.3)
D1	mm (inch)		69 ((2.7)			115 (4.5)		168	(6.6)
D2	mm (inch)				296.5 (11.6))			310.5	(12.2)
E1	mm (inch)		69 ((2.7)			115 (4.5)		164	(6.5)
E2	mm (inch)				299.5 (11.7))			315 ((12.4)
E3	mm (inch)		99.5	(3.9)			145.5 (5.7)		199	(7.8)
E4	mm (inch)				284 (11.2)				299.5	(11.8)
E5	mm (inch)					9 (0.35)				
Ød						M5				
Weight	kg (lbs)	3.5 (7.7)	3.6 (7.9)	3.7	(8.1)		4.95 (10.9)		8.6	(19)
						•	•		•	avy3100

———— Directives d'installation ————

Figure 4.1.3 : Dimensions du variateur (types 4185 ... 82000)

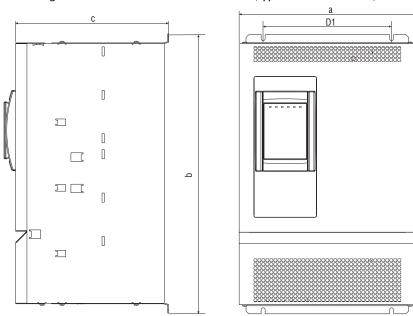
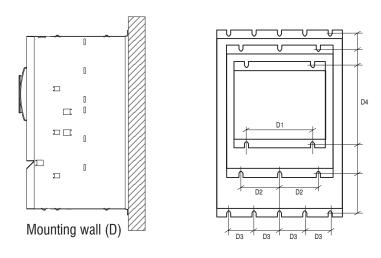
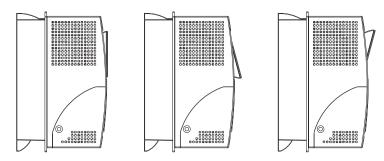


Figure 4.1.4 : Méthodes de montage (types 4185 ... 82000)




Table 4.1.2 : Dimensions et poids du variateur (types 4185 ... 82000)

,	Туре	4185	4220	4300	4370	5450	5550	6750	7900	71100	71320	81600	82000
Drive d	limensions:												
a	mm (inch)		309 (12.1)		376 ((14.7)			509 (2	20)		
b	mm (inch)		489 (19.2)		564 ((22.2)	741 (29.2)	ç	909 (35.8)	965	(38)
с	mm (inch)	268 (10.5)		308 (12.1)			297.5 (1	1.7)		442 (17.4)
D1	mm (inch)		225	(8.8)									
D2	mm (inch)					150	(5.9)						
D3	mm (inch)									100 (3	.9)		
D4	mm (inch)		475 (18.7)		550 ((21.6)	725 (28.5)		891 (35)		947 (37.3)
Ø								M6					
Weight	kg	1	8	22	22.2	34	34	59	75.4	80.2	86.5	10)9
	lbs	39	0.6	48.5	48.9	74.9	74.9	130	166.1	176.7	190.6	24	0.3

avy3105

Ch.4 50

Figure 4.1.5 : Positionnement du clavier

Afin d'offrir un angle visuel confortable, le clavier peut être orienté selon trois positions différentes.

4.2. PERTE EN WATTS, DISSIPATION THERMIQUE, VENTILATEURS INTERNES ET OUVERTURE MINIMUM D'ARMOIRE RECOMMANDÉS POUR LE REFROIDISSEMENT

La dissipation thermique des variateurs dépend de l'état de fonctionnement du moteur connecté. La table cidessous indique les valeurs se rapportant au fonctionnement à la fréquence de commutation par défaut (cf. paragraphe 3.3.4, "Sortie c.a."), temp. amb. \leq 40 °C, facteur de puissance typ. et courant continu nominal du moteur.

Table 4.2.1 : Dissipation thermique et débit d'air requis

Туре	1 0 0 7	1 0 1 5	1 0 2 2	1 0 3 0	2 0 4 0	2 0 5 5	2 0 7 5	3 1 1 0	3 1 5 0	4 1 8 5	4 2 2 0	4 3 0 0	4 3 7 0	5 4 5 0	5 5 0	6 7 5 0	7 9 0 0	7 1 1 0	7 1 3 2 0	8 1 6 0	8 2 0 0
P _V Heat dissipation:																					
@U _{LN} =400Vac ¹⁾ [W]	48.2	77.5	104.0	138.3	179.5	233.6	327.4	373	512	546	658	864	1100	1250	1580	1950	2440	2850	3400	4400	5400
@U _{LN} =460Vac 1) [W]	45.0	72.0	96.3	126.7	164.1	215.6	300.8	340	468	490	582	780	1000	1100	1390	1750	2200	2560	3050	3950	4700
f_{SW} =default; $I_2 = I_{2N}$																					
Airflow of fan:																					
Internal fan [m³/h]	11	11	11	11	11	11	11	30	30												
Heatsink fans [m ³ /h]	-	30	30	30	2x30	2x30	2x30	2x79	2x79	80	0	1	70	34	10	650		975		1820	2000

avy3110

Note! Tous les variateurs comportent des ventilateurs internes.

Note! Les pertes de chaleur se rapportent à la fréquence de commutation réglée par défaut.

Table 4.2.2: Ouverture minimum d'armoire recommandée pour le refroidissement

Type Minimum cooling.	1 0 0 7 openir	1 0 1 5	1 0 2 2	1 0 3 0	2 0 4 0	2 0 5 5	2 0 7 5	3 1 1 0	3 1 5 0	4 1 8 5	4 2 2 0	4 3 0 0	4 3 7 0	5 4 5 0	5 5 0	6 7 5 0	7 9 0 0	7 1 1 0 0	7 1 3 2 0	8 1 6 0 0	8 2 0 0 0
Control section cm ² (sq.inch)			3	31 (4.8)			36 ((5.6)	2::15	0 (2x			200	370					2 m 1	1600
Heatsink cm² (sq.inch)		36 ((5.6)		7	2 (11.1	1)	128 ((19.8)		.5)	2x200	(2x31)		7.35)		2x620 ((2x96.1))		248)

avy3120

51 **Ch.4**

4.2.1 Alimentation électrique des ventilateurs

Types 1007 à 5550

L'alimentation (+24 V c.a.) de ces ventilateurs est fournie par le bloc d'alimentation interne du variateur.

Types 6750 à 82000

L'alimentation de ces ventilateurs doit être fournie comme indiqué ci-après :

- AVy6750: 0.8A@115V/60Hz, 0.,5A@230V / 50Hz
- AVy7900 ... AVy71320: 1,2A@115V/60Hz, 0,65A@230V / 50Hz
- AVy81600-82000: 1,65A@115V/60Hz, 0,70A@230V / 50Hz

Figure 4.2.1 : Branchement des ventilateurs du type UL sur les variateurs AVy7900, AVy71100 et AVy71320

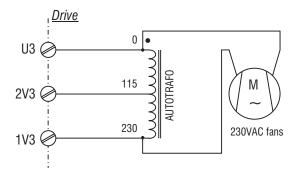


Figure 4.2.2 : Branchement des ventilateurs du type UL sur les variateurs AVy6750, AVy81600 et AVy82000

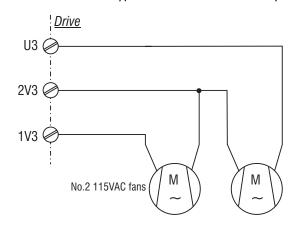
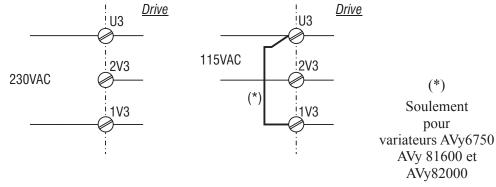
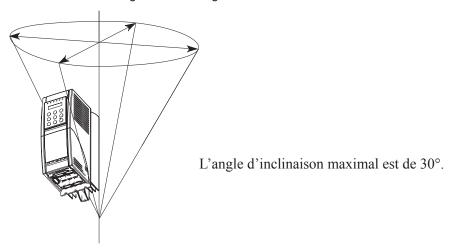



Figure 4.2.3: Exemple de branchement externe

Note! Un fusible interne (2,5A 250VAC à action retardée) est fourni pour les types AVy7900, AVy71100 et AVy71320.


Sur les types AVy6750, AVy81600 et AVy82000, le fusible doit être monté à l'extérieur.

4.3. ESPACE LIBRE POUR LE MONTAGE

Note!

Les dimensions et poids spécifiés dans ce manuel doivent être considérés lors du montage de l'appareil. L'équipement technique approprié (chariot ou grue pour charges lourdes) doit être utilisé. Toute manipulation incorrecte ainsi que l'utilisation d'outils inappropriés peut occasionner des dommages.

Figure 4.3.1 : Angle d'inclinaison max.

Note!

Les variateurs doivent être montés de telle sorte à garantir un débit libre de l'air. L'espace libre par rapport à l'appareil doit être d'au moins 150 mm (6 pouces). Un espace minimum de 50 mm (2 pouces) doit être garanti à l'avant.

Sur les types 81600 et 82000, les espaces supérieur et inférieur doivent être d'au moins 380 mm (15 pouces) ; à l'avant et sur les côtés, un espace d'au moins 140 mm (5,5 pouces) doit être garanti.

Les appareils générant une grande quantité de chaleur ne doivent pas être montés à proximité immédiate du convertisseur de fréquence.

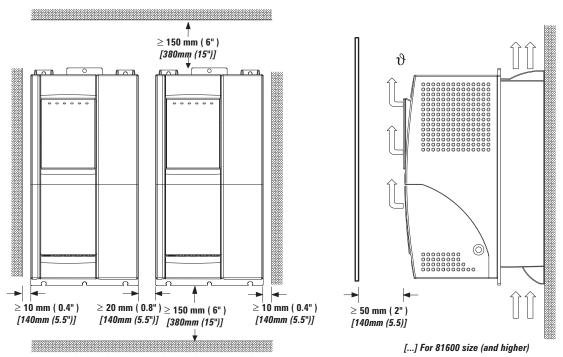


Figure 4.3.2 : Espace libre

Note! Les vis de fixation doivent être resserrées après quelques jours de fonctionnement.

4.4. MOTEURS ET CODEURS

Les variateurs AVy sont conçus pour la régulation du flux de moteurs asynchrones triphasés standard. Un codeur sinusoïdal ou un codeur numérique peut être mis en oeuvre pour la rétroaction de la vitesse.

4.4.1. Moteurs

Les caractéristiques électriques et mécaniques de moteurs triphasés standard se rapportent à une plage de fonctionnement déterminée. Les points suivants devraient être observés lorsque ces moteurs sont connectés à un variateur c.a. :

Est-il possible d'utiliser des moteurs asynchrones standard?

Avec les variateurs AVy, il est possible d'utiliser des moteurs asynchrones standard. Certaines caractéristiques du moteur ont une grande influence sur les performances obtenues. Reportez-vous également aux explications du paragraphe 3.3.4, "Sortie c.a.", à propos des tensions et de la puissance des moteurs.

Quelles propriétés des moteurs asynchrones influent négativement le fonctionnement avec des convertisseurs de fréquence ?

Les moteurs à rotors à double cage d'écureuil ou à cage profonde ne devraient pas être utilisés.

Couplage étoile ou triangle ?

Les moteurs peuvent être branchés en couplage étoile ou en couplage triangle. L'expérience a montré que les moteurs couplés en étoile présentaient de meilleures propriétés de régulation ; par conséquent, les couplages en étoile sont préférés.

Refroidissement

Le refroidissement de moteurs triphasés est normalement réalisé au moyen d'un ventilateur monté sur l'arbre moteur. N'oubliez pas que le rendement du ventilateur est réduit lorsque le moteur fonctionne aux vitesses basses, ce qui, dans certaines conditions, signifie un refroidissement insuffisant du moteur. Vérifiez avec le fabricant du moteur si un ventilateur externe est nécessaire ainsi que la plage de vitesse du moteur pour l'application concernée.

Fonctionnement au-delà de la vitesse nominale

Compte tenu des facteurs mécaniques impliqués (paliers, balourd du rotor) et en raison des pertes accrues dans le fer, consultez le fabricant du moteur si ce dernier est utilisé au-delà de la vitesse nominale.

Quelles sont les caractéristiques du moteur nécessaires pour le branchement du convertisseur de fréquence ?

Spécifications mentionnées sur la plaque signalétique

- Tension nominale du moteur
- Courant nominal du moteur
- Fréquence nominale du moteur
- Vitesse nominale du moteur
- Facteur de puissance

Les autres caractéristiques requises pour le contrôle vectoriel sont calculées à l'intérieur du convertisseur. Afin d'optimiser le fonctionnement du variateur, il est également utile de connaître les valeurs suivantes :

- Courant magnétisant
- Résistance rotorique
- Résistance statorique (uniquement pour le mode sans capteur)
- Inductance de fuite (mode contrôle vectoriel de flux avec adaptation de résistance rotorique activée ou mode sans capteur).

Protection du moteur

Thermistances

Des thermistances à coefficient de température positif (PTC) conformes à DIN 44081 ou 44082, installées dans le moteur, peuvent être connectées directement au convertisseur de fréquence par le biais des bornes 78 et 79. Dans pareil cas, la résistance (1 Kohm) montée entre les bornes 78 et 79 doit être supprimée.

Contacts thermiques dans l'enroulement du moteur

Des contacts thermiques du type "Klixon" peuvent déconnecter le variateur par l'intermédiaire de la commande externe ou peuvent être utilisés pour signaler un défaut externe sur le convertisseur de fréquence (borne 15). Ces contacts peuvent également être connectés aux bornes 78 et 79 afin de disposer d'un signal d'erreur spécifique. Dans ce cas, branchez la résistance de 1 Kohm existante en série avec le câblage ; notez qu'une extrémité de cette résistance doit être connectée directement à la borne 79.

Note!

Le circuit d'interface PTC du moteur (ou Klixon) doit être considéré et traité comme un circuit de signalisation. Les câbles de raccordement aux thermistances du moteur doivent être composés de paires torsadées avec blindage; ces câbles ne doivent pas être posés parallèlement aux câbles du moteur ou doivent être distants d'au moins 20 cm.

Limitation de courant du convertisseur de fréquence

La limitation de courant peut protéger le moteur contre les surcharges non-admissibles. A cette fin, la limitation de courant et la fonction de contrôle de surcharge moteur du variateur ("Ovld mot ctrl") doivent être réglées de telle sorte que le courant soit maintenu dans la plage admissible pour le moteur concerné.

Note!

N'oubliez pas que la limitation de courant ne peut contrôler la surchauffe d'un moteur que provenant d'une surcharge, et non due à une ventilation insuffisante. Lorsque le variateur fonctionne aux vitesses basses, l'utilisation additionnelle de résistances à coefficient de température positif ou de contacts thermiques installés dans les enroulements de moteur est recommandée, à moins qu'une ventilation forcée autonome ne soit disponible.

Self de sortie

En cas d'utilisation de moteurs universels, des selfs de sortie sont recommandées afin de protéger dans certains cas l'isolation des enroulements. Reportez-vous au paragraphe 5.7.2, "Selfs de sortie".

4.4.2. Codeur

L'un des quatre types de codeur suivants peut être raccordé au connecteur XE (connecteur 15 pôles haute densité, monté sur l'appareil), reportez-vous à la table 4.4.2.2 pour la configuration des cavaliers.

- **DE**: Codeur incrémental numérique 5 V avec A / A, B / B, C / C
- **SE**: Codeur incrémental sinusoïdal 5 V avec A / A, B / B, C / C

Les codeurs sont utilisés pour renvoyer un signal de vitesse au régulateur. Le codeur doit être relié à l'arbre de moteur selon un couplage sans jeu.

Des résultats de régulation optimaux sont garantis en cas d'utilisation de codeurs sinusoïdaux. Des codeurs numériques (codeurs angulaires) peuvent également être utilisés. Reportez-vous au paragraphe 4.3.6, "Précision".

Le câble du codeur peut être composé de paires torsadées avec blindage global, dont une extrémité est reliée à la masse (côté variateur). Evitez de relier le blindage du côté du moteur. Dans certains cas où la longueur de câble est supérieure à 100 mètres (328 pieds) (important bruit électromagnétique), il peut s'avérer nécessaire d'utiliser un câble avec blindage sur chaque paire de conducteurs, pouvant être relié à un point commun (0 V). Le blindage global doit toujours être relié à la masse.

Certains types de codeurs sinusoïdaux peuvent nécessiter l'installation d'une isolation galvanique par rapport à la carcasse ou l'arbre moteur.

Table 4.4.2.1 : Section et longueur de câble recommandée pour le branchement de codeurs

Cable section [mm ²]	0.22	0.5	0.75	1	1.5
Max Length m [feet]	27 [88]	62 [203]	93 [305]	125 [410]	150 [492]

avy3130

Table 4.4.2.2 : Configuration des codeurs au moyen des cavaliers \$11...\$23

Encoder / Jumpers setting	S11	S12	S13	S14	S15	S16	S17	S18	S19	S20	S21	S22	S23
DE	OFF	OFF	OFF	OFF	OFF	OFF	ON (*)	-	-	-	-	ı	-
SE	ON	ON	ON	ON	ON	ON	-	-	-	-	-	-	-

ai3150

Le cavalier S17 sélectionne l'inhibition ou la validation de la lecture des impulsions de la voie C. Il doit être correctement réglé afin de détecter convenablement les défaillances du codeur.

S17 ON : Lecture de la voie C (index) = ON S17 OFF : Lecture de la voie C (index) = OFF

(*) Si le codeur n'est pas doté d'une voie zéro : S17 = OFF

Table 4.4.2.3: Connexions des codeurs

	G1.1.1.1						XE	CON	NEC'	TOR	PIN					
Encoder type	Shielded	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	cable	B-	+8V	C+	C-	A+	Α-	0V	B+	+5V	E+	E-	F+	F-	G+	G-
		Ir	iterna	ıl +5\	V Enc	oder	Powe	r Sup	ply							
DE	8 pole	•		•	•	•	•	•	•	•						
SE	8 pole	•		•	•	•	•	•	•	•						
		Iı	nterna	ıl +8	V Enc	oder	Power	r Sup	ply							
DE	8 pole	•	•	•	•	•	•	•		•						
SE	8 pole	•	•	•	•	•	•	•		•						

ai3160

Caractéristiques requises :

Codeurs sinusoïdaux (connecteur XE sur la carte de régulation)

Fréquence max. 80 kHz (sélectionnez le nombre d'impulsions approprié

en fonction de la vitesse max. requise)

Nombre d'impulsions par tour 600 min., 9999 max.

Voies deux voies différentielles

Alimentation + 5 V (alimentation interne) *

Charge nominale > 8,3 mA crête-à-crête par voie

Codeurs numériques (connecteur XE sur la carte de régulation)

Fréquence max. 150 kHz (sélectionnez le nombre d'impulsions approprié

en fonction de la vitesse max. requise)

Nombre d'impulsions par tour 600 min., 9999 max.

Voies - deux voies différentielles (A/ \overline{A} , B/ \overline{B} , C/ \overline{C}). La

détection des défaillances du codeur est possible via

configuration du micrologiciel.

- deux voies, (A,B), séulement avec carte additionnel.

Alimentation + 5 V (alimentation interne) *
Charge nominale > 4,5 mA / 6,8 ... 10 mA par voie

* Par l'intermédiaire du clavier (menu "CONFIGURATION/Motor spd fbk/ Enc 1 supply vlt"), il est possible de sélectionner 4 valeurs différentes de tension d'alimentation interne du codeur, afin de compenser la chute de tension due à la longueur de câble et au courant de charge du codeur.

Les sélections disponibles sont:

- for +5 V encoder supply: 0 = 5,41 V, 1 = 5,68 V, 2 = 5,91 V, 3 = 6,18 V via le paramètre **Enc 1 supply vlt**.
- for +8 V encoder supply: leave standard default =0

<u>Test de l'alimentation du codeur</u> (lorsque l'alimentation interne +5 V est utilisée)

Durant le démarrage du variateur :

- Vérifiez l'alimentation du codeur sur les bornes du codeur avec toutes les voies connectées
- Au moyen du paramètre **Enc 1 supply vlt**, réglez la tension appropriée si la courbe caractéristique de tension (par exemple : +5 V ± 5 %) est hors plage.

Bornes pour connexions externes du codeur

Connecteur mâle : 15 pôles haute densité (type VGA)

Capot de connecteur : standard 9 pôles plat (exemple de code fabricant : AMP 0-748676-

1, 3M 3357-6509)

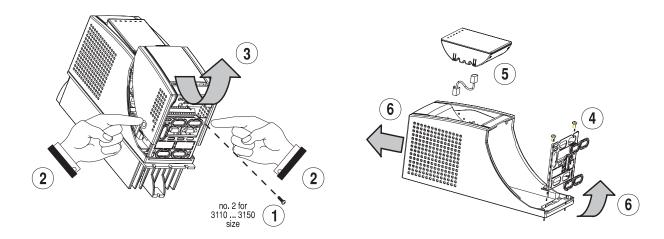
Table 4.4.2.4: Brochage du connecteur haute densité XE pour un codeur sinusoïdal ou numérique

	Désignation	Fonction	E/S	Maxi Tension	Maxi Courant
Broche 1	ENC B-	Canal B-	Е	5 V digital ou	10 mA digital ou
Dioche i	ENC B-	Signal codeur incrémental B négatif		1 V pp analog	8.3 mA analog
Broche 2		Alimentation codeur +8V	S	+8 V	200 mA
Broche 3	ENC C+	Canal C+	Е	5 V digital ou	10 mA digital ou
Diocile 3	ENCC+	Signal codeur incrémental Index positif	E	1 V pp analog	8.3 mA analog
Broche 4	ENC C-	Canal C-	Е	5 V digital ou	10 mA digital ou
Dioche 4	ENC C-	Signal codeur incrémental Index négatif		1 V pp analog	8.3 mA analog
Broche 5	ENC A+	Canal A+	Е	5 V digital ou	10 mA digital ou
Dioche 3	ENCAT	Signal codeur incrémental A positif		1 V pp analog	8.3 mA analog
Broche 6	ENC A-	Canal A-	Е	5 V digital ou	10 mA digital ou
Diocile 0	ENC A-	Signal codeur incrémental A négatif	E	1 V pp analog	8.3 mA analog
Broche 7	GND	Consigne pour alimentation codeur +5V	S	_	-
Broche 8	ENC B+	Canal B+	Е	5 V digital ou	10 mA digital ou
Dioche 8	ENC D+	Signal codeur incrémental B positif	E	1 V pp analog	8.3 mA analog
Broche 9	AUX+	+5V encoder supply voltage	S	+5 V	200 mA
Broche 10	HALL 1+/SIN+	Canal HALL1 + / SIN+	Е	5 V digital ou	10 mA digital ou
Dioche 10	HALL IT/SINT	Réservé	E	1 V pp analog	8.3 mA analog
Broche 11	HALL 1-/SIN-	Canal HALL 1- / SIN-	Е	5 V digital ou	10 mA digital ou
Dioche 11	HALL 1-/SIN-	Réservé	E	1 V pp analog	8.3 mA analog
Broche 12	HALL 2+/COS+	Canal HALL 2+ / COS+	Е	5 V digital ou	10 mA digital ou
Dioche 12	HALL 2+/COS+	Réservé	E	1 V pp analog	8.3 mA analog
Broche 13	HALL 2-/COS-	Canal HALL 2- / COS-	Е	5 V digital ou	10 mA digital ou
Dioche 13	11ALL 2-/CO3-	Réservé		1 V pp analog	8.3 mA analog
Broche 14	HALL 3+	Canal HALL 3 +	Е	5 V digital ou	10 mA digital
DIUCHE 14	HALL 3†	Réservé	E	1 V pp analog	10 m/x digital
Broche 15	HALL 3-	Canal HALL 3 -	Е	5 V digital ou	10 m A digital
DIOCHE 13	HALL 3-	Réservé		1 V pp analog	10 mA digital

ai3140f

5. PROCÉDURE DE CÂBLAGE

5.1. ACCÈS AUX CONNECTEURS


5.1.1 Démontage des couvercles

Note!

Observez les instructions de sécurité et les avertissements de ce manuel. Les appareils peuvent être ouverts sans usage de la force. Utilisez exclusivement les outils spécifiés.

Reportez-vous à la figure 3.2.2 "Vue du variateur et de ses composants" pour identifier les pièces de rechange.

Figure 5.1.1 : Démontage des couvercles (types 1007 à 3150)

Types 1007 à 2075

Le couvercle et la plaque d'entrée de câble de l'appareil doivent être démontés afin de réaliser les connexions électriques :

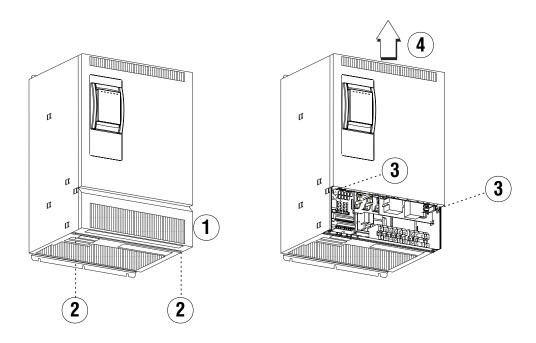
- Dévissez la vis (1), enlevez le couvercle de l'appareil (2) en pressant de part et d'autre, comme indiqué sur la figure ci-dessus (3).
- Dévissez les deux vis (4) afin de démonter la plaque d'entrée de câble.

Le couvercle supérieur doit être enlevé afin de monter la carte optionnelle et de modifier la configuration des cavaliers internes :

- Démontez le clavier et débranchez le connecteur (5).
- Levez le couvercle supérieur au niveau de la partie inférieure (au-dessus du connecteur), puis poussez-le vers le haut (6).

Types 3110 à 3150

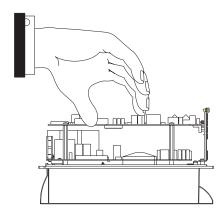
Le couvercle et la plaque d'entrée de câble de l'appareil doivent être démontés afin de réaliser les connexions électriques :


- Dévissez les deux vis (1) et enlevez le couvercle de l'appareil.
- Dévissez les deux vis (4) afin de retirer la plaque d'entrée de câble.

Le couvercle supérieur doit être enlevé afin de monter la carte optionnelle et de modifier la configuration des cavaliers internes :

- Démontez le clavier et débranchez le connecteur (5)
- Levez le couvercle supérieur au niveau de la partie inférieure (au-dessus du connecteur), puis poussez-le vers le haut (6).

	Procédure de câblage ———	59	Ch.5
--	--------------------------	----	------


Figure 5.1.2 : Démontage des couvercles (types 4185 à 82000)

Types 4185 à 82000

Le couvercle de l'appareil doit être démonté afin de réaliser les connexions électriques : dévissez les deux vis (2) et enlevez le couvercle (1).

Le couvercle supérieur doit être enlevé afin de monter la carte optionnelle et de modifier la configuration des cavaliers internes : dévissez les deux vis (3) et enlevez le couvercle supérieur en le déplaçant comme indiqué sur la figure (4).

ATTENTION: Afin de ne pas endommager l'appareil, il est interdit de le transporter en le manipulant par les cartes!

5.2. PARTIE PUISSANCE

5.2.1. Carte de puissance PV33-..

Figure 5.2.1.1 : Carte de puissance PV33-1-.. (types 1007 à 1030)

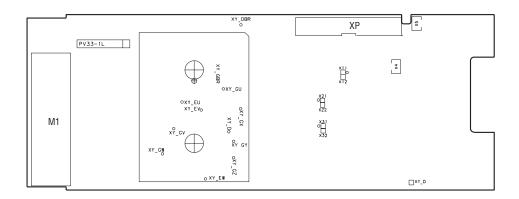


Figure 5.2.1.2 : Carte de puissance PV33-2-.. (types 2040 à 2075)

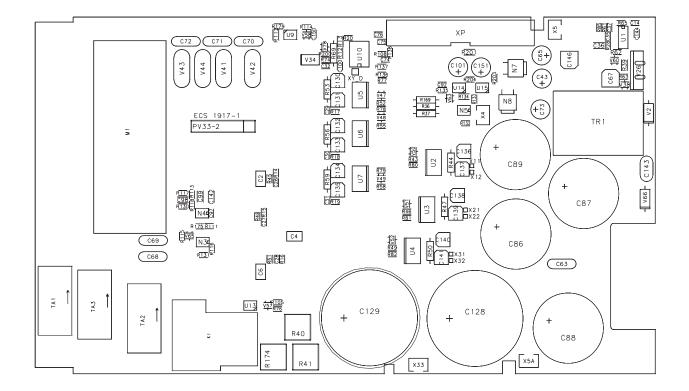


Figure 5.2.1.3 : Carte de puissance PV33-3-.. (types 3110 et 3150)

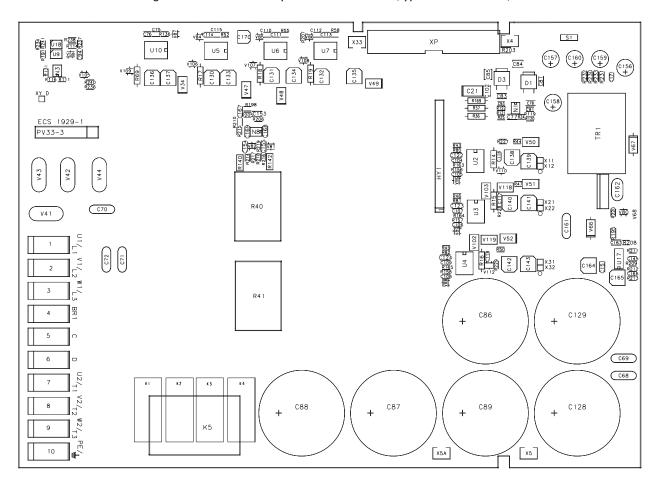


Figure 5.2.1.4 : Carte de puissance PV33-4-.. (types 4185 à 5550)

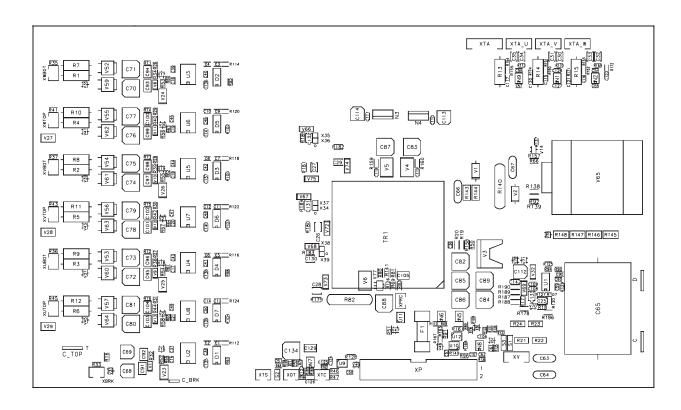


Figure 5.2.1.5 : Carte de puissance PV33-5-.. (types 6750 à 71320)

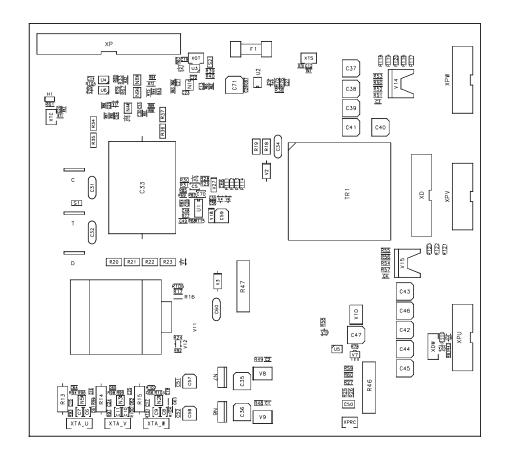
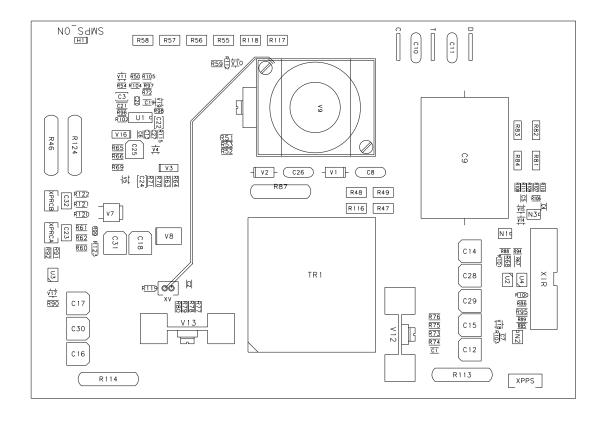
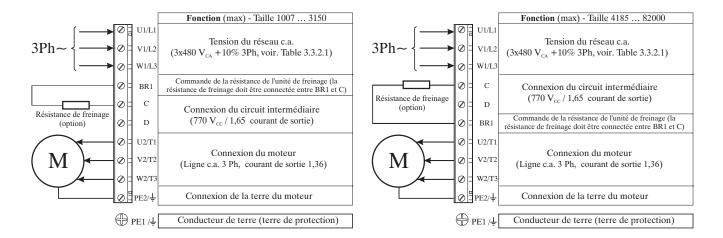




Figure 5.2.1.6 : Carte de puissance PV33-6-.. (types 81600 à 82000)

5.2.2. Affectation des bornes de la partie puissance / section de câble

Table 5.2.2.1 : Bornes de la partie puissance

Plan des bornes de puissance

Types 1007 à 3150 : Les bornes de l'appareil sont rendues accessibles par le démontage du couvercle et

de la plaque d'entrée de câble (cf. paragraphe 5.1, "Accès aux connecteurs") ; sur certains types de variateurs, il est également possible d'extraire le connecteur amovible. Toutes les bornes de puissance sont situées sur la carte de puissance

PV33-.... présentée dans le chapitre précédent.

Types 4185 à 82000 : Les bornes de l'appareil sont rendues accessibles par le démontage du couvercle

(cf. paragraphe 5.1, "Accès aux connecteurs").

Sections maximales de câble pour les bornes de puissance U1, V1, W1, U2, V2, W2, C, D, PE

Table 5.2.2.2 : Section maximale de câble pour les bornes de puissance

	1007	1015	1022	1030	2040	2055	2075	3110	3150	4185	4220				
AWG	<u>"</u>	1	4		12	1	10	8		6	•				
[mm2]		:	2			4	4 8 10		10 16						
[Nm]			0.5 to 0.6					1.2	to 1.5		2				
AWG		1	4		12	1	10	8	6		10				
[mm2]			2			4		8	10		6				
[Nm]				0.5 to 0.6				1.2	to 1.5		0.9				
AWG		1	4		12	1	10	8 6			6				
[mm2]			2		4		8 10			16					
[Nm]				0.5 to 0.6				1.2	1.2 to 1.5		2				
	4300	4370	5450	5550	6750	7900	71100	71320	81600	82000					
AWG	4	:	2	1/0	2/0	4/0	300*	350*	4xAWG2		* = kcmils				
[mm2]	25	3	35	50	70	95	150	185	4x35	150**	**: copper bar				
[Nm]	3	4		4		.2		1	10-30		_				
AWG	8	8		5											
[mm2]	10	10		6		terminals not ava		terminals not available		terminals not available		als not available			
[Nm]	1.6	1.6	:	3							_				
AWG	6		6				2	!]				
[mm2]	16	1	.6				50	0			J				
[Nm]	3	3				<u>-</u>	4	·							

avy4040

Prudence!

Le conducteur de terre du câble de moteur peut véhiculer jusqu'à deux fois la valeur du courant nominal en cas de défaut à la terre au niveau de la sortie du variateur AVy.

Note: Utilisez exclusivement des conducteurs en cuivre 75 °C.

Ch.5 64 — AVy -FR —

5.3. PARTIE RÉGULATION

5.3.1 Carte de régulation RV33

Figure 5.3.1.1 : Commutateurs et cavaliers sur la carte de régulation RV33-4

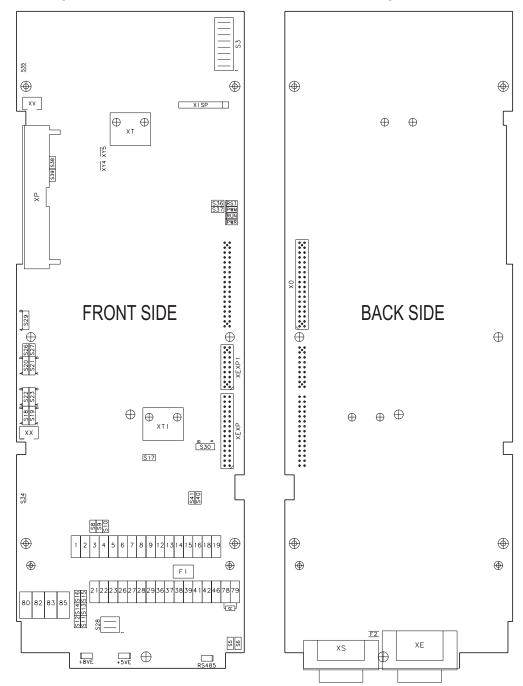


Table 5.3.1.1 : LED et Points test sur la carte de régulation

Designation	Color	Function
RST	red	LED lit during the Hardware Reset
PWR	green	LED lit when the voltage +5V is present and at correct level
RS485	green	LED is lit when RS485 interface is supplied
PWM	green	LED lit during IGBT modulation
RUN	green	LED is flashing when regulation is running (not in STARTUP menu)
+5VE	green	LED lit when encoder power supply +5V (XE-9)
+8VE	red	LED lit when encoder power supply +8V (XE-2)
XY4	(test point)	Phase current signal (U) (see manual "AVy Function description and parameters", table 1.3.1.2.2)
XY5	(test point)	Reference point

------ Procédure de câblage ------

65 **Ch.5**

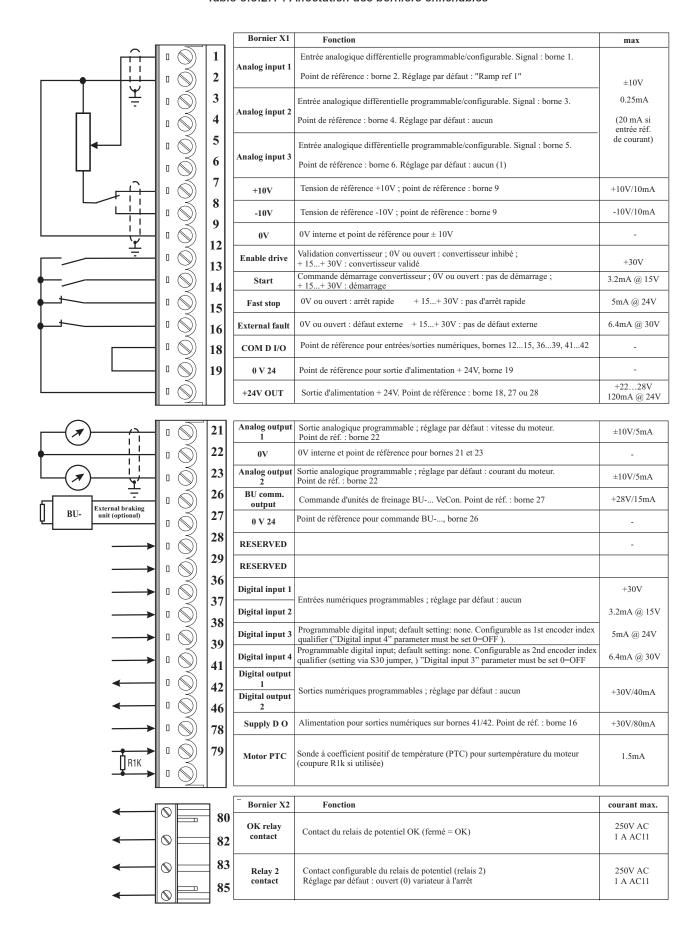
Table 5.3.1.2 : Cavaliers sur la carte de régulation RV33

Désignation	Fonction	Réglage d'origine
S5 - S6	Résistance de terminaison pour l'interface série RS485	ON (*)
	ON = résistance de terminaison présente	
	OFF = pas de résistance de terminaison	
S8	Adaptation du signal de l'entrée analogique 1 (bornes 1 et 2)	OFF
	ON=020 mA / 420 mA	
	OFF=010V / -10+10V	
S9	Adaptation du signal de l'entrée analogique 2 (bornes 3 et 4)	OFF
	ON=020 mA / 420 mA	
	OFF=010V / -10+10V	
S10	Adaptation du signal de l'entrée analogique 3 (bornes 5 et 6)	OFF
	ON=020 mA / 420 mA	
	OFF=010V / -10+10V	
S11 - S12 - S13	Réglage du codeur (jumpers on kit EAM 1618 supplied with the drive)	OFF
S14 - S15 - S16	ON = codeur sinusoïdal SE	
	OFF = codeur numérique DE	
S17	Surveillance de la voie C du codeur numérique	OFF
517	ON = voie C surveillée	011
	OFF = voie C non-surveillée (nécessaire pour voies simples)	
S18 - S19	Réglage du codeur	В
S20 - S21	Pos. B = Réservé	
520 521	Pos. A = Réservé	
S22 - S23	Validation de l'entrée analogique 3 (alternative avec codeur SESC)	В
522 526	Pos. A = Réservé	
	Pos. B = entrée analogique 3 validée	
	Pos. OFF = en cas d'utilisation d'un résolveur	
S26 - S27	Réservé	ON
S28	Encoder Internal power supply selection	ON/ON
	ON/ON = +5 V	
	OFF / OFF = +8 V	
S29	Utilisation interne	A
S30	Selon entrée qualificateur codeur	A
	A=de la carte EXP	
S34	B=de l'entrée digitale "3" ou RV33-4	ON
534	Cavalier pour déconnecter le 0V (partie régulation) de la masse	
	ON = 0V connecté à la masse	(hard-wire)
627	OFF = 0V déconnecté de la masse	ONT
S35	Cavalier pour déconnecter le 0V (du 24V) de la masse	ON
	ON = 0V connecté à la masse	(hard-wire)
00.5	OFF = 0V déconnecté de la masse	
S36	Utilisation interne	non monté
S37	Utilisation interne	non monté
S38-S39	Utilisation interne	ON
S40-S41	Sélection type d'alimentation, interne ou externe, de la ligne série RS485:	OFF
(**)	ON=Ligne série alimentée par la régulation du drive (pins XS.5 / XS.9)	
	OFF = Ligne série alimentée par une source extérieure (pins XS.5 / XS.9)	

^(*) Sur des connexions multipoints, le cavalier ne doit être placé sur ON uniquement pour le dernier point d'une ligne série (**) voir chapitre 5.4

Table 5.3.1.3: Réglages des micro-interrupteurs S3 de la carte de régulation RV33

Type	1007	1015	1022	1030	2040	2055	2075	3110	3150	4185	4220	4300	4370	5450	5550	6750	7900	71100	71320	81600	82000
S3-1	ON	OFF	ON	OFF	OFF	ON	OFF	ON	OFF	OFF	ON	OFF	ON	OFF	ON	OFF	ON	OFF	ON	OFF	ON
S3-2	OFF	ON	ON	OFF	OFF	OFF	ON	ON	OFF	ON	OFF	ON	ON	OFF	OFF	ON	ON	OFF	OFF	ON	OFF
S3-3	OFF	OFF	OFF	OFF	ON	OFF	OFF	OFF	ON	ON	ON	ON	ON	OFF	OFF	OFF	OFF	ON	ON	ON	ON
S3-4	OFF	ON	OFF	OFF	OFF	ON	ON	ON	ON	ON	ON	ON	ON								
S3-5	ON	ON	ON	OFF	ON	OFF	OFF	OFF	OFF	ON	OFF	OFF	OFF	ON							
S3-6	OFF	OFF	OFF	OFF																	
S3-7	ON	ON	ON	ON																	
S3-8	OFF	OFF	OFF	OFF																	


avy4080

Les appareils sont réglés de façon appropriée en usine. En cas d'installation d'une carte de rechange, pensez à régler les micro-interrupteurs S3 en conséquence.

Ch.5 66 — AVy -FR —

5.3.2. Affectation des bornes sur la partie régulation

Table 5.3.2.1: Affectation des borniers enfichables

ATTENTION!

La tension de +24Vdc utilisée pour alimenter extérieurement la carte de régulation doit être stabilisée et avec une tolérance de $\pm 10\%$; absorption maximum de 1A.

Les alimentations obtenues avec les seules redresseur e filtre capacitive ne sont pas appropriées.

Sections maximales de câble pour les bornes de commande

Table 5.3.2.2 : Section de câble maximale admissible sur les bornes enfichables de la partie régulation

	Maximum P	ermissible Cable C	Cross-Section	Tightening
Terminals	[m:	m^2]	AWG	torque
	flexible	multi-core	AWG	[Nm]
1 79	0.14 1.5	0.14 1.5	28 16	0.4
80 85	0.14 1.5	0.14 1.5	28 16	0.4

Ai4090

L'utilisation d'un tournevis plat de dimensions 75 x 2,5 x 0,4 mm (3 x 0,1 x 0,02 pouce) est recommandée. Dénudez 6,5 mm (0,26 pouce) d'isolant aux extrémités de câble. <u>Un seul fil non-préparé (sans embout) doit</u> <u>être connecté sur chaque borne.</u>

Longueur maximale de câble

Table 5.3.2.3 : Longueurs maximales des câbles de commande

Cable section [mm ²]	0.22	0.5	0.75	1	1.5
Max Length m [feet]	27 [88]	62 [203]	93 [305]	125 [410]	150 [492]

avy3130

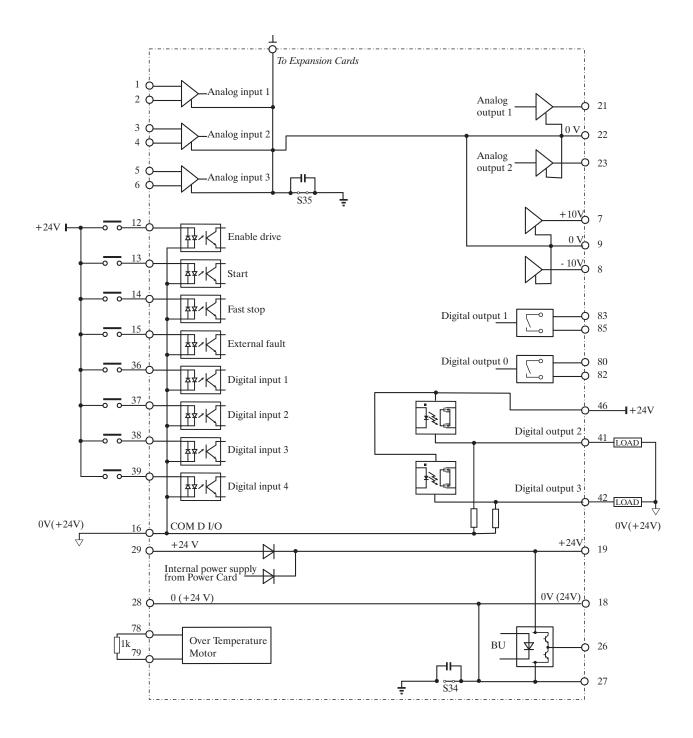
Potentiels de la partie régulation

Les potentiels de la partie régulation sont isolés et peuvent être déconnectés de la masse au moyen de cavaliers. Les connexions entre chaque potentiel sont indiqués sur la figure 5.3.1.2.

Les entrées numériques sont conçues en tant qu'amplificateurs différentiels.

Les entrées numériques sont optocouplées par rapport au circuit de commande. Les entrées numériques (bornes 12 à 15 et 36 à 39) et les sorties numériques ont la borne 16 comme point de référence commun.

Les entrées analogiques sont conçues en tant qu'amplificateurs non-différentiels et ont un point de référence commun (borne 22).


Les sorties analogiques et le point de référence ±10 V ont le même potentiel (bornes 22 et 9).

Les sorties numériques sont optocouplées par rapport au circuit de commande. Les bornes 41 à 42 ont la borne 16 comme point de référence et la borne 46 comme alimentation commune.

Afin de réduire les interférences sur les signaux d'entrée/sortie, il est recommandé de ne pas enlever les cavaliers de connexion à la masse S34 et S35.

La commande de l'unité de freinage a son point de référence (borne 27) relié au point de référence +24 V (borne 18).

Figure 5.3.1.2 : Potentiels de la partie régulation (E/S numériques : NPN)

5.4. INTERFACE SÉRIE

5.4.1. Description de l'interface série

L'interface série RS 485 permet le transfert des données par l'intermédiaire d'une boucle réalisée par deux conducteurs torsadés symétriques, dotés d'un écran commun. La distance maximale de transmission est de 1200 m (3936 pieds) avec un débit de 38,4 kBauds. La transmission est réalisée au moyen d'un signal différentiel. Les interfaces RS 485 sont compatibles bus en mode semi-duplex, c.-à-d. que l'émission et la réception se font séquentiellement. Jusqu'à 31 appareils AVy (jusqu'à 128 adresses configurables) peuvent être interconnectés en réseau via l'interface RS 485. La configuration des adresses est réalisée par le biais du paramètre **Device address**. Vous trouverez plus d'informations concernant les paramètres à transférer, leur type et plage de valeurs dans la table figurant dans le chapitre "Liste des paramètres".

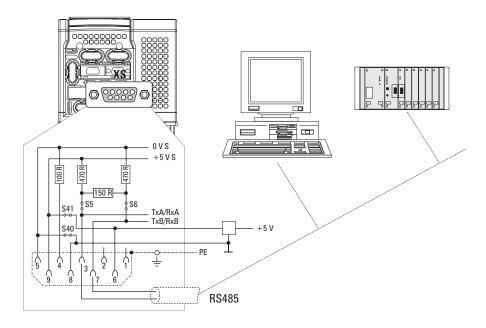


Figure 5.4.1.1 : Interface série RS485

Sur les appareils de la série AVy, la liaison RS 485 est située sur la carte de régulation sous la forme d'un connecteur SUB-D femelle 9 pôles (XS). La communication peut s'effectuer avec ou sans isolation galvanique: en cas d'utilisation d'une isolation galvanique, une alimentation externe est nécessaire (+5 V). La communication sans isolation galvanique n'est recommandée qu'en cas de connexion temporaire avec un variateur connecté. Le signal différentiel est transmis via la broche 3 (TxA/RxA) et la broche 7 (TxB/RxB). Des résistances de terminaison de bus doivent être connectées aux deux extrémités physiques d'un bus RS 485, afin d'éviter l'affaiblissement des signaux. Sur les appareils de la série AVy, les résistances de terminaison de bus sont connectées via les cavaliers S5 et S6. Ceci permet une connexion point-à-point directe avec un automate programmable ou un ordinateur personnel.

Note!

Vérifiez que seules la première et la dernière connexion d'un bus RS 485 sont dotées d'une résistance de terminaison (S5 et S6 montés). Dans tous les autres cas (à l'intérieur de la ligne), les cavaliers S5 et S6 ne doivent pas être montés.

Note!

Avec S40 et S41 insérées, le variateur alimente la liaison port série. Ce mode n'est permis qu'avec une connexion point àpoint non opto-isolée.

Une connexion point-à-point peut être réalisée au moyen de l'interface optionnelle "PCI-485" (S40 et S45 montés), sans réglage de cavalier.

Pour les connexions multipoints (deux ou plusieurs variateurs), une alimentation externe est nécessaire (broche 5 / 0 V et broche 9 / +5 V).

Les broches 6 et 8 sont réservées pour l'utilisation avec la carte d'interface "PCI-485".

Ch.5 70 ———— AVy -FR ————

Lors de la connexion de l'interface série, vérifiez que

- seuls des câbles blindés sont utilisés
- les câbles de puissance et les câbles de commande pour contacteurs/relais sont acheminés séparément.

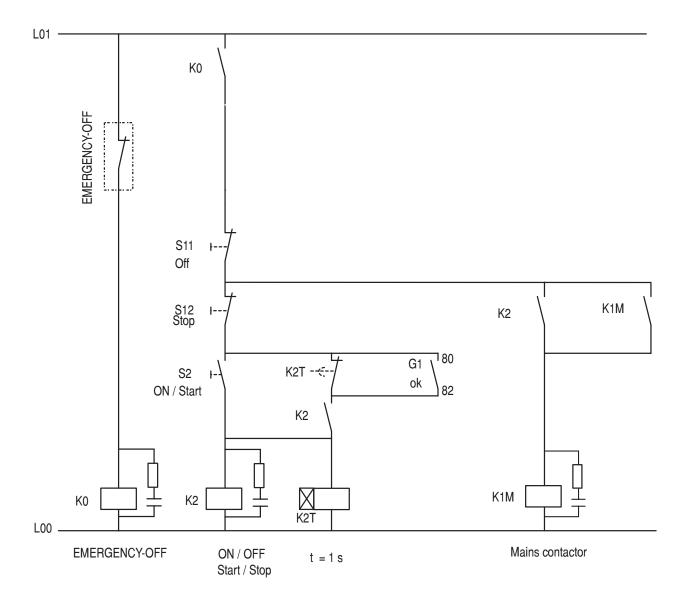
Note! Reportez-vous au manuel "Protocole de communication SLINK3" pour plus de détails.

5.4.2. Description du connecteur de l'interface série RS 485

Table 5.4.2.1 : Brochage du connecteur enfichable XS pour l'interface série RS 485

Designation	Function	I/O	Elec. Interface
PIN 1	Internal use	_	-
PIN 2	Internal use	_	_
PIN 3	RxA/TxA	I/O	RS485
PIN 4	Internal use	_	_
PIN 5	0V (Ground for 5 V)	_	Power supply
PIN 6	Internal use	_	_
PIN 7	RxB/TxB	I/O	RS 485
PIN 8	Internal use	_	_
PIN 9	+5 V	_	Power supply

ai4110

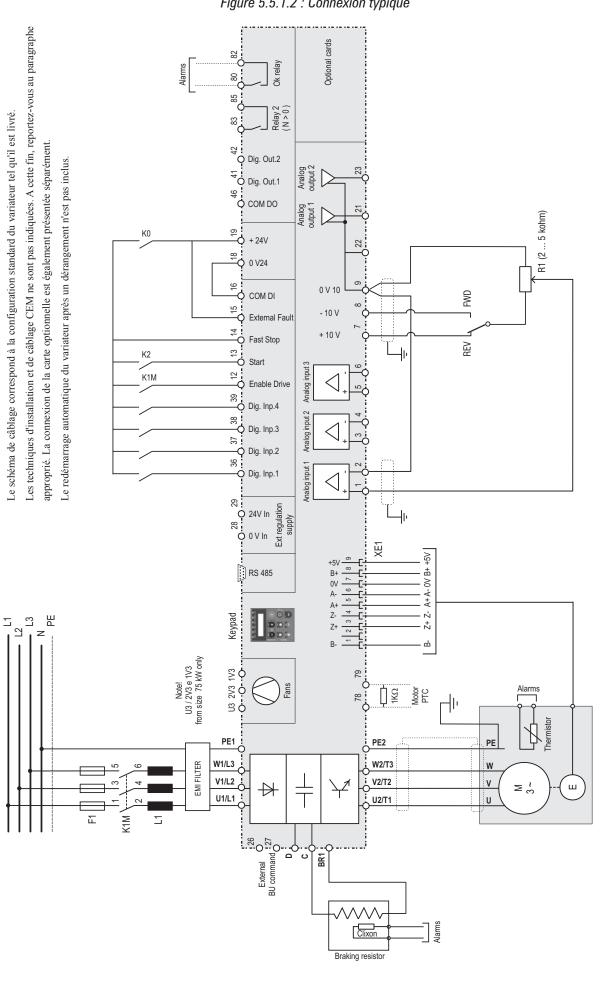

I = Input O = Output

71

5.5. SCHÉMA DE CÂBLAGE STANDARD

5.5.1. Connexions AVy

Figure 5.5.1.1 : Séquence de commande



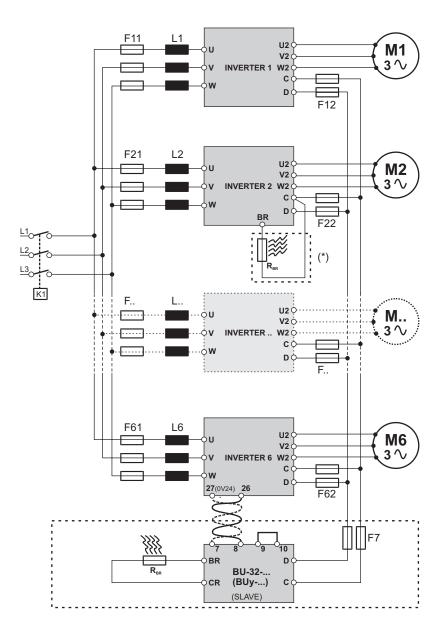
Note: Le relais OK doit être configuré en tant que "variateur valide" pour ce circuit (réglage usine).

Note:

Le schéma de câblage apparaissant sur la figure 5.5.1.1 (Séquence de commande) n'est valable que si la configuration de l'alarme séquentielle **Enable seq err** est réglée sur **Ignore**.

Figure 5.5.1.2: Connexion typique

Procédure de câblage


73

Ch.5

5.5.2 Connexion parallèle côté AC (entrée) et DC (circuit intermédiaire) de plusieurs variateurs

Caractéristiques et Limites:

- 1 Les variateurs utilisés doivent être du même calibre.
- Les inductances d'entrée (voir chapitre 5.7.1) doivent être identiques (du même fabricant).
- 3 L'alimentation doit être donnée de façon simultanée à tous les variateurs, par ex. un seul interrupteur/contacteur doit être utilisé.
- 4 Ce type de connexion est possible pour un maximum de 6 appareils.
- 5 Si un freinage est nécessaire, une seule unité de freinage interne doit être utilisée (avec résistances externes) ou une (ou plusieurs) unités de freinage externes ("BU32-..., BUy., voir BU.. manuel d'instruction).
- 6 Des fusibles ultra rapides (F12...F62) doivent être insérée en amont du DC bus (bornes C et D) de chaque variateur (voir chapitre 5.6.2).

(*) Remarque: Ne pas connecter si une unité de freinage externe est utilisée (BU32-..., BUy).

5.6. PROTECTION DES CIRCUITS

5.6.1. Fusibles externes de la partie puissance

Le convertisseur doit être protégé sur l'entrée a.c.

Utiliser exclusivement les fusibles hyper rapides.

Les connexions avec inductances triphasées sur l'entrée c.a. améliorent la durée de vie des condensateurs du circuit intermédiaire.

Table 5.6.1.1 : Types de fusibles externes pour l'entrée c.a.

	F1 - Fuses type								
	Cor	nnections without three-ph	ase reactor	•		Connections with three-phase	reactor		
Drive	on AC input				on AC input				
type	DC link				DC link				
	capacitors	Europe	US	SA	capacitors	Europe	US	SA	
	life time [h]			ı	life time [h]				
1007	25000	GRD2/10 or Z14GR10	A70P10	FWP10	50000	GRD2/10 or Z14GR10	A70P10	FWP10	
1015					50000	·			
1022	25000	GRD2/16 or Z14GR16	A70P20	FWP20	50000	GRD2/10 or Z14GR10	A70P10	FWP10	
1030	10000	GRD2/10 01 214GR10	7170120	1 11 120	50000	GRD2/16 or Z14GR16	A70P20	FWP20	
2040	25000	GRD2/20 or Z14GR20	A70P20	FWP20	50000	OKD2/10 01 Z14OK10	A/01 20	FWF20	
2055	25000	GRD2/25 or Z14GR25	A70P25	FWP25	50000	GRD2/20 or Z14GR20	A70P20	FWP20	
2075	10000	GRD3/35 or Z22GR40	A70P35	FWP35	50000	GRD2/25 or Z14GR25	A70P25	FWP25	
3110	25000	GRD3/50 or Z22GR40	A70P40	FWP40	50000	GRD3/50 or Z22GR40	A70P35	FWP35	
3150	10000	GRD3/50 or Z22GR50	A70P40	FWP50	50000	GRD3/50 or Z22GR50	A70P40	FWP40	
4185	15000				30000	GRD3/50 or Z22GR50 A	A70P50	FWP50	
4220	10000				25000	GRD3/30 01 Z2ZGR30 A701		1 ,,130	
4300	10000				25000	S00C+/üf1/80/100A/660V or Z22gR80	A70P80	FWP80	
4370	10000				25000	S00C+/üf1/80/100A/660V or M00üf01/100A/660V	A70P100	FWP100	
5450	10000	For these types an ex	ternal reac	tor is	25000	S00C+/üf1/80/160A/660V or	A70P175	EWP175	
5550	10000	mandatory if the AC inpu	t impedenc	e is equal	25000	M00üf01/160A/660V	71/011/3	1 ((11/3	
6750	10000	or less tha	n 1%		25000	S1üf1/110/250A/660V or	A70P300	FWP300	
7900	10000				25000	M1üf1/250A/660V	11/01/500	1 111 300	
71100	10000	[25000	S2üf1/110/400A/660V or				
71320	10000				25000	M2üf1/400A/660V	A70P400	FWP400	
81600	10000				25000				
82000	10000				25000	S2üf1/110/500A/660V or M2üf1/500A/660V	A70P500	FWP500	

avy4120

Fabricants de fusibles : Type GRD2... (E27), GRD3... (E33), S0.., S1.., S2..,

Z14... 14 x 51 mm, Z22... 22 x 58 mm

Jean Müller, Eltville
Gould Shawmut

FWP...

Bussmann

Note! Les caractéristiques techniques des fusibles (dimensions, poids, dissipation thermique, contacteurs auxiliaires) peuvent être prélevées dans les fiches techniques correspondantes.

----- Procédure de câblage -----

5.6.2 Fusibles externes de la partie puissance, côté entrée c.c.

Utilisez les fusibles suivants lorsqu'une alimentation quatre quadrants bus c.c. SR-32 est utilisée (cf. manuel d'instructions SR-32 pour plus de détails).

Table 5.6.2.1 : Types de fusibles externes pour l'entrée c.c.

Duine tone	Fuses type					
Drive type	Europe	1	USA			
1007	Z14GR6	A70P10	FWP10A14F			
1015	Z14GR10	A70P10	FWP10A14F			
1022	Z140K10	A/01 10	1 W1 10A141			
1030	Z14GR16	A70P20-1	FWP20A14F			
2040	2140110	71701 20-1	1 W1 20/1141			
2055	Z14GR20	A70P20-1	FWP20A14F			
2075	Z14GR32	A70P30-1	FWP30A14F			
3110	Z14GR40	A70P40-4	FWP40B			
3150	Z22GR63	A70P60-4	FWP60B			
4185	S00C+/üf1//80/80A/660V	A70P80	FWP80			
4220	S00C+/üf1//80/80A/660V	A70P80	FWP80			
4300	S00C+/üf1//80/100A/660V	A70P100	FWP100			
4370	S00C+/üf1//80/125A/660V	A70P150	FWP150			
5450	S00C+/üf1/80/160A/660V	A70P175	FWP175			
5550	S00üF1/80/200A/660V	A70P200	FWP200			
6750	S1üF1/110/250A/660V	A70P250	FWP250			
7900	S1üF1/110/315A/660V	A70P350	FWP350			
71100	S2üF1/110/400A/660V	A70P400	FWP400			
71320	S1üF1/110/500A/660V	A70P500	FWP500			
81600	S1üF1/110/500A/660V	A70P500	FWP500			
82000	S1üF1/110/600A/660V	A70P600	FWP600			

avy4140

Fabricants de fusibles : Type Z14..., Z22, S00 ..., S1...

Jean Müller, Eltville

A70P...

Gould Shawmut

FWP...

Bussmann

Note!

Les caractéristiques techniques des fusibles, telles que dimensions, poids, dissipation thermique, contacteurs auxiliaires, peuvent être prélevées dans les fiches techniques correspondantes.

5.6.3 Fusibles internes

Table 5.6.3.1 : Types de fusibles internes

Drive type	Designation	Protection of	Fuse (source)	Fitted on:	
4185 to 82000	F1	+24V	2A fast 5 x 20 mm (Bussmann: SF523220 or Schurter:	Power card PV33-4-"D" and higher	
4183 to 82000	Γ1	+24 V	FSF0034.1519 or Littlefuse: 217002)	Power card PV33-5-"B" and higher	
1007 to 82000	F1	+24V	Resettable fuse	Regulation card RV33-1C and higher	
6750 to 71320	F3	Fans transformer	2.5A 6.3x32 (Bussmann: MDL 2.5, Gould Shawmut: GDL1-1/2, Siba: 70 059 76.2,5, Schurter: 0034.5233)	Bottom cover (power terminals side)	

avy4145

Ch.5 76

------ AVy -FR -----

5.7. SELFS / FILTRES

Note! Une inductance triphasée devrait être connectée sur l'entrée c.a. afin de limiter le courant

d'entrée efficace des variateurs de la série AVy. L'inductance peut être fournie par une

self d'entrée c.a. ou un transformateur d'entrée c.a.

Note! En cas d'utilisation de filtres de sortie sinusoïdaux, veuillez contacter l'agence GEFRAN-

SIEI la plus proche.

5.7.1.Selfs d'entrée c.a.

Table 5.7.1.1 : Selfs d'entrée c.a. triphasées

	<u>· </u>
Inverter type	Three-phase choke type
1007	LR3y-1007
1015	LR3y-1015
1022	LR3y-1022
1030	LR3y-1030
2040	LR3y-2040
2055	LR3y-2055
2075	LR3y-2075
3110	LR3y-3110
3150	LR3y-3150
4185	LR3-022
4220	LR3-022
4300	LR3-030
4370	LR3-037
5450	LR3-055
5550	LK3-033
6750	LR3-090
7900	LK3-090
71100	
71320	LR3-160
81600	
82000	LR3-200

Avy4135

Pour tous les types de variateurs, la self d'entrée est vivement recommandée afin de :

- Prolonger la durée de vie des condensateurs du circuit intermédiaire et la fiabilité du redresseur d'entrée.
- Réduire la distorsion harmonique du réseau c.a.
- Réduire les problèmes dus à une basse impédance du réseau c.a. (≤ 1 %).

Note!

Le courant nominal de ces inductances (bobines de réactance) est basé sur le courant nominal de moteurs standard, répertoriés dans la table 3.3.3.1 du paragraphe 3.4.4, "Sortie c.a.".

5.7.2. Selfs de sortie

Le variateur AVy peut être utilisé avec des moteurs universels standard ou avec des moteurs spécialement conçus pour l'utilisation avec des variateurs. Ces derniers présentent généralement de meilleures caractéristiques d'isolation afin de supporter la tension de modulation de durée d'impulsion.

Exemple de régulation de référence :

Moteurs standard basse tension à usage général

VDE 0530 : tension max. de crête 1 kV

dV/dt max. 500 V/us

NEMA MG1 partie 30: tension max. de crête 1 kV

temps de montée min. 2 us

Moteurs basse tension pour usage avec variateurs

NEMA MG1 partie 31: tension max. de crête 1,6 kV

temps de montée min. 0.1 us.

Les moteurs conçus pour être utilisés avec des variateurs de fréquence ne nécessitent aucun filtrage spécifique du signal de tension issu du variateur. En cas d'utilisation de moteurs universels avec des variateurs jusqu'au type 2075, et particulièrement en présence de câbles longs (typiquement au-delà de 100 m (328 pieds)), une self de sortie est recommandée pour maintenir le signal de tension à l'intérieur des limites spécifiées. Les selfs recommandées et les numéros de référence sont répertoriés dans la table 5.7.2.1.

Le courant nominal des filtres doit être supérieur d'env. 20 % au courant nominal du variateur de fréquence afin de tenir compte des pertes additionnelles dues au signal PWM (modulation de durée d'impulsion).

1	1
Inverter type	Three-phase choke type
1007	
1015	LU3-003
1022	LU3-003
1030	
2040	LU3-005
2055	LU3-003
2075	LU3-011
3110	LU3-011
3150	LU3-015
4185	LU3-022
4220	LU3-022
4300	LU3-030
4370	LU3-037
5450	LU3-055
5550	103-033
6750	LU3-090
7900	LC3-090
71100	
71320	LU3-160
81600	
82000	LU3-200

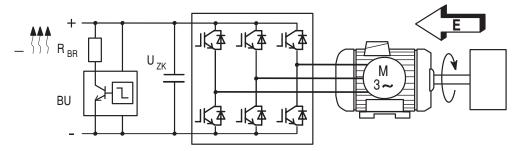
Table 5.7.2.1 : Valeurs recommandées pour les selfs de sortie

Avy4150

Note!

Lorsque le variateur fonctionne au courant nominal et à 50 Hz, les selfs de sortie occasionnent une chute de tension d'env. 2 % de la tension de sortie.

5.7.3. Filtres d'antiparasitage


Les convertisseurs de la série AVy doivent être équipés d'un filtre antiparasite externe afin de réduire les parasites H.F. sur la ligne du réseau. Le choix du filtre dépend du type de convertisseur et de l'environnement d'installation. A cette fin, reportez-vous au manuel d'instructions "Directives CEM". Le manuel indique également comment installer l'armoire (branchement de filtres et de réactances de ligne, écran de câble, mise à la terre, etc.), afin qu'elle soit compatible CEM selon la directive 89/336/CEE en matière de compatibilité électromagnétique. Le document décrit la situation actuelle concernant les normes CEM ainsi que les essais de compatibilité effectués sur les variateurs Gefran.

Ch.5 78 — AVy -FR —

5.8. UNITÉS DE FREINAGE

En fonctionnement hypersynchrone ou régénératif, le moteur triphasé à fréquence contrôlée restitue l'énergie au circuit intermédiaire au travers du variateur. Ceci conduit à une augmentation de la tension du circuit intermédiaire. C'est pourquoi les unités de freinage (BU) sont utilisées pour éviter que la tension c.c. n'atteigne une valeur non-admissible. Lorsqu'un tel système est utilisé, une résistance de freinage, branchée en parallèle avec les condensateurs du circuit intermédiaire, est activée. L'énergie restituée est convertie en chaleur par la résistance de freinage (R_{BR}), et produit ainsi des temps de décélération très courts et un fonctionnement limité à quatre quadrants.

Figure 5.8.1 : Fonctionnement avec une unité de freinage (principe)

En configuration standard, les types de variateurs 1007 à 3150 sont dotés d'une unité de freinage interne. Les types de variateurs 4185 à 5550 peuvent comporter une unité de freinage interne optionnelle (cf. paragraphe 3.1.2 "Code type du convertisseur"), montée en usine. Tous les variateurs AVy... standard peuvent être équipés d'une unité de freinage externe (BU-32...) raccordée aux bornes C et D.

Note!

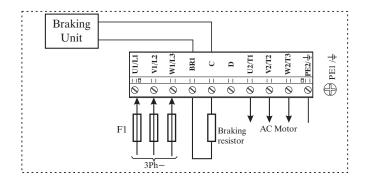
Lorsque l'unité de freinage interne est présente, ou lorsque les bornes C et D sont connectées à des unités externes, l'entrée c.a. doit être protégée au moyen de fusibles à semi-conducteur ultrarapides! Observez les instructions de montage appropriées.

AVERTISSEMENT!

Les résistances de freinage peuvent être sujettes à des surcharges imprévues à la suite de pannes. Il faut impérativement protéger les résistances en utilisant des dispositifs de protection thermique.

Ces dispositifs ne doivent pas interrompre le circuit où est installée la résistance, mais leur contact auxiliaire doit interrompre l'alimentation de la partie puissance du variateur. Si la résistance prévoit un contact de protection, il doit être utilisé en même temps que celui du dispositif de protection thermique.

Note!


La connexion de la résistance de freinage (bornes BR1 et C) doit être effectuée en utilisant un câble torsadé.

Si la résistance possède une protection thermique (Klixon), cette protection peut être raccordée à l'entrée "External fault" du variateur.

5.8.1. Unité de freinage interne

L'unité de freinage interne est comprise dans l'offre standard (jusqu'au type 4185). <u>La résistance de freinage est optionnelle</u> et doit toujours être montée à l'extérieur. Pour le réglage des paramètres, reportez-vous au manuel d'instructions optionnel "Descriptions des fonctions et des paramètres AVy" (disponible sur cédérom), paragraphe **2.15.9 Unité de freinage.** La figure ci-dessous montre la configuration relative au fonctionnement d'une unité de freinage interne.

Figure 5.8.1.1 : Branchement d'une unité de freinage interne et d'une résistance de freinage externe

5.8.2 Résistance de freinage externe

Résistances recommandées pour l'utilisation avec une unité de freinage interne :

Table 5.8.2.1 : Liste et caractéristiques techniques des résistances externes standard pour AVy-1007 à 5550

Inverter	Resistor	P_{NBR}	R_{BR}	Е	BR
Type	Туре	[kW]	[Ohm]	[kJ]	
				(1)	(2)
1007	RF 220 T 100R	0.22	100	1.5	11
1015	KI 220 I 100K	0.22	100	1.5	11
1022	RF 300 DT 100R	0.3	100	2.5	19
1030	KI 300 DT 100K	0.5	100	2.3	1)
2040	RFPD 750 DT 100R	0.75	100	7.5	38
2055	RFPD 750 DT 68R	0.75	68	7.5	38
2075	RFPD 900 DT 68R	0.9	68	9	48
3110	RFPD 1100 DT 40R	1.1	40	11	58
3150	RFPR 1900 D 28R	1.9	28	19	75
4185	BR T4K0-15R4	4	15.4	40	150
4220	DK 14K0-13K4	4	13.4	40	150
4300	BR T4K0-11R6	4	11.6	40	150
4370	DIX 14K0-11K0	4	11.0	40	130
5450	BR T8K0-7R7	8	7.7	80	220
5550	DK 10K0-/K/	0	7.7	00	220

^{(1):} Max overload energy, 1"- duty 10%.

Description des paramètres :

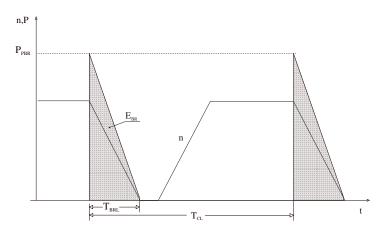
Puissance nominale de la résistance de freinage

R_{BR} Valeur de la résistance de freinage

E_{BR} Énergie transitoire max. pouvant être dissipée par la résistance

Puissance de pointe appliquée à la résistance de freinage

Temps maximal de freinage dans les conditions d'un cycle de fonctionnement


limite (puissance de freinage = P_{PBR} avec profil triangulaire typique)

$$T_{BRL} = 2 \frac{E_{BR}}{P_{PBR}} = [s]$$

Ch.5 80 ———— AVy -FR ————

^{(2):} Max overload energy, 30"- duty 25%.

Figure 5.8.2.2 : Cycle de freinage limite avec profil de puissance triangulaire typique

 T_{CL}

Temps de cycle minimum dans les conditions d'un cycle de fonctionnement limite (puissance de freinage = \mathbf{P}_{PBR} avec profil triangulaire typique)

$$T_{CL} = \frac{1}{2} T_{BRL} \frac{P_{PBR}}{P_{NDR}} = [s]$$

Le défaut de **surcharge BU** survient lorsque le coefficient d'utilisation dépasse la valeur maximale admissible, afin d'éviter d'éventuels endommagements de la résistance.

Modèle de résistance : Caractéristiques d'une résistance standard

Exemple de code: RFPD 900 DT 68R

RFPD = type de la résistance

900 = puissance nominale (900 W)

T = avec thermostat de sécurité

68R = valeur de la résistance (68 Ω)

Note!

L'assortiment recommandé pour le modèle de résistance et le type de convertisseur permet un freinage d'arrêt au couple nominal avec un coefficient d'utilisation de T_{BR} / T_{C} = 20 %

 $O\dot{u}$: T_{BR}

 T_{BR} = temps de freinage T_{C} = temps de cycle

Figure 5.8.2.2 : Cycle de freinage avec $T_{\rm BR}$ / $T_{\rm C} = 20~\%$

----- Procédure de câblage -----

La résistance standard peut être utilisée pour des couplages autres que ceux mentionnés ci-dessus.

Ces résistances, dont les caractéristiques techniques sont répertoriées dans la table 5.8.2.1, ont été dimensionnées de sorte à tolérer une surcharge égale à 4 fois leur puissance nominale pendant 10 secondes.

Dans tous les cas, elles peuvent également tolérer une surcharge dont la dissipation énergétique a été égale au niveau de puissance maximal défini par la relation suivante :

$$P_{PBR} = \frac{V_{BR}^{2}[V]}{R_{BR}[ohm]} = [w]$$

Où: V_{BR} = seuil de l'unité de freinage (cf. table 5.8.2.2)

Basé sur la figure 5.8.2.4, où le profil de puissance est un profil triangulaire typique, l'exemple suivant peut être pris en considération (cf. également table 5.8.2.1).

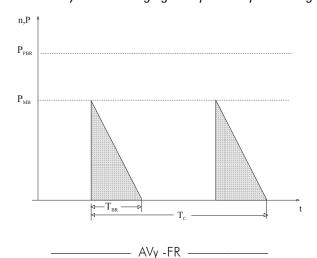
Modèle de résistance : MRI/T600 100R

Puissance nominale $\mathbf{P}_{\mathbf{PBR}} = 600 \; [\mathrm{W}]$ Énergie maximum $\mathbf{E}_{\mathbf{BR}} = 22000 \; [\mathrm{J}]$ Alimentation électrique du convertisseur = 460V

Valeur issue de la table 5.8.2.2 : $V_{BR} = 780V$

$$P_{PBR} = \frac{V_{BR}^2}{R_{BR}} = \frac{780^2}{100} = 6084 \ [W] \qquad \qquad T_{BRL} = 2 \ \frac{E_{BR}}{P_{PBR}} = 2 \ \frac{24000}{6084} = 7.8[s]$$

Il est nécessaire de considérer la relation suivante :


- A) Si $T_{BR} \le E_{BR} / P_{NBR}$, vérifiez :
- 1) $P_{MB} \le 2 \cdot E_{BR} / T_{BR}$ où : P_{MB} est la puissance moyenne du cycle (cf. figure 5.8.2.3)

$$2) \qquad \frac{P_{MB} \cdot T_{BR}}{2 T_{C}} \le P_{NBR}$$

La puissance moyenne du cycle ne doit pas être supérieure à la puissance nominale de la résistance.

B) Si $T_{BR} > E_{BR} / P_{PBR}$, cela signifie, dans le cas d'un temps de freinage très long, que la résistance doit être dimensionnée ainsi : $P_{MB} \le P_{NBR}$

Figure 5.8.2.3 : Cycle de freinage générique avec profil triangulaire

Si l'une des règles évoquées ci-dessus n'est pas respectée, il est nécessaire d'augmenter la puissance nominale de la résistance, afin de respecter la limite de l'unité de freinage interne (indiquée dans la table 5.8.2.3),

Afin de protéger ces résistances contre les surcharges dangereuses, les paramètres BU ovld time et BU duty cycle (menu "FUNCTIONS\Brake unit") définissent le temps et le coefficient d'utilisation maximum pour lesquels les résistances peuvent tolérer leur puissance de pointe P_{PBR}

Les caractéristiques doivent se rapporter au réseau c.a. pour lequel elles sont définies spécifiquement par le paramètre **BU DC vlt** (menu "FUNCTIONS\Brake unit").

Les paramètres par défaut sont calculés pour un seuil de freinage correspondant à une tension de réseau de 400V.

L'utilisation de résistances de freinage différentes de celles indiquées dans la table 5.8.2.1, nécessite de prendre en considération la signification des formules suivantes :

BU ovld time [s] = E_{BR}/P_{PBR} (temps de freinage aux conditions limites pour un cycle avec profil triangulaire) BU duty cycle % = (P_{NBR}/P_{PBR}) x 100

Table 5.8.2.2 : Seuils de freinage pour différents réseaux

Mains voltage	Braking threshold ${ m V_{BR}}\left[{ m V} ight]$
230Vac	400
400Vac	680
460Vac / 480 Vac	780

avy4200

Le résultat des calculs doit être assigné aux paramètres correspondants dans le menu "FUNCTIONS\Brake unit". Lorsque le coefficient d'utilisation dépasse la valeur entrée, le défaut **BU overload** (surcharge BU) survient automatiquement afin d'éviter tout dommage éventuel de la résistance.

La table suivante peut être utilisée pour choisir une résistance externe, différente de la série standard.

Table 5.8.2.3 : Caractéristiques techniques des unités de freinage internes

Inverter				Minimum			
type	I_{RMS}	I_{PK}	T	R_{BR}			
	[A]	[A]	[s]	[ohm]			
1007							
1015							
1022	4.1	7.8	19	100			
1030							
2040							
2055	6.6	12	16	67			
2075							
3110	12	22	17	36			
3150	17	31	16	26			
4185	18	52	42	15			
4220		32	72	13			
4300	37	78	23	10			
4370	29	,,,	37	10			
5450	50	104	22	7.5			
5550	30	101	22	7.5			
6750							
7900							
71100	External braking unit (optional)						
71320							
81600							
82000							

avy4210

 $\mathbf{I}_{\mathrm{RMS}}$: Courant nominal de l'unité de freinage

I_{PK}: Courant de pointe délivrable pendant 60 secondes max.

 ${f T}$: Temps de cycle minimum pour un fonctionnement à ${f I}_{{f p}{f K}}$ pendant 10 secondes

----- Procédure de câblage -----

Ch.5

En général, la condition suivante doit être satisfaite :

$$I_{RMS} \ge \sqrt{\frac{1}{2} \frac{P_{PBR}}{R_{RR}} \frac{T_{BR}}{T_C}}$$

Chaque variateur est équipé des bornes 26 et 27 qui permettent la commande d'une ou de plusieurs unités de freinage externes, connectées en parallèle. Le variateur agit en tant que maître et les unités de freinage externes BU32 doivent être configurées en tant qu'esclave.

Ainsi, il sera possible d'utiliser la protection I²x t interne également pour les unités de freinage externes (reportez-vous au manuel d'instructions "Description des fonctions et des paramètres AVy" (disponible sur cédérom), paragraphe 2.15.9 **Unité de freinage**).

En cas d'utilisation de plusieurs unités de freinage externes, chaque unité de freinage équipée d'une résistance (toutes identiques) se rapporte aux paramètres calculés pour une unité individuelle.

5.8.3. Calcul des résistances de freinage externes génériques à combiner avec l'unité de freinage interne au moyen d'une méthode appropriée

Afin de calculer des valeurs de résistance différentes de celles indiquées dans la table 5.8.2.1 (par exemple en présence de différentes valeurs de seuil de commutation de l'unité de freinage), les remarques suivantes sont valables :

La puissance de pointe dissipée par la résistance est $P_{PBR} = V_{BR}^2 / R_{BR} [W]$, où " V_{BR} " est la tension de commutation de l'unité de freinage (cf. table 5.8.2.2).

La puissance maximale \mathbf{P}_{MB} requise par le cycle ne doit pas être supérieure à cette valeur : $\mathbf{P}_{\mathrm{MB}} \leq \mathbf{P}_{\mathrm{PBR}}$.

La résistance de freinage est normalement utilisée avec un cycle intermittent. C'est pourquoi il est possible d'utiliser une résistance capable de dissiper une puissance continue inférieure à \mathbf{P}_{MB} .

Le diagramme suivant est valable pour un profil de charge rectangulaire ; il peut être utilisé pour déterminer la valeur de surcharge. Pour le profil de charge triangulaire, ce diagramme donne un dimensionnement préservatif en matière de sécurité (des diagrammes similaires peuvent être fournis par le fabricant de la résistance à utiliser). Afin de calculer la valeur de la puissance continue (ou puissance nominale) de la résistance de freinage, le facteur de surcharge devrait être déterminé au moyen du diagramme, puis il convient d'appliquer la formule suivante :

Puissance nominale
$$P_{MBR} = \frac{P_{MB}}{Facteur de surcharge}$$

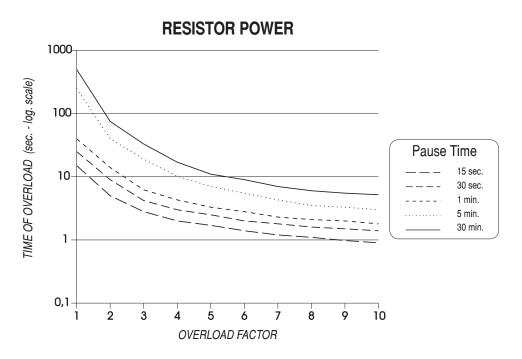


Figure 5.8.3.1 : Facteur de surcharge de la résistance de puissance

Exemple:

Pour arrêter un moteur de 18,5 kW (38 A à 400 V) avec une surcharge de 150 %, la puissance régénérée max. est de 27,75 kW. En supposant un temps de freinage de 5 secondes (temps de surcharge pour la résistance) et une pause d'une minute, le diagramme donne un facteur de surcharge de 3,9.

Par conséquent, la puissance nominale de la résistance sera :

$$P_{NBR} = \frac{27750}{3.9} \cong 7100 \text{ W}$$

A004

En ce qui concerne les types supérieurs au 5550 ou dans le cas de cycles de freinage particuliers, il est recommandé d'utiliser une ou plusieurs unités de freinage externes (BU-32).

85

5.9. CONDENSATEURS TAMPONS DE L'ALIMENTATION DU RÉGULATEUR

L'alimentation électrique de la partie commande est fournie par une unité d'alimentation en mode commuté (SMPS) à partir du circuit intermédiaire c.c. Le variateur est désactivé tant que la tension du circuit intermédiaire est en deçà de la valeur seuil (U_{Buff}). L'alimentation du régulateur est assurée par l'énergie du circuit intermédiaire jusqu'à ce que la valeur limite (U_{min}) soit atteinte. Le temps de réserve est déterminé par la capacité des condensateurs du circuit intermédiaire. Les valeurs minimales sont indiquées dans la table ci-dessous. Le temps de réserve (t_{Buff}) peut être augmenté (uniquement à partir des variateurs 11 kW et supérieurs) en connectant des condensateurs externes en parallèles (sur les bornes C et D).

Inverter type	Internal capacitance	Buffer t (minimum va internal cap	Maximum permissible external	Maximum power requir by switched	
	$\mathrm{C}_{\mathrm{std}}$	AC Input voltage =400V	AC Input voltage =460V	capacitance	mode powe supply
	[μF]	[s]	[s]	C _{ext} [μF]	P _{SMPS} [W
1007	220	0.165	0.25	0	65
1015	220	0.165	0.25	0	65
1022	330	0.24	0.37	0	65
1030	330	0.24	0.37	0	65
2040	830	0.62	0.95	0	65
2055	830	0.62	0.95	0	65
2075	830	0.62	0.95	0	65
3110	1500	1.12	1.72	1500	65
3150	1500	1.12	1.72	1500	65
4185	1800	1.54	2.3	4500	70
4220	1000	1.54	2.3	4500	/0
4300	2200	1.88	2.8	4500	70
4370	3300	2.83	4.2	4500	70
5450	4950	4.24	6.3	4500	70
5550	4950	4.24	6.3	4500	70
6750	6600	5.6	8.1	0	70
7900	6600	5.6	8.1	0	70
71100	9900	8.4	12.1	0	70
71320	14100	12.8	17.2	0	70
81600 82000	14100	12.8	17.2	0	70

Table 5.9.1 : Temps de réserve du circuit intermédiaire

SMPS = Switched Mode Power Supply

avy4220

Figure 5.9.1 : Tamponnement de la tension du régulateur au moyen de condensateurs additionnels du circuit intermédiaire

 Lors du branchement des bornes C et D du circuit intermédiaire, l'entrée c.a. **doit** être protégée au moyen de fusibles à semi-conducteur ultrarapides !

Formule de calcul des caractéristiques relatives aux condensateurs externes :

$$C_{ext} = \frac{2 \cdot P_{SMPS} \cdot t_{Buff} \cdot 10^{-6}}{U^{c}_{Buff} \cdot U^{c}_{min}} \cdot C_{std}$$

$$C_{ext}, C_{std} \qquad [\mu F]$$

$$P_{SMPS} \qquad [W] \qquad U_{Buff} = 400 \text{ V avec } U_{LN} = 400 \text{ V}$$

$$t_{Buff} \qquad [s] \qquad U_{Buff} = 460 \text{ V avec } U_{LN} = 460 \text{ V}$$

$$U_{Buff}, U_{min} \qquad [V] \qquad U_{min} = 250 \text{ V}$$

Exemple de calcul

Un variateur AVy4220 fonctionne avec une tension d'entrée c.a. U_{LN} = 400 V. Une réserve en cas de coupure de tension est nécessaire pendant 1,5 s max.

5.10. Maîtrise des baisses de tension de l'AVy au moyen de la configuration des données et de la remise en marche

L'AVy est équipé d'un redresseur double alternance triphasé, alimentant le circuit intermédiaire.

Lorsque le circuit intermédiaire atteint le seuil de sous-tension relatif à son entrée de tension (cf. tables 5.10.1, 5.10.2 et 5.10.3), l'AVy inhibe le variateur et génère un défaut de sous-tension.

Le défaut de sous-tension peut arrêter et verrouiller le variateur immédiatement, ou être programmé de sorte que le variateur s'initialise et redémarre automatiquement. Les réglages du défaut de sous-tension définissent le nombre de redémarrages autorisés. Le paramètre 'restart time' (temps de redémarrage) permet de fixer la durée de la situation de sous-tension avant que l'AVy n'ordonne une remise à zéro.

Le circuit intermédiaire fournit l'alimentation de l'AVy. Lorsque la tension du circuit intermédiaire chute en deçà de 250 V c.c., l'électronique est initialisée, comme après une mise sous tension. La capacité du circuit intermédiaire entre l'arrêt de la sous-tension de la partie variateur, le seuil d'alimentation 250 V c.c. et la puissance évacuée par l'électronique et le ventilateur de l'AVy, détermine la durée pendant laquelle le variateur reste activé en cas de baisses ou de pertes de puissance.

Il est possible d'ajouter des condensateurs externes au circuit intermédiaire afin de maintenir aussi longtemps que possible ce dernier au-dessus de 250 V c.c. Les tables suivantes permettent de calculer la durée pendant laquelle le variateur peut maintenir la puissance au-delà de 250 V c.c. pour l'alimentation de commande, lorsque le nombre maximum de condensateurs externes est ajouté. N'oubliez pas que le fait d'ajouter des condensateurs maintient davantage l'alimentation, mais se traduit par un temps de recharge plus long.

La survie d'une baisse de tension sans provoquer l'arrêt du variateur dépend de la charge relative (énergie) que le bus c.c. présente en sortie, ainsi que de l'amplitude et de la durée de cette baisse de tension. Une baisse de tension doit être en deçà du seuil de sous-tension c.c. avant que le variateur n'interprète une condition d'arrêt en tant que conséquence.

En guise d'estimation, en l'absence de condensateurs externes, une baisse de tension de 1 cycle (16,6 ms @ 60 Hz) lorsque le moteur est à pleine charge, provoque un déclenchement de sous-tension.

Le temps de déclenchement de la sous-tension peut être calculé au moyen de la formule suivante :

$$t = \frac{(U_{dc}^{2} - U_{Buff}^{2}) \cdot (C_{Sid} + C_{ext})}{2P_{am} \cdot 10^{6}}$$
_{fA027}

où:

t : Temps de déclenchement de sous-tension [ms]

Udc: Tension du circuit intermédiaire [V]

Ubuff: Tension du seuil de déclenchement [V]

C_{Std}: Capacité du circuit intermédiaire [mF]

Cext: Capacité externe [mF]

P_{am}: Puissance absorbée par le moteur [W]

Pam dépend des conditions de charge du moteur :

- à pleine charge, la puissance absorbée peut être calculée comme suit :

$$P_{am} = \frac{P_m}{\eta_m} \quad _{fA028}$$

où:

P_m: Puissance nominale du moteur

η_m: Rendement nominal du moteur

- à charge nulle, elle dépend des pertes dans le fer, des pertes mécaniques et des pertes statoriques par effet Joule. La somme de ces facteurs représente environ 50 % des pertes à pleine charge.

Les pertes à pleine charge Plfl se calculent ainsi :

$$P_{\text{lfl}} = P_{\text{m}} \frac{1 - \eta_{\text{m}}}{\eta_{\text{m}}}$$

Le temps de déclenchement maximum de la tension d'alimentation (temps de réserve / tampon en cas de coupure de tension) de l'AVy est obtenu en ajoutant la capacité maximale recommandée au bus c.c.

Les tables suivantes montrent le temps de déclenchement maximum de la tension d'alimentation pour différents seuils de sous-tension et différents types de convertisseurs. La signification des symboles de chaque colonne est la suivante :

C_{std} = Capacité interne en uF,

C_{ext} max = Capacité totale max. en uF,

T_{buff} = Temps de déclenchement max. en secondes,

 P_{SMPS} = Puissance d'alimentation,

U_{buff} = Seuil de tension inhibant le fonctionnement du variateur,

 U_{min} = Tension c.c. min. que supporte la tension d'alimentation

Où la T_{buff} est définie par :

$$T_{\text{buff}} = \frac{(C_{\text{std}} + C_{\text{ext}} \max) \cdot (U_{\text{buff}}^{2} - U_{\text{min}}^{2})}{2 \cdot P_{\text{smps}} \cdot 10^{6}}$$

Table 5.10.1 : Temps de déclenchement du variateur, seuil de 230 V

Size	P_{SMPS}	C std	C _{ext} max	$ m U_{buff}$	$\mathbf{U}_{\mathbf{min}}$	T_{buff}
4185	70	1800	4500	230	200	0.58
4220	70	1000	4500	230	200	0.56
4300	70	2200	4500	230	200	0.62
4370	70	3300	4500	230	200	0.72
5450	70	4950	4500	230	200	0.87
5550	70	4950	4500	230	200	0.87
6750	70	6600	0	230	200	0.61
7900	70	6600	0	230	200	0.61
71100	70	9900	0	230	200	0.91
71320	70	14100	0	230	200	1.3
81600	70	14100	0	230	200	1.3
82000	70	14100	0	230	200	1.3

avy4225

Table 5.10.2 : Temps de déclenchement du variateur, seuil de 400 V

Size	Psmps	C std	C _{ext} max	$\mathbf{U_{buff}}$	$\mathbf{U_{min}}$	$\mathbf{T_{buff}}$
1007	65	220	0	400	250	0.165
1015	65	220	0	400	250	0.165
1022	65	330	0	400	250	0.24
1030	65	330	0	400	250	0.24
2040	65	830	0	400	250	0.62
2055	65	830	0	400	250	0.62
2075	65	830	0	400	250	0.62
3110	65	1500	1500	400	250	1.12
3150	65	1500	1500	400	250	1.12
4185	70	1800	4500	400	200	1.54
4220	70	1800	4500	400	200	1.54
4300	70	2200	4500	400	200	1.88
4370	70	3300	4500	400	200	2.83
5450	70	4950	4500	400	200	4.24
5550	70	4950	4500	400	200	4.24
6750	70	6600	0	400	200	5.65
7900	70	6600	0	400	200	5.65
71100	70	9900	0	400	200	8.4
71320	70	14100	0	400	200	12.8
81600	70	14100	0	400	200	12.8
82000	70	14100	0	400	200	12.8

vy4230

Table 5.10.3 : Temps de déclenchement du variateur, seuil de 460 V

Size	P_{smps}	C std	C _{ext} max	$\mathrm{U}_{\mathrm{buff}}$	U_{min}	${ m T_{buff}}$
1007	65	220	0	460	250	0.25
1015	65	220	0	460	250	0.25
1022	65	330	0	460	250	0.37
1030	65	330	0	460	250	0.37
2040	65	830	0	460	250	0.95
2055	65	830	0	460	250	0.95
2075	65	830	0	460	250	0.95
3110	65	1500	1500	460	250	1.72
3150	65	1500	1500	460	250	1.72
4185	70	1800	4500	460	200	2.3
4220	70	1800	4500	460	200	2.3
4300	70	2200	4500	460	200	2.8
4370	70	3300	4500	460	200	4.2
5450	70	4950	4500	460	200	6.3
5550	70	4950	4500	460	200	6.3
6750	70	6600	0	460	200	8.1
7900	70	6600	0	460	200	8.1
71100	70	9900	0	460	200	12.1
71320	70	14100	0	460	200	17.2
81600	70	14100	0	460	200	17.2
82000	70	14100	0	460	200	17.2

avy4240

5.11. TEMPS DE DÉCHARGE DU CIRCUIT INTERMÉDIAIRE

Table 5.11.1 : Temps de décharge du circuit intermédiaire

Type	I_{2N}	Time (seconds)	Type	I_{2N}	Time (seconds)
1007	2.1	90	4300	58	60
1015	3.5		4370	76	90
1022	4.9	150	5450	90	120
1030	6.5		5550	110	
2040	8.3	205	6750	142	
2055	11		7900	180	
2075	15.4		71100	210	
3110	21.6	220	71320	250	
3150	28.7		81600	310	
4185	35,5	60	82000	365	120
4220	42	60			avy

Il s'agit du temps minimum devant s'écouler depuis la déconnexion du variateur AVy de l'entrée c.a., avant qu'un opérateur ne puisse intervenir à l'intérieur du variateur afin d'éviter les risques de chocs électriques.

CONDITION

Ces valeurs supposent une mise hors tension pour un variateur alimenté en 480 V c.a. +10 %, sans aucune option (la charge de la tension de commutation est constituée de la carte de régulation, du clavier et du 24 V c.c. relatif aux ventilateurs, "si montés").

Le variateur est inhibé. Ceci représente le cas le plus défavorable.

6. MAINTENANCE

6.1. MISE EN GARDE

Les convertisseurs SieiDrive doivent être installés conformément aux réglementations d'installation correspondantes. Ils ne nécessitent aucune maintenance particulière. Ils ne doivent pas être nettoyés au moyen d'un chiffon mouillé ou humide. L'alimentation électrique doit être déconnectée avant tout nettoyage.

6.2. MISE EN SERVICE

Les vis de toutes les bornes de l'appareil devraient être resserrées deux semaines après la mise en service initiale. Cette opération devrait être répétée une fois par an.

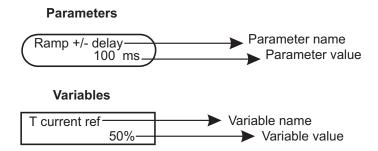
Si les variateurs ont été entreposés pendant plus de trois ans, la capacité des condensateurs du circuit intermédiaire peut avoir été affectée. Avant de mettre en service ces appareils, il est souhaitable de régénérer ces condensateurs en les connectant à la tension électrique pendant deux heures, le convertisseur étant inhibé. Après ces opérations, l'appareil est prêt à être installé sans limitations.

6.3. RÉPARATIONS

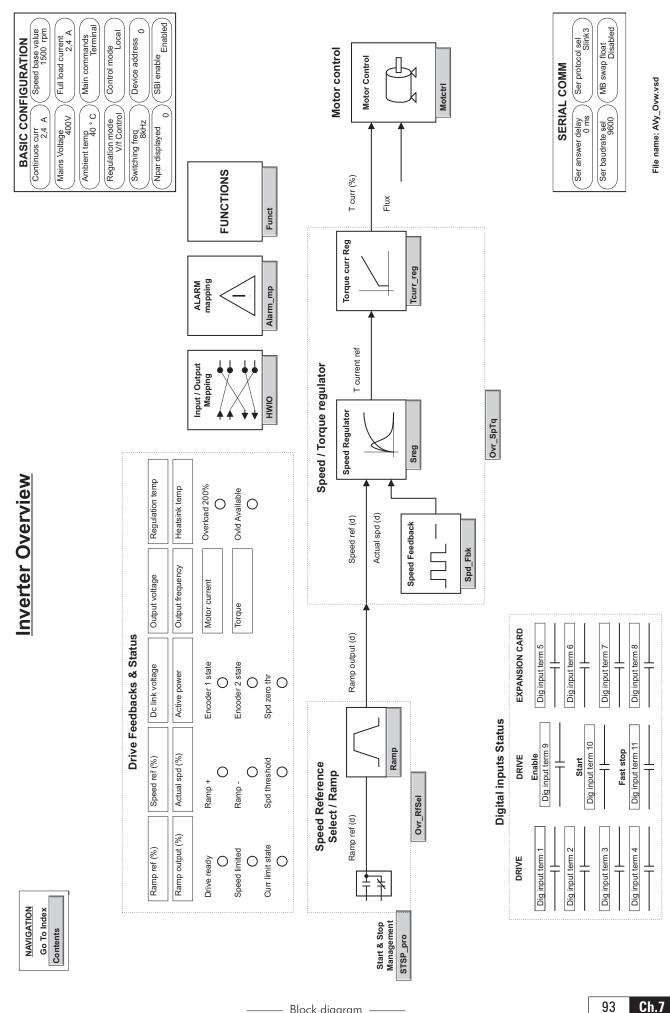
Les réparations de l'appareil ne devraient être effectuées que par un personnel spécialisé (qualifié par le fabricant).

Si vous effectuez des réparations de votre propre chef, veuillez observer les points suivants :

- Lors de la commande de pièces détachées, n'indiquez pas seulement le type de l'appareil, mais également le numéro de série de l'appareil (plaque signalétique). Il est également utile de préciser le type de la carte de régulation et la version du système d'exploitation (sur la plaque signalétique avec indices de modification du micrologiciel et de la carte, cf. figure 3.1.3.2).
- En cas d'échange de cartes, veillez à observer la position des micro-interrupteurs et des cavaliers!
 Ceci s'applique particulièrement au bloc de micro-interrupteurs S3 situé sur la carte de régulation.


Note!

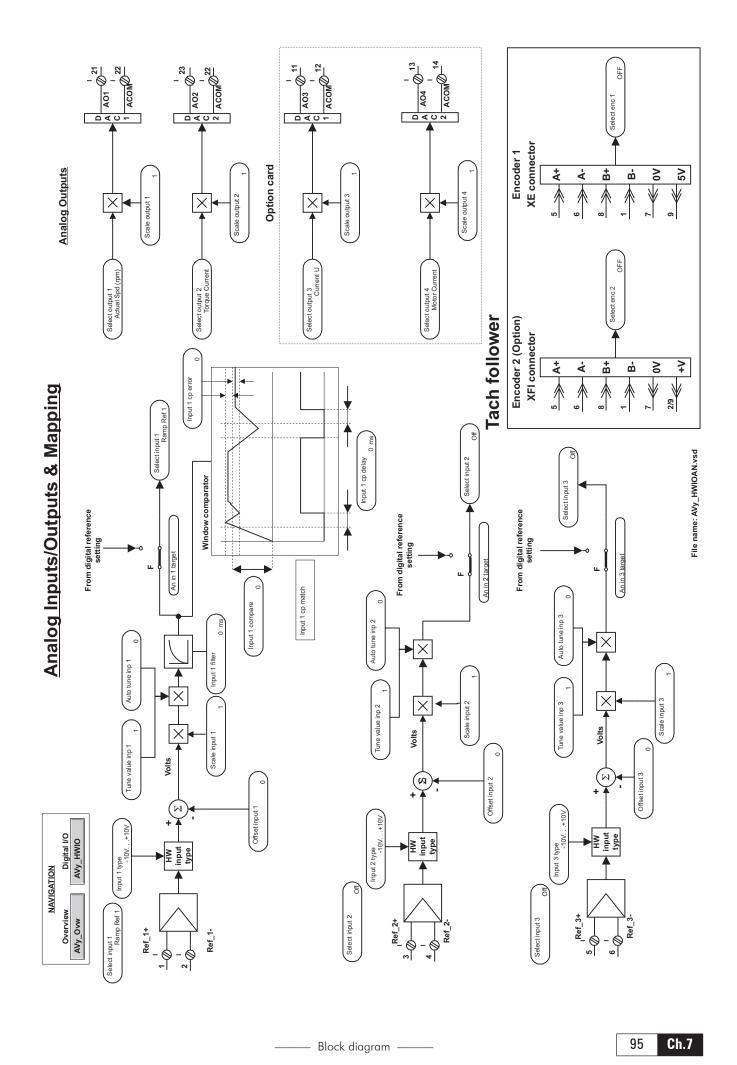
Le fabricant décline toute responsabilité pour tous composants de l'appareil, qui auraient été détruits suite à un mauvais réglage des microinterrupteurs S3.

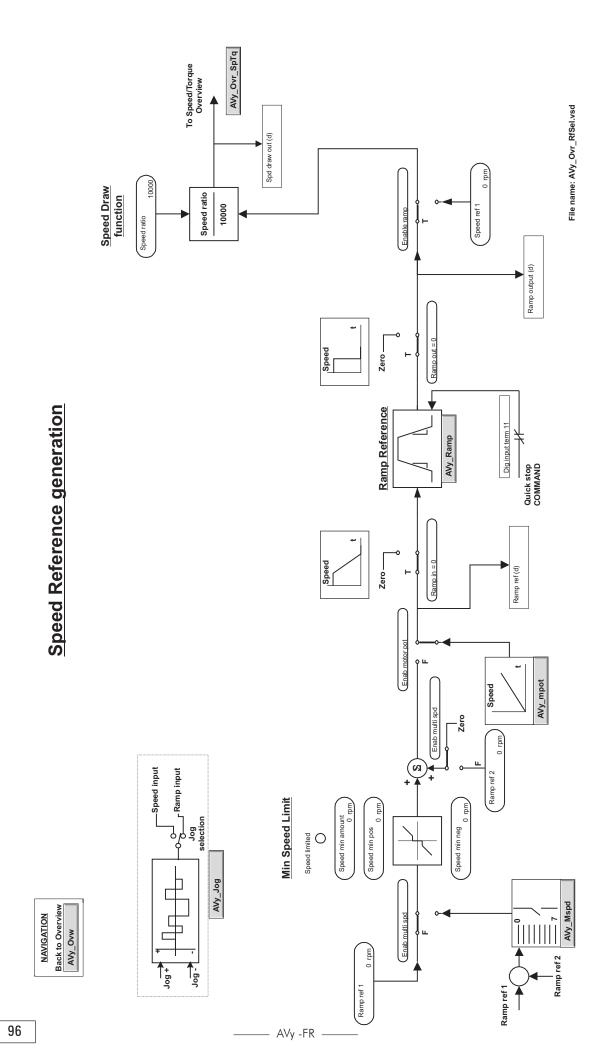

6.4. SERVICE CLIENTÈLE

Pour le service clientèle, veuillez contacter votre agence Gefran S.p.A.

Block diagram legend

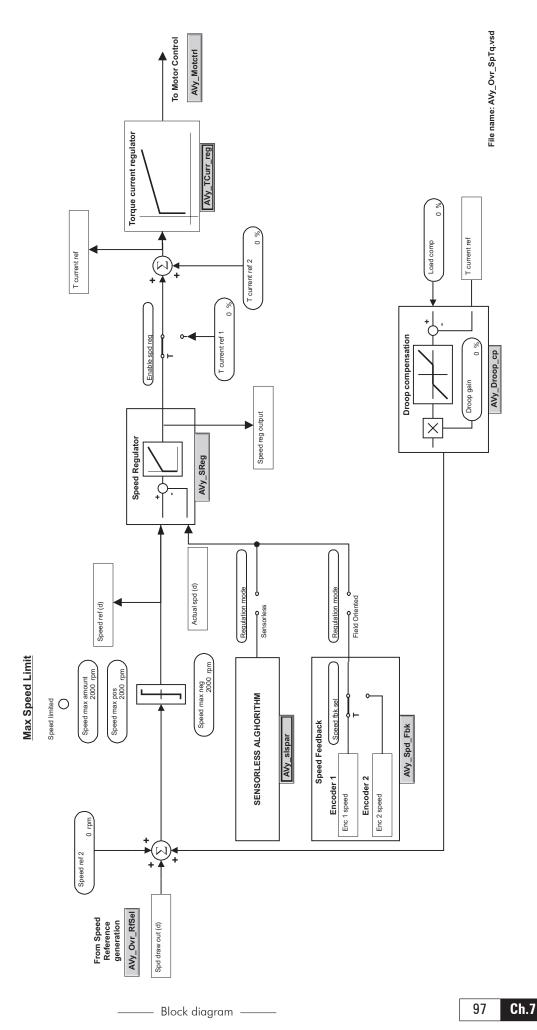
7. BLOCK DIAGRAM

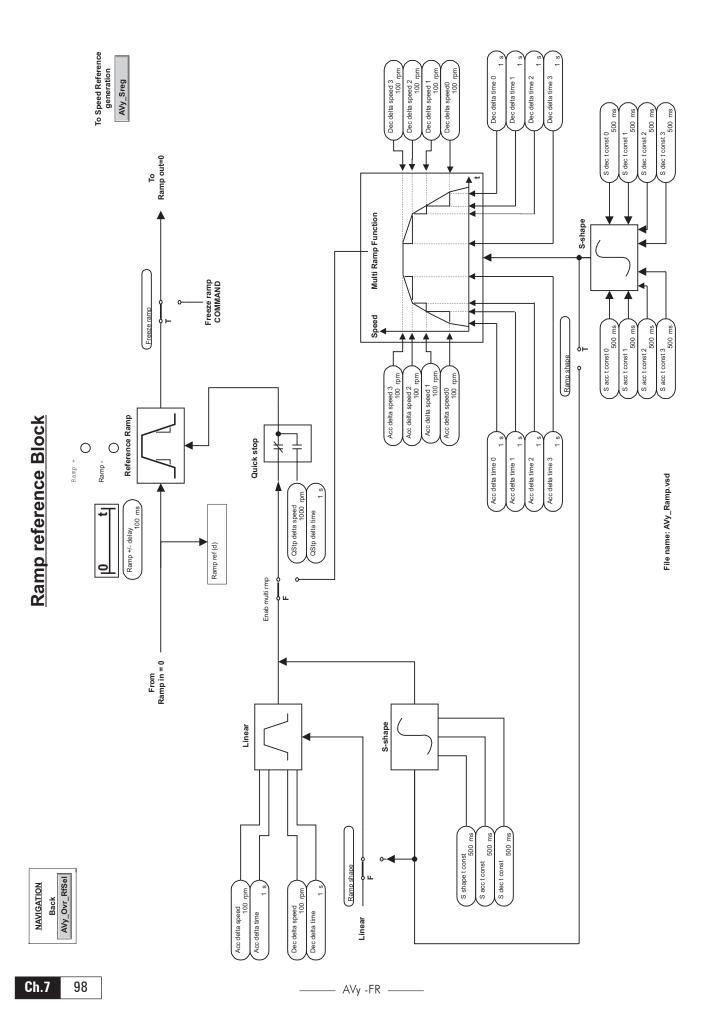


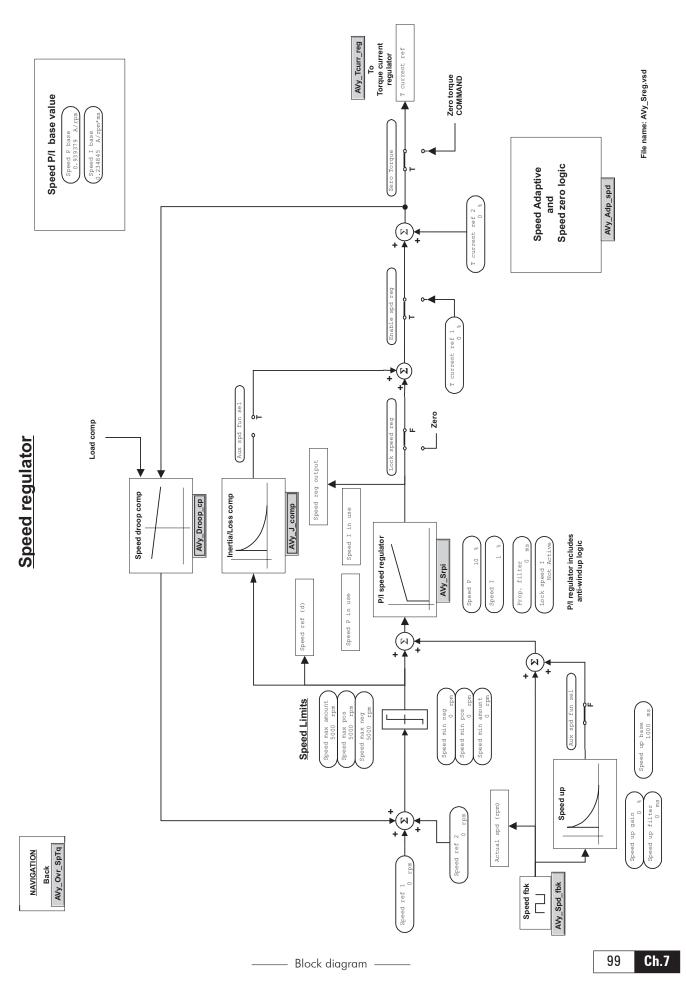

Block diagram

AVy -FR

94

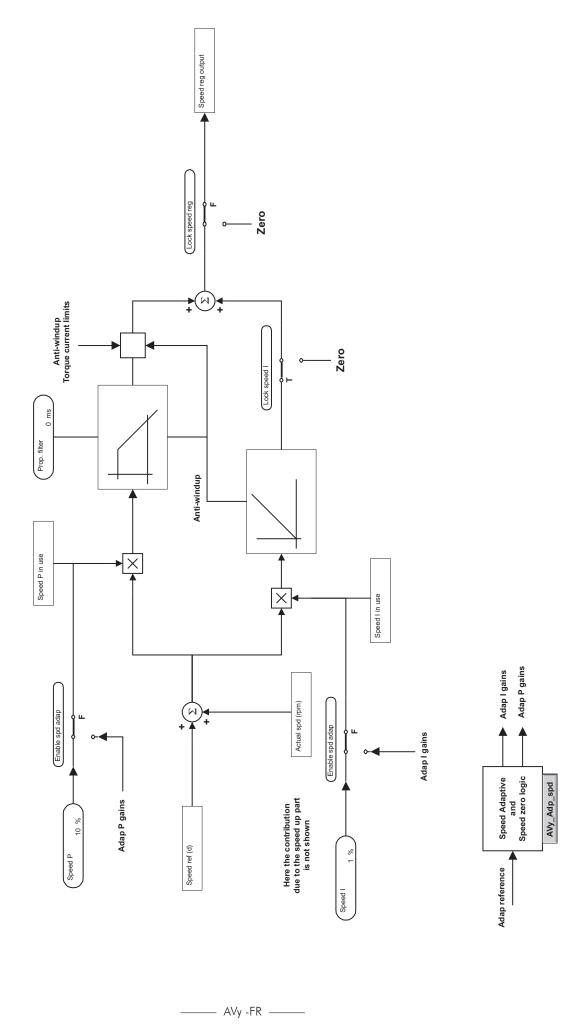

Ch.7




Ch.7

NAVIGATION
Back to Overview
AVY_Ovw

AUDIN - 8, avenue de la malle - 51370 Saint Brice Courcelles - Tel : 03.26.04.20.21 - Fax : 03.26.04.28.20 - Web : http://www.audin.fr - Email : info@audin.fr


Back to Overview

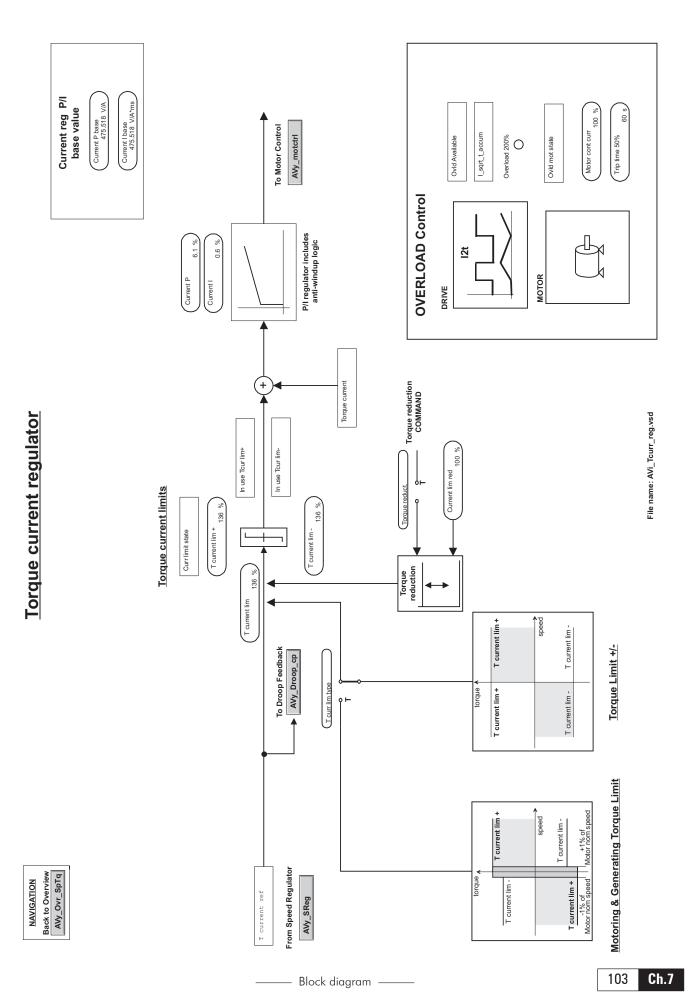
AVy_Sreg

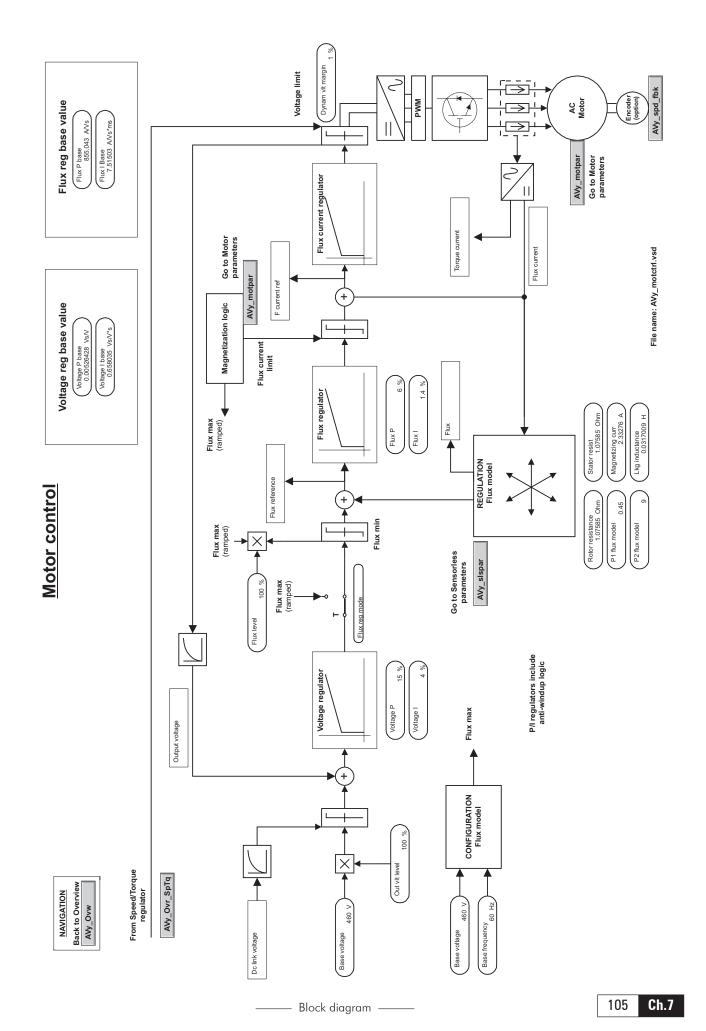
100

NAVIGATION

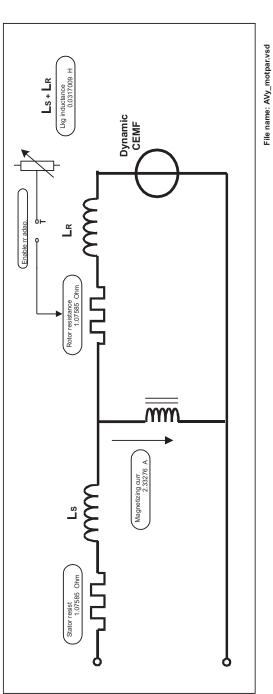
Ch.7

AUDIN - 8, avenue de la malle - 51370 Saint Brice Courcelles - Tel : 03.26.04.20.21 - Fax : 03.26.04.28.20 - Web : http://www.audin.fr - Email : info@audin.fr

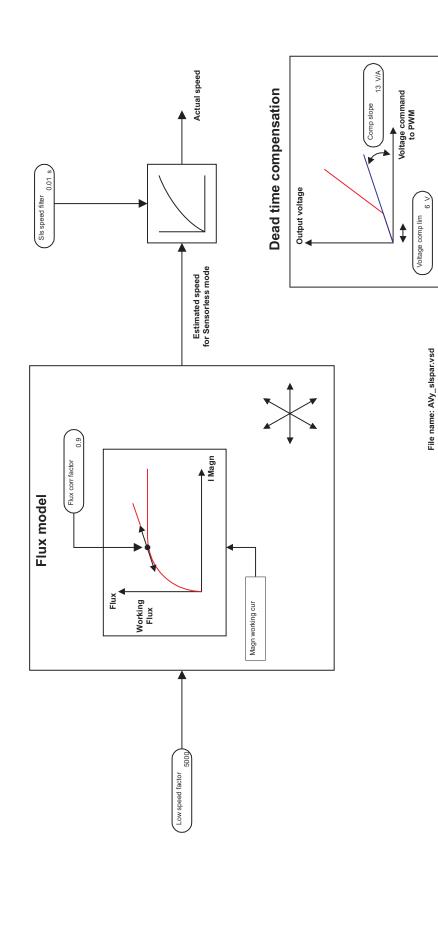

Ch.7


101

Block diagram


File name: AVy_J_comp.vsd

 AVy - FR

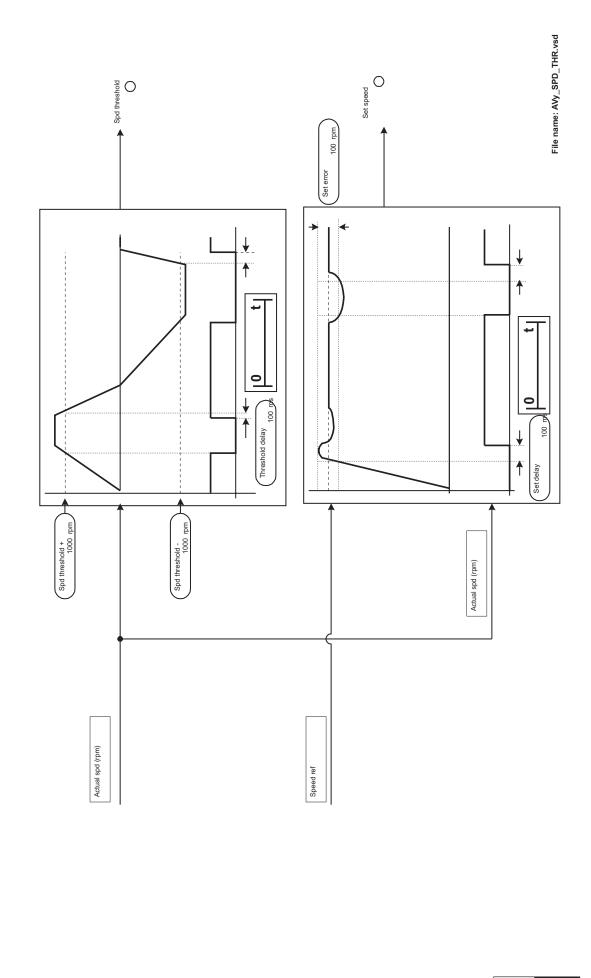


Flux max (ramped)

Ch.7 106

SENSORLESS Parameters

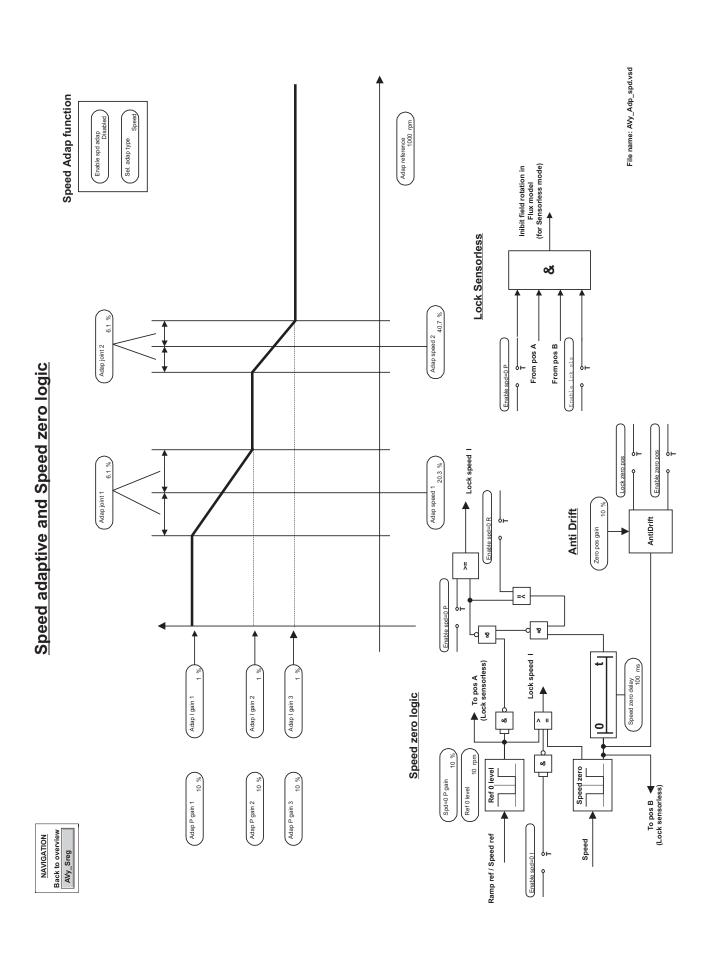
Overview Back to Mot control
AVy_Ovw
AVy_motctrl

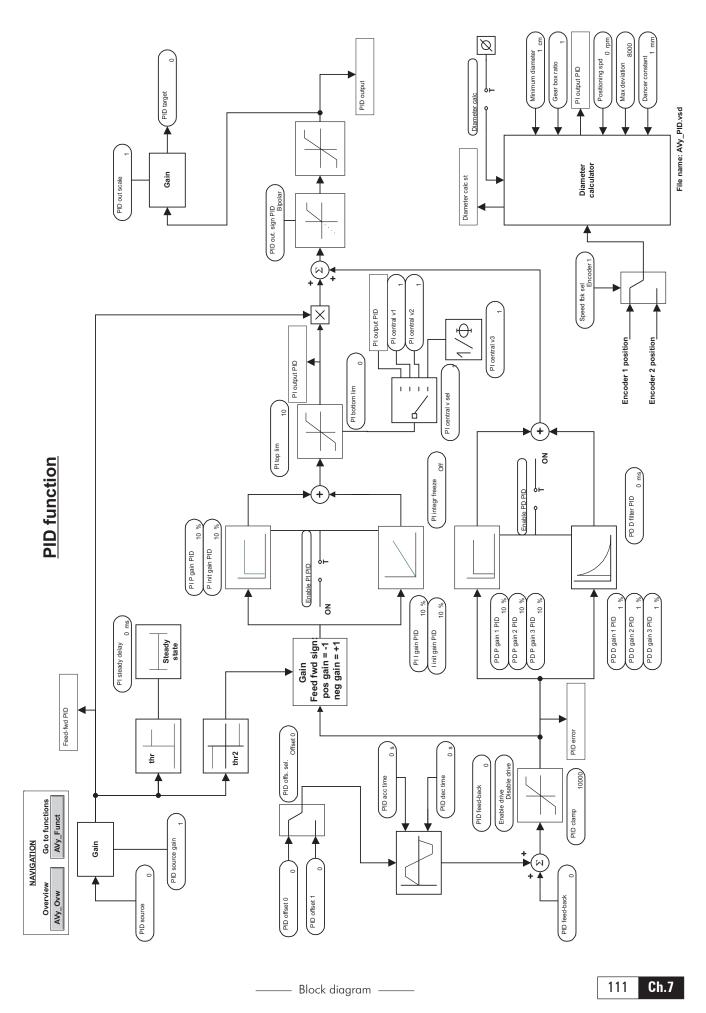

——— Block diagram ———

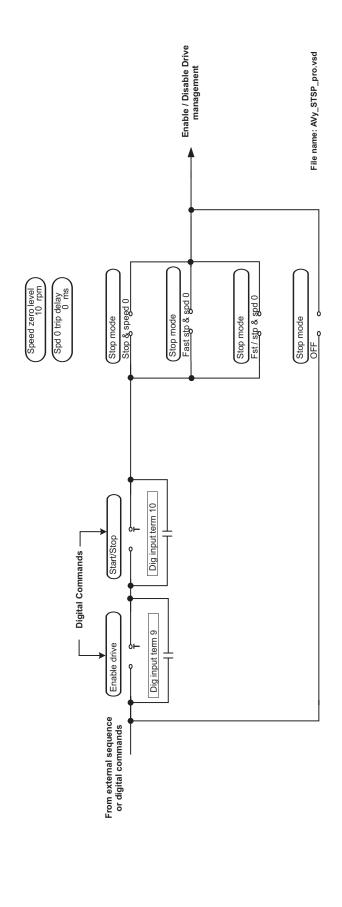
AVy -FR

Ch.7

108

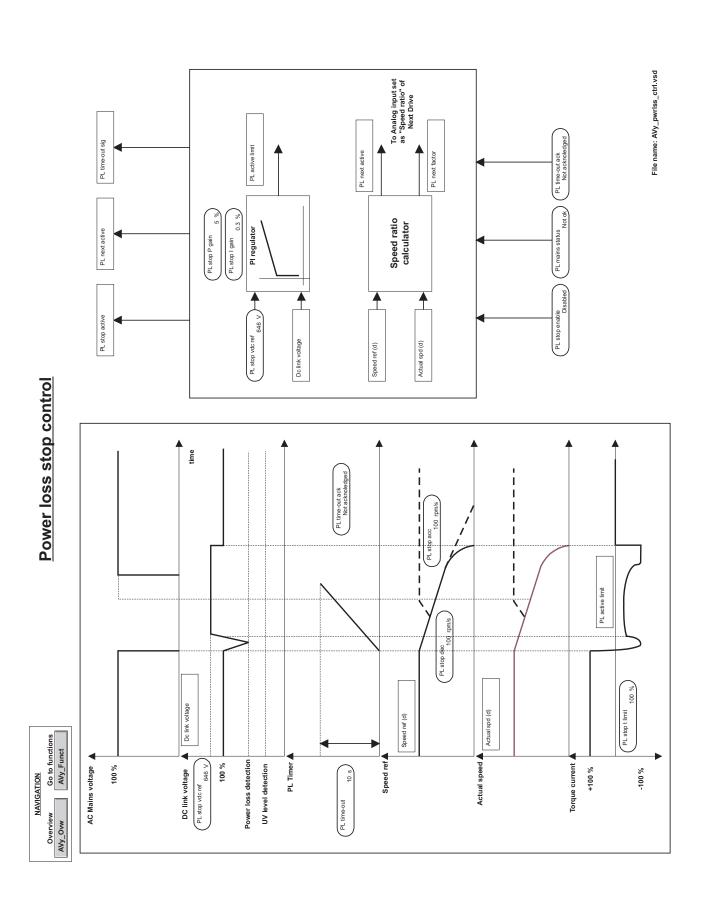

Speed Threshold / Speed control

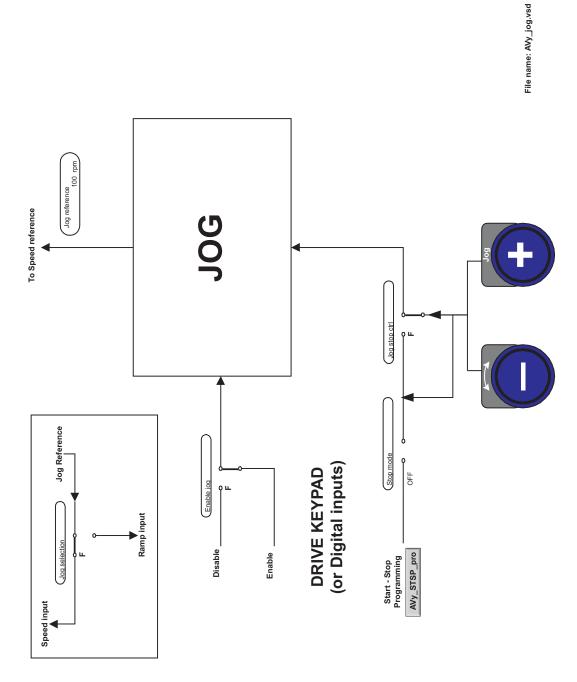



NAVIGATION
Overview Go to functions
AVY_Ovw AVY_Funct

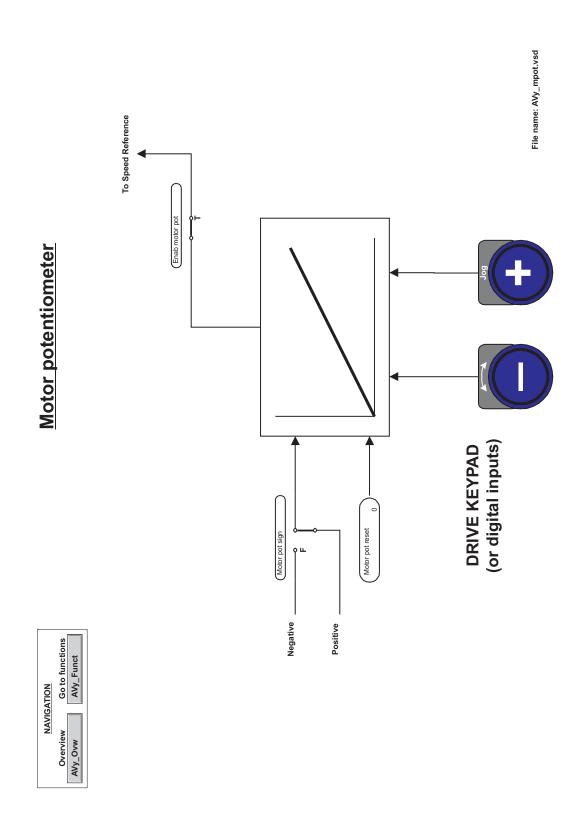
——— Block diagram ———

109 **Ch.7**

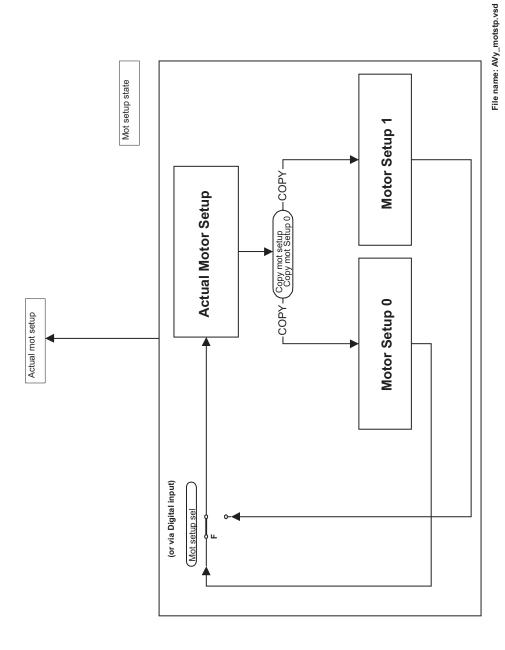




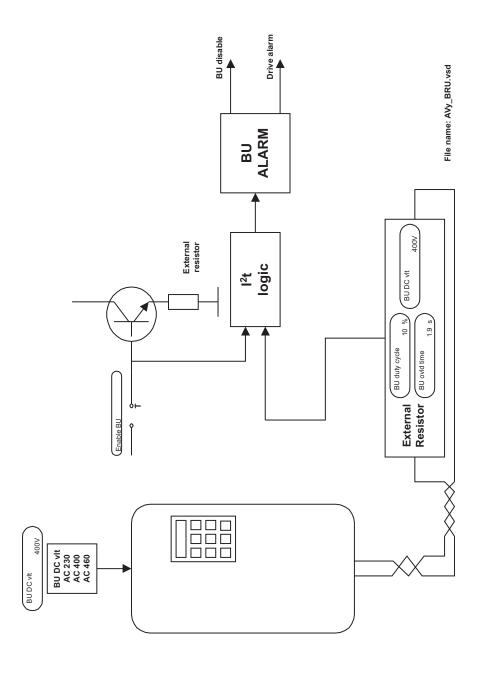
Ch.7 112


NAVIGATION
Go to
functions

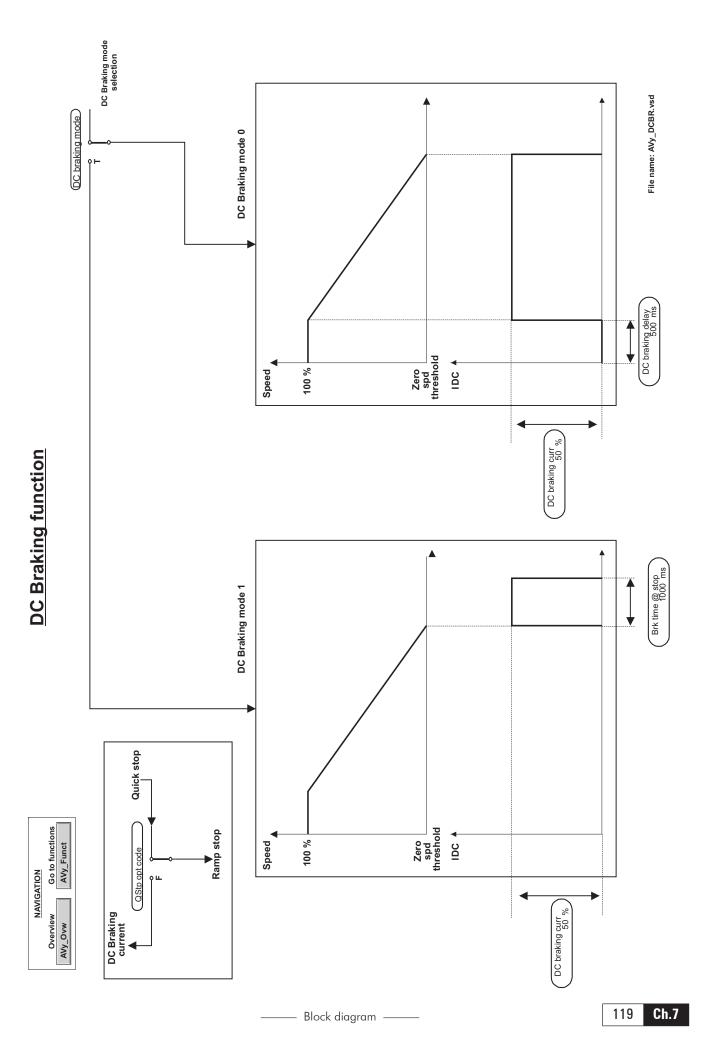
AVy_0vw


Overview Go to functions
AVy_Ovw AVy_Funct

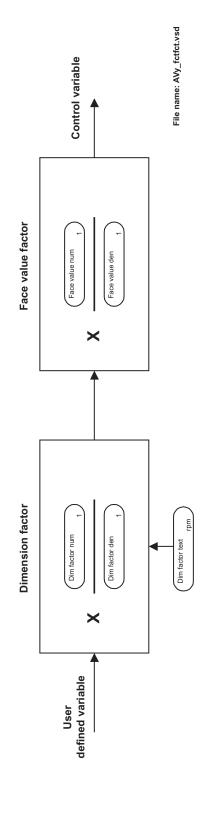
Enab multi spd Disabled	Multi speed sel	Ramp ref (d)	

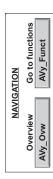

REFERENCE	Ramp ref 1 0 rpm + Ramp ref 2 0 rpm	Multi speed 1 0 rpm	Multi speed 2 0 rpm	Multi speed 3 0 rpm	Muli speed 4 0 rpm	Multi speed 5 0 rpm	Muli speed 6 0 rpm	Multi speed 7 0 rpm
Speed sel 2 bit 2 not selected	0	0	0	0	1	1	1	1
Speed sel 1 bit 1 not selected	0	0	_	_	0	0	1	1
Speed sel 0 bit 0 not selected	0	-	0	-	0	7	0	1

NAVIGATION
Overview Go to functions
AVy_Ovw AVy_Funct



Overview Go to functions
AVy_Ovw AVy_Funct


——— Block diagram ———



Overview Go to functions
AVy_Ovw
AVy_Funct

Dimension factor Face value factor

Go to functions
AVy_Funct

Overview AVy_Ovw

NAVIGATION

File name: AVy_PAD.vsd

Pad 15

Pad 14

Pad 13

Pad 12

Pad 11

Pad 10

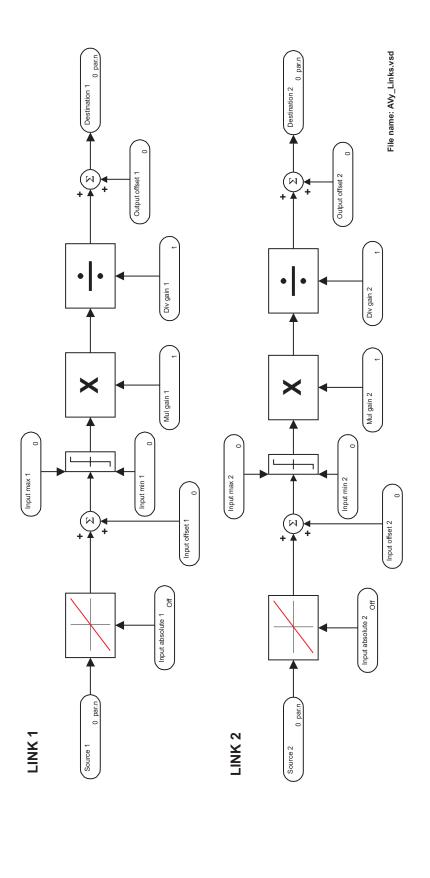
Pad 9

Pad 8

Pad 7

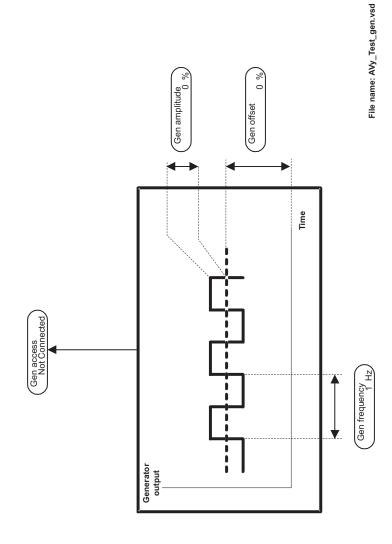
121 **Ch.7**

— Block diagram —


Go to functions
AVy_Funct

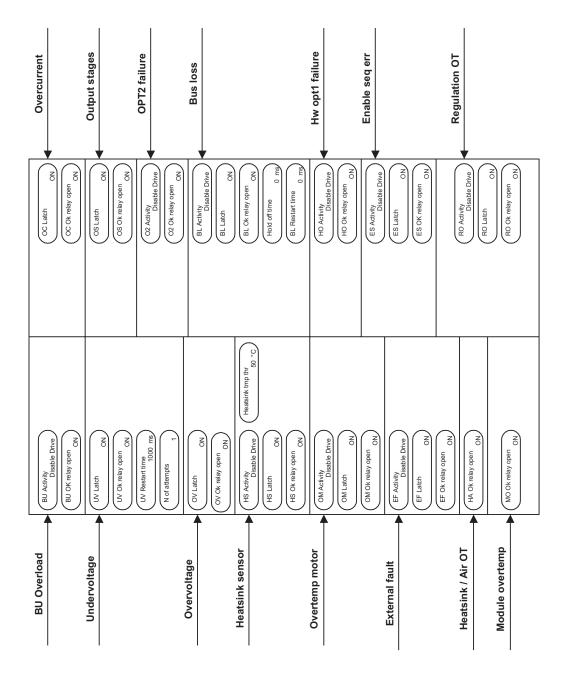
Overview AVy_Ovw

122


NAVIGATION

Ch.7

AUDIN - 8, avenue de la malle - 51370 Saint Brice Courcelles - Tel : 03.26.04.20.21 - Fax : 03.26.04.28.20 - Web : http://www.audin.fr - Email : info@audin.fr


AVy -FR

Overview Go to functions
AVy_Ovw AVy_Funct

——— Block diagram ———

Alarm mapping

NAVIGATION Overview Ovw

8. LISTE DES PARAMÈTRES

Explication des tables :

Texte blanc sur fond noir Menu / menu secondaire

Texte blanc sur fond noir

entre parenthèses

Le menu n'existe pas dans le clavier

Champs avec fond gris La fonction n'est pas accessible par le clavier. L'état du paramètre

correspondant est simplement affiché.

[FF] dans la colonne des paramètres Unité basée sur le paramètre de la fonction

Colonne "No" Numéro de paramètre (décimal). La valeur 2000H (= 8192

décimal) doit être ajoutée au nombre indiqué dans la colonne "No", afin d'obtenir l'index pour accéder au paramètre via le bus, la liaison série ou la carte Opt2 (carte DGFC). Ces paramètres se trouvant dans le groupe Drivecom sont accessibles en utilisant le format et l'index spécifiés dans le

profil de transmission de puissance DRIVECOM (#21).

Colonne "Format" Format interne des paramètres :

I= Integer (entier) (Exemple : I16 = entier 16 bits)

U = Unsigned (non signé) (Exemple : U32 = non signé 32 bits)

Float = Floating point (virgule flottante)

Colonne "Value" Valeurs minimales, maximales et d'origine des paramètres.

S = Valeur de consigne dépendant du type d'appareil.

F = Valeur de consigne dépendant du paramètre **Flt 100 mF** [303]

Colonne "Factory" S = Valeur de consigne d'origine dépendant du type d'appareil.

Colonne "Keypad" $\sqrt{}$ = Paramètre accessible par le clavier

Colonne "RS485/BUS/Opt2-M"

(priorité basse)

Paramètre accessible via RS485, bus de terrain ou via la

communication manuelle de la carte DGFC (reportez-vous au Guide

de l'utilisateur de la carte DGFC).

Les nombres indiquent les éléments devant être émis via la ligne

d'interface afin de régler les paramètres individuels.

Colonne "Terminal" Paramètre adressable pour l'une des bornes d'entrées/sorties

analogiques ou numériques.

Liste des paramètres — 125 Ch.8

"Opt2-A" (priorité basse)

"PDC" (priorité haute)

Paramètre accessible via la communication asynchrone de la carte DGFC (reportez-vous au Guide de l'utilisateur de la carte DGFC) et/ou le Process Data Channel (PDC) (canal de données des opérations) du bus de terrain.

NOTE: Lorsque les paramètres de l'interface de bus de terrain, dont la plage est [min=0; max=1], peuvent être affectés aux entrées numériques virtuelles (si le code d'accès "w" existe) et/ou aux sorties numériques (si le code d'accès "R" existe).

Colonne IA, QA, ID, QD in the "Term."

La fonction est accessible via une entrée/sortie numérique ou analogique entièrement programmable.

IA = Entrée analogique

QA = Sortie analogique

ID = Entrée numérique

QD = Sortie numérique

Le numéro actuel possible est celui par lequel le terminal est identifié.

Colonne H, L in the "Term."

Niveau des signaux du terminal (H=high (haut), L=low (bas)) qui valide la fonction individuelle.

R/W/Z/C

Possibilités d'accès via l'interface série, le bus ou la communication asynchrone ou manuelle Opt2 :

R = Read (lecture), W = Write (écriture), Z = Ecriture seulement si variateur inhibé, C = Paramètre de commande (l'écriture de chaque valeur provoque l'exécution d'une commande).

 $X \cdot Pyy$

La valeur de ce paramètre peut correspondre à X fois la valeur du paramètre yy.

Note!

Le numéro de paramètre indiqué dans les tables suivantes est un numéro de base. La valeur 2000H (=8192 décimal) doit être ajoutée au numéro indiqué dans la colonne "No", afin d'obtenir l'index pour accéder au paramètre via le bus, la liaison série ou Opt2 (carte DGFC). Les paramètres du groupe Drivecom sont accessibles en utilisant le format et l'index spécifiés dans le profil de transmission de puissance DRIVECOM (#21).

^{*} Lorsque le paramètre est accédé par Opt2-A/PDC, le format est U16

^{**} Lorsque le paramètre est accédé par Opt2-A/PDC, le format est 116

^{***} Lorsque le paramètre est accédé par Opt2-A/PDC, le mot de poids inférieur du paramètre est pris en compte

				Value			Access via		
Parameter	No	Format				Keyp.	RS485/	Terminal	Opt2-A
i didiliotoi	140	Torritat	min	max	Factory		BUS/		/PDC
							Opt2-M		
Dec delta time [s]	30	U16	0	65535	1	√	R/W	-	-
T current lim + [%]	8	U16	0	F	S	√	R/W	IA	R/W
T current lim - [%]	9	U16	0	F	S	√	R/W	IA	R/W
Encoder 1 type	415	I16	0	1	Digital (1)	√	R/Z	-	-
Sinusoidal							0		
Digital							1		
Encoder 1 pulses	416	Float*	600	9999	1024		R/Z	-	R
Speed base value [FF]	45	U32***	1	16383	1500		R/Z	-	R
Save parameters	256	U16	0	65535	=	$\sqrt{}$	С	-	-
				MONITOR					
Enable drive	314	U16	0	1	Disabled (0)	√	R/W	12	R/W
Enabled							1	Н	
Disabled							0	L	
Start/Stop	315	U16	0	1	Stop (0)	√	R/W	13	R/W
Start					,		1	Н	
Stop							0	L	
		М	ONITOR \ Meas	surements \ Spe	ed \ Speed in DRC [1			
Ramp ref (d) [FF]	109	l16	-32768	32767	-	√	R	-	R
Ramp output (d) [FF]	112	116	-32768	32767	=	1	R	-	R
Speed ref (d) [FF]	115	l16	-32768	32767	-	V	R	-	R
(Speed ref var)									
Actual spd (d) [FF]	119	l16	-32768	32767	-	√	R	-	R
(Act spd value)									
F act spd (d) [FF]	925	l16	-32768	32767	-	$\sqrt{}$	R	-	R
Act spd filter [s]	923	Float	0.001	0.100	0.001		R/W	-	-
					oeed \ Speed in rpm				
Ramp ref (rpm)	110	I16	-32768	32767	=	√	R	QA	R
Ramp outp (rpm)	113	l16	-32768	32767	-	$\sqrt{}$	R	QA	R
Speed ref (rpm)	118	l16	-32768	32767	-	√	R	QA	R
Actual spd (rpm)	122	l16	-8192	8192	-	$\sqrt{}$	R	QA	R
Enc1 speed [rpm]	427	l16	-8192	8192	-		R	-	R
Enc2 speed [rpm]	420	l16	-8192	8192	-		R	-	R
F act spd (rpm)	924	l16	-32768	32767	-		R	QA	R
Act spd filter [rpm]	923	Float	0.001	0.100	0.001	√	R/W	-	-
			MONITOR \ Me	easurements \setminus S	Speed \ Speed in %				
Ramp ref (%)	111	Float	-200.0	+ 200.0	-	√	R	-	-
Ramp output (%)	114	Float	-200.0	+ 200.0	-	$\sqrt{}$	R	-	-
Speed ref (%)	117	Float	-200.0	+ 200.0	-		R	-	-
Actual spd (%)	121	Float	-200.0	+ 200.0	-		R	-	-
			МО	NITOR \ Measu	rements				
DC link voltage [V]	227	U16	0	999	-	√	R	QA	-
Active power [%]	229	Float**	-500	500	-	$\sqrt{}$	R	QA	R
Output voltage [V]	233	Float**	0	500	-		R	QA	R
Output frequency [Hz]	324	Float	0.0	500.0	-	$\sqrt{}$	R	-	
Motor current [A]	231	Float	0.00	S	-	$\sqrt{}$	R	QA	-
Torque [%]	230	Float	-500	500	-	$\sqrt{}$	R	QA	
T current ref [%]	41	l16	-500	500	-	$\sqrt{}$	R	QA	R
T curr (%)	927	l16	-500	500	-		R	QA	R
F T curr (%)	928	I16	-500	500	-	√	R	QA	R
T curr filter [s]	926	Float	0.001	0.250	0.100	$\sqrt{}$	R/W	-	-
Flux [%]	234	Float*	0.00	100.00	-	√	R	QA	R
Heatsink temp [°C]	881	I16	-	-	-	$\sqrt{}$	R	-	-
Regulation temp [°C]	1147	I16	-	-	-	√	R	-	-
Intake air temp [°C]	914	U16	-	-	-	V	R	QA	-
				MONITOR \ I	′ 0				
Digital I/Q	-				-	$\sqrt{}$	R	-	-
Dig input term	564	U16	0	65535	-	-	R	-	R
Dig input term 1	565	U16	0	1	-		R	-	R
Dig input term 2	566	U16	0	1	-	-	R	_	R
Dig input term 3	567	U16	0	1	-		R	-	R
Dig input term 4	568	U16	0	1	-	+ -	R	-	R
						_			
Dig input term 5 Dig input term 6	569 570	U16	0	1	-	-	R	-	R
	2/11	U16	0	1	-		R	-	R
Dig input term 7	571	U16	0	1	-		R		R

				Value			Access via		
Parameter	No	Format			Fastani	Кеур.	RS485/	Terminal	Opt2-A
			min	max	Factory		BUS/ Opt2-M		/PDC
Dec delta time [s]	30	U16	0	65535	1	V	R/W	-	-
T current lim + [%]	8	U16	0	F	S	V	R/W	IA	R/W
T current lim - [%]	9	U16	0	F	S	V	R/W	IA	R/W
Encoder 1 type	415	I16	0	1	Digital (1)	√	R/Z	-	-
Sinusoidal					- , ,		0		
Digital	_						1		
Encoder 1 pulses	416	Float*	600	9999	1024	√ /	R/Z	-	R
Speed base value [FF]	45	U32***	1	16383	1500	√,	R/Z	-	R
Save parameters	256	U16	0	65535	-	V	С	-	-
Enable drive	314	U16	0	MONITOR 1	Disabled (0)	V	R/W	12	R/W
Enabled		010	U	'	Disabled (0)	\ \ \	1 1	H	I II/ W
Disabled						1 1	0	L	
Start/Stop	315	U16	0	1	Stop (0)	√	R/W	13	R/W
Start		010	U	'	Stop (o)	'	117 VV	H	11/ ۷۷
Stop						1 1	0	L	
3top		M	ONITOR \ Meas	surements \ Sne	ed \ Speed in DRC [U		
Ramp ref (d) [FF]	109	116	-32768	32767	- -	√	R	-	R
Ramp output (d) [FF]	112	116	-32768	32767	-	Ż	R	-	R
Speed ref (d) [FF]	115	I16	-32768	32767	-	V	R	-	R
(Speed ref var)									
Actual spd (d) [FF]	119	l16	-32768	32767	-	√	R	-	R
(Act spd value) F act spd (d) [FF]	925	l16	-32768	32767	-	√	R		R
Act spd filter [s]	923	Float	0.001	0.100	0.001	\ √	R/W	-	n -
Act spu liiter [s]	923				eed \ Speed in rpm	٧	11/ VV	-	-
Ramp ref (rpm)	110	l16	-32768	32767	- -		R	QA	R
Ramp outp (rpm)	113	116	-32768	32767	-	V	R	QA	R
Speed ref (rpm)	118	l16	-32768	32767	-	√	R	QA	R
Actual spd (rpm)	122	I16	-8192	8192	-	V	R	QA	R
Enc1 speed [rpm]	427	I16	-8192	8192	-	√	R	-	R
Enc2 speed [rpm]	420	l16	-8192	8192	-	√	R	-	R
F act spd (rpm)	924	l16	-32768	32767	-	V	R	QA	R
Act spd filter [rpm]	923	Float	0.001	0.100	0.001	$\sqrt{}$	R/W	-	-
					peed \ Speed in %				,
Ramp ref (%)	111	Float	-200.0	+ 200.0	-	V	R	-	-
Ramp output (%)	114	Float	-200.0	+ 200.0	-	√	R	-	-
Speed ref (%)	117	Float	-200.0	+ 200.0	-	√ √	R	-	 •
Actual spd (%)	121	Float	-200.0	+ 200.0 NITOR \ Measur	- ramante	V	R	-	-
DC link voltage [V]	227	U16	0	999	-		R	QA	
Active power [%]	229	Float**	-500	500	<u> </u>	1	R	QA	R
Output voltage [V]	233	Float**	0	500	-	1	R	QA	R
Output frequency [Hz]	324	Float	0.0	500.0	-	Ì	R	-	-
Motor current [A]	231	Float	0.00	S	-	V	R	QA	-
Torque [%]	230	Float	-500	500	-	√	R	QA	-
T current ref [%]	41	l16	-500	500	-	√	R	QA	R
T curr (%)	927	l16	-500	500	=	V	R	QA	R
F T curr (%)	928	l16	-500	500	-	√	R	QA	R
T curr filter [s]	926	Float	0.001	0.250	0.100	V	R/W	-	-
Flux [%]	234	Float*	0.00	100.00	-	√	R	QA	R
Heatsink temp [°C]	881	I16	-	-	-	√	R	-	-
Regulation temp [°C]	1147	I16	-	-	-	√	R	-	-
Intake air temp [°C]	914	U16	-	- Monitor \ I/	- N	$\sqrt{}$	R	QA	-
Digital I/Q	-			- montron ()	- -		R	-	-
Dig input term	564	U16	0	65535	-	-	R	-	R
Dig input term 1	565	U16	0	1	-		R	-	R
Dig input term 2	566	U16	0	1	-	-	R	_	R
Dig input term 3	567	U16	0	1	-	-	R	-	R
	568	U16	0	1	-	 -	R	-	R
Dia input term 4									- 11
Dig input term 4 Dia input term 5	_				-	-	R	-	R
Dig input term 4 Dig input term 5 Dig input term 6	569 570	U16 U16	0	1	-	-	R R	-	R R

				Value			Access via		
Parameter	No	Format	min	max	Factory	Кеур.	RS485/ BUS/ Opt2-M	Terminal	Opt2-A /PDC
Dig input term 8	572	U16	0	1	-	-	R	-	R
Dig input term 9	573	U16	0	1	-	-	R	-	R
Dig input term 10	574	U16	0	1	-	-	R	-	R
Dig input term 11	575	U16	0	1	-	-	R	-	R
Dig input term 12	576	U16	0	1	-	-	R	-	R
Dig input term 13	577	U16	0	1	-	-	R	-	R
Dig input term 14	578	U16	0	1	-	-	R	-	R
Dig input term 15	579	U16	0	1	-	-	R	-	R
Dig input term 16	580	U16	0	1	-	-	R	-	R
Dig output term	581	U16	0	65535	-	-	R	-	R
Virtual dig inp	582	U16	0	65535	-	V	R/W	-	R/W
Virtual dig out	583	U16	0 DRIVE P	65535 Arameter \ M	- Int plate data	V	R	-	R
Nominal voltage [V]	161	Float	1 1	999	400	V	R/Z	-	-
Nominal speed [rpm]	162	Float**	1	99999	\$	V	R/Z	-	
Nom frequency [Hz]	163	Float	1	999	50	V	R/Z		
Nominal current [A]	164	Float	0.10	999.00	S	V	R/Z		
Cos phi	371	Float	0.10	0.99	S	V	R/Z	-	-
Base voltage [V]	167	Float	1	999	400	V	R/Z		-
Base frequency [Hz]	168	Float	1	999	50	V	R/Z	-	-
Take motor par	694	U16	0	1	-	V	C	-	-
ιακό πιστοί μαι	034	010		RAMETER \ Mo	tor Parameter	٧	U		
Magnetizing cur [A]	165	Float	0.10	999.00	S		R/W	_	-
Magn working cur [A]	726	Float	0.10	999.00	S	V	R	_	-
Rotor resistance [Ohm]	166	Float	0.0001	S	S	V	R/W	-	-
Stator resist [Ohm]	436	Float	0.0001	S	S	V	R/W	-	-
Lkg inductance [H]	437	Float	0.00001	9.00000	S	V	R/W	-	-
Load motor par	251	U16	0	1	Std400V (0)	V	Z	-	-
Std for 400\ Std for 460\	/			·	. ,		0 1		
Self tune state	705	U16			rameter \ Self-tuning		D		
Sell turie state	705		0 PARAMETER\N	65535 Intor Paramete	r \ Self-tuning \ Self-	tune 1	R	-	-
Start part 1	676	U16	0	65535	-	\ \	С	-	
Stator resist [Ohm]	436	Float	0.0001	S	S	V	R/W	_	-
Stator resist Nw [Ohm]	683	Float	S S	S	-	V	R	_	-
Voltage comp lim [V]	644	Float	0.1	30.0	6.0	V	R/W	_	-
Volt comp lim Nw [V]	685	Float	0.1	30.0	-	V	R	-	-
Comp slope [V/A]	645	Float	0.1	50.0	13.0	V	R/W	-	-
Comp slope Nw [V/A]	686	Float	0.1	50.0	-	1	R	-	-
Lkg inductance [H]	437	Float	0.00001	9.00000	S	V	R/W	-	-
Lkg indutance Nw [H]	684	Float	S	S	-	V	R	-	-
Current P [%]	89	Float	0.00	100.00	S	V	R/W	-	-
Current P Nw [%]	687	Float	S	S	-	√	R	-	-
Rotor resistance [Ohm]	166	Float	0.0001	S	S	V	R/W	-	-
Rotor resist Nw [Ohm]	682	Float	S	S	-	V	R	-	-
Current I [%]	90	Float	0.00	100.00	S	V	R/W	-	-
Current I Nw [%]	688	Float	S	S	-	V	R	-	-
Take val part 1	_	U16	0	65535	-	V	Z/C	-	-
iane vai pai i i	677					_			
			ARAMETER \ M	otor Paramete	r ∖ Self-tuning ∖ Self-t	une 2a			
Start part 2a	678	U16	ARAMETER \ M 0	otor Paramete 65535	-	V	С	-	-
Start part 2a P1 flux model	678 176	U16 Float	ARAMETER \ M 0 0.00	otor Paramete 65535 1.00	- S	√ √	R/W	- -	-
Start part 2a P1 flux model P1 flux model Nw	678 176 689	U16 Float Float	ARAMETER\M 0 0.00 S	otor Parametel 65535 1.00 S	- S S	√ √ √	R/W R	- - -	- -
Start part 2a P1 flux model P1 flux model Nw P2 flux model	678 176 689 692	U16 Float Float U16	0 0.00 S 1	otor Parametel 65535 1.00 S 20	- S S S	\ \ \ \ \	R/W R R/W	- - -	- - -
Start part 2a P1 flux model P1 flux model Nw P2 flux model P2 flux model Nw	678 176 689 692 690	U16 Float Float U16 U16	ARAMETER \ M 0 0.00 S 1 S	otor Paramete 65535 1.00 S 20 S	- S S S	\[\sqrt{1} \]	R/W R R/W R		
Start part 2a P1 flux model P1 flux model Nw P2 flux model P2 flux model Nw Magnetizing curr [A]	678 176 689 692 690 165	U16 Float Float U16 U16 Float	ARAMETER \ M 0 0.00 S 1 S 0.1	otor Paramete 65535 1.00 S 20 S 999.0	- S S S S	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	R/W R R/W R	-	
Start part 2a P1 flux model P1 flux model Nw P2 flux model Nw Magnetizing curr [A] Magnetiz curr Nw [A]	678 176 689 692 690 165 691	U16 Float Float U16 U16 Float Float Float	ARAMETER \ M 0 0.00 S 1 S 0.1 S	otor Paramete 65535 1.00 S 20 S 999.0 S	- S S S S	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	R/W R R/W R R/W	-	-
Start part 2a P1 flux model P1 flux model Nw P2 flux model Nw Magnetizing curr [A] Magnetiz curr Nw [A] Flux P [%]	678 176 689 692 690 165 691 91	U16 Float Float U16 U16 Float Float Float Float	ARAMETER \ M 0 0.00 S 1 S 0.1 S 0.00	otor Paramete 65535 1.00 S 20 S 999.0 S 100.00	- S S S S S	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	R/W R R/W R R/W R	-	-
Start part 2a P1 flux model P1 flux model Nw P2 flux model Nw P2 flux model Nw Magnetizing curr [A] Magnetiz curr Nw [A] Flux P [%] Flux P Nw [%]	678 176 689 692 690 165 691 91	U16 Float Float U16 U16 Float Float Float Float Float	ARAMETER \ M 0 0.00 S 1 S 0.1 S 0.00 0.00	otor Paramete 65535 1.00 S 20 S 999.0 S 100.00 100.00	- S S S S S S S	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	R/W R R/W R R/W R R/W	- - -	- - -
Start part 2a P1 flux model P1 flux model Nw P2 flux model Nw Magnetizing curr [A] Magnetiz curr Nw [A] Flux P [%] Flux P Nw [%] Flux I [%]	678 176 689 692 690 165 691 91 907	U16 Float Float U16 U16 Float Float Float Float Float Float Float	ARAMETER \ M	otor Paramete 65535 1.00 S 20 S 999.0 S 100.00 100.00	- S S S S S S S	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	R/W R R/W R R/W R R/W R	- - - -	- - - -
Start part 2a P1 flux model P1 flux model Nw P2 flux model Nw P2 flux model Nw Magnetizing curr [A] Magnetiz curr Nw [A] Flux P [%] Flux P Nw [%] Flux I [%] Flux I Nw [%]	678 176 689 692 690 165 691 91 907 92	U16 Float Float U16 U16 Float	ARAMETER \ M 0 0.00 S 1 S 0.1 S 0.00 0.00 0.00 0.00 0.00	otor Paramete 65535 1.00 S 20 S 999.0 S 100.00 100.00 100.00	- S S S S S S S	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	R/W R		- - - -
Start part 2a P1 flux model P1 flux model Nw P2 flux model Nw Magnetizing curr [A] Magnetiz curr Nw [A] Flux P [%] Flux P Nw [%] Flux I [%]	678 176 689 692 690 165 691 91 907	U16 Float Float U16 U16 Float Float Float Float Float Float Float	ARAMETER \ M	otor Paramete 65535 1.00 S 20 S 999.0 S 100.00 100.00	- S S S S S S S	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	R/W R R/W R R/W R R/W R	- - - - -	- - - -

				Value			Access via		
Parameter	No	Format				Keyp.	RS485/	Terminal	Opt2-A
i aramotor	INO	Tomat	min	max	Factory		BUS/		/PDC
N. I. 1973	200		0.00	100.00	1.00		Opt2-M		
Voltage I [%]	902	Float	0.00	100.00	4.00 S	√ √	R/W	-	<u> </u>
Voltage I Nw [%] Take val part 2a	679	Float U16	0.00	100.00 65535	<u> </u>	V	R Z/C	-	-
Take vai part Za	013		-		r \ Self-tuning \ Sel-tu		2/0		
Start part 2b	680	U16	0	65535	-	V	С	-	-
P1 flux model	176	Float	0.00	1.00	S	V	R/W	-	-
P1 flux model Nw	689	Float	S	S	S	V	R	-	-
P2 flux model	692	U16	1	20	S	V	R/W	-	-
P2 flux model Nw	690	U16	S	S	S	V	R	-	-
Magnetizing curr [A]	165	Float	0.1 S	999.0 S	S S	√ √	R/W R	-	-
Magnetiz curr Nw [A] Flux P [%]	691 91	Float Float	0.00	100.00	S	√ √	R/W	-	-
Flux P Nw [%]	907	Float	0.00	100.00	S	V	R		
Flux I [%]	92	Float	0.00	100.00	S	V	R/W	_	-
Flux I Nw [%]	908	Float	0.00	100.00	S	V	R	-	-
Voltage P [%]	1022	Float	0.00	100.00	15.00	V	RW	RW	-
Voltage P Nw [%]	1024	Float	100.00	0.00	S	V	R	R	
Voltage I [%]	902	Float	0.00	100.00	4.00	V	R/W	-	-
Voltage I Nw [%]	909	Float	0.00	100.00	S	√	R	-	-
Take val part 2b	681	U16	0	65535		√	Z/C	-	-
E. J. Daniel J. L.	4000				er \ Self-tuning \ Sel-t	_	D/7		
Fwd-Rev spd tune Fwd direction	1029	U16	1	2	Fwd direction (1)	√	R/Z	-	-
Rev direction							1 2		
Test T curr lim [%]	1048	U16	0	S	20	√	R/Z	-	
Start part 3	1027	U16	0	65535	-	V	C	_	
Inertia [kg*m*m*]	1014	Float	0.0010	999.9990	S	V	R/W	_	-
Inertia Nw [kg*m*m*]	1030	Float	0.0010	999.9990	-	V	R	-	-
Friction [N*m]	1015	Float	0.000	99.99	S	V	R/W	-	-
Friction Nw [N*m]	1031	Float	0.000	99.99	-		R	-	-
Speed P [%]	87	Float	0.00	100.00	S	V	R/W	-	-
Speed P Nw [%]	1032	Float	0.00	100.00	-	V	R	-	-
Speed I [%]	88	Float	0.00	100.00	S	V	R/W	-	-
Speed I Nw [%]	1033	Float	0.00	100.00	-	V	R	-	-
Take val part 3	1028	U16	0 DRIVE	65535 PARAMETER \	- Sancarlace	V	Z/C	-	-
Low speed factor	646	l16	0	32000	5000	V	R/W	-	-
SIs speed filter [s]	643	Float	0.01	0.50	0.01	1	R/W	-	-
Flux corr factor	647	Float	0.50	1.0	0.90	V	R/W	-	-
				PARAMETER \	V/f control		,		
V/f shape	712	U16	0	3	$V = k \cdot f^{1.0}(0)$	V	R/Z	-	-
$V = k \cdot f^{1.0}$							0		
$V = k \cdot f^{1.5}$							1		
$V = k \cdot f^{1.7}$							2		
$V = k \cdot f^{2.0}$							3		
VIII be a set because	700	114.0			rol \ Voltage boost		D/7		
VIt boost type	709	U16	0	1	Manual (0)	√	R/Z	-	-
Manual Automatic							0 1		
Manual boost [%]	710	Float	0.0	10.0	1.0	√	R/W	_	-
Actual boost [%]	711	Float	0.0	100.0	1.0	\ \	R R	-	+-
7101001 50001 [70]	711	Hout			trol \ Slip compens	,	11		
Slip comp type	722	U16	0	1	Manual (0)	√	R/Z	-	-
Manual					, ,		0		
Automatic	_						1		
Manual slip comp [rpm]	723	l16	0	200	0	V	R/W	-	-
Actual slip comp [rpm]	724	I16	-400	400	0	√	R	-	-
Slip comp filt [s]	725	Float	0.003	0.300	0.030	V	R/W	-	-
Motor losses %	727	Float	0.0	20.0	0 rol \ V/f spd search	V	R/W	-	
Spd srch time [s]	893	Float	0.01	10.00	10.00	V	R/W	-	-
Flux srch time [s]	894	Float	0.01	20.00	1.00	\ √	R/W	-	+ -
Spd autocapture [FF]	895	116	-32768	32767	1500	V	R/W	-	
1-1-2 management [1,1]	200		32.00	32. 0.	.000		,	<u> </u>	-

				Value			Access via		
Parameter	No	Format			_	Кеур.	RS485/	Terminal	Opt2-A
			min	max	Factory		BUS/		/PDC
Delay auto cap [ms]	896	U16	0	10000	1000	V	Opt2-M R/W		
Delay retrying [ms]	897	U16	0	10000	1000	√	R/W		-
Boldy rod ying [mo]	001	010	-		trol \ Energy save		11,444		
Enable save eng	898	U16	0	1	Disabled (0)	V	R/Z	-	-
Enabled	i						1		
Disabled	i						0		
Lock save eng	899	U16	0	1	OFF (0)	√	R/W	ID	R/W
OFF							0	L	
ON	ı						1	Н	
V/f flux level [%]	900	U16	0	100	100	√	R/W	IA	R/W
Flux var time [s]	901	U16	1	100	10	√	R/W	-	-
					ref \ Ramp ref 1				
Ramp ref 1 [FF] (Speed input var)	44	I16	-2 × P45	+2 × P45	0	√	R/W	IA, QA	R/W
Ramp ref 1 (%)	47	Float	-200.0	+200.0	0.0	√	R/W	-	-
D (O [FF]	40	14.0			ref \ Ramp ref 2	/	D.A.	14 04	D ***
Ramp ref 2 [FF]	48 49	I16	-2 × P45 -200.0	+2 × P45 +200.0	0.0	√ √	R/W	IA, QA -	R/W
Ramp ref 2 (%)	49	Float			ref \ Speed ref 1	٧	R/W		
Speed ref 1 [FF]	42	I16	-2 × P45	+2 × P45	0	V	R/W	IA, QA	R/W
Speed ref 1 (%)	378	Float	-200.0	+200.0	0.0	√	R/W	-	-
					ref \ Speed ref 2				
Speed ref 2 [FF]	43	I16	-2 × P45	+2 × P45	0	√ /	R/W	IA, QA	R/W
Speed Ref 2 (%)	379	Float	-200.0	+200.0	0.0	V	R/W	-	-
T current ref 1 [%]	39	116	F	VARIABLES \ T	0	V	R/W	IA, QA	R/W
T current ref 2 [%]	40	I16	F	F	0	√	R/W	IA, QA	R/W
			LIMITS \	Speed limits \ S	Speed amount		,	<i>ii</i> 1, 0.7 1	,
Speed min amount [FF]	1	U32	0	2 ³² -1	0	V	R/Z	-	-
Speed max amount [FF]	2	U32	0	2 ³² -1	5000	V	R/Z	-	-
				Speed limits \ S	ř – – – – – – – – – – – – – – – – – – –		5/7		
Speed min pos [FF]	5	U32	0	2 ³² -1	0	√ /	R/Z	-	-
Speed max pos [FF]	3	U32	0	2 ³² -1	5000	√ /	R/Z	-	-
Speed min neg [FF]	6	U32	0	2 ³² -1	0	√ /	R/Z	-	-
Speed max neg [FF]	4	U32	0	2 ³² -1	5000	√	R/Z	- OD	- D
Speed limited Speed not limited Speed limited		U16	U	1		-	R 0 1	QD L H	R
			L	IMITS \ Current	limits				
T curr lim type	715	U16	0	1	T lim +/- (0)	√	R/Z	-	-
T lim + / -							0		
T lim mot ger	n						1		
T lim VDC Ctr	1						3		
T current lim [%]	7	U16	0	F	S	V	R/W	IA	R/W
T current lim + [%]	8	U16	0	F	S	V	R/W	IA	R/W
T current lim - [%]	9	U16	0	F	S	√	R/W	IA	R/W
Curr limit state Curr. limit not reached		U16	0	1		-	R 0	QD L	R
Curr. limit reached							1	Н	
In use Tour lim+ [%]	10	U16	0	F		√ /	R	-	R
In use Tour lim- [%]	11	U16	0	F	100	√ /	R	-	R
Current lim red [%]	13	U16	0	F	100	√ √	R/W	- ID	R/W
Torque reduct	342	U16	0	1	Not act. (0)	V	R/W	ID	R/W
Not actived							0	L	
actived	1			I IMITO \ Elmel	imito		1	Н	
Flux level [%]	467	U16	10	LIMITS \ Flux I	100	V	R/W	IA QA	R/W
				 MITS \ Voltage	limits			ŲA	
	889	Float	10.00	10.00	1.00	V	R/W	-	-

				Value			Access via		
Parameter	No	Format	min	max	Factory	Кеур.	RS485/ BUS/ Opt2-M	Terminal	Opt2-A /PDC
				RAMP \ Accelei	ation		Opt2 W		
Acc delta speed [FF]	21	U32	0	2 ³² -1	100	V	R/W	-	-
Acc delta time [s]	22	U16	0	65535	1	V	R/W	-	-
Dec delta speed [FF]	29	U32	0	RAMP \ Decelei 2 ³² -1	100	V	R/W	-	-
Dec delta time [s]	30	U16	0	65535	1	√	R/W	-	-
00	0.7			RAMP \ Quick			5.44		
QStp delta speed [FF]	37	U32	0	2 ³² -1	1000	√ 	R/W	-	-
QStp delta time [s]	38	U16	0	65535 RAMP	1	√	R/W	-	-
Ramp shape Linear	18	U16	0	1	Linear (0)	V	R/Z 0	-	-
S-Shaped							1		
S shape t const [ms]	19	Float	100	3000	500	√	R/W	-	-
S acc t const [ms]	663	Float	100	3000	500	√	R/W	-	-
S dec t const [ms]	664	Float	100	3000	500	√	R/W	-	-
Ramp +/- delay [ms]	20	U16	0	65535	100	√	R/W		-
Fwd-Rev	673	U16	0	3	Fwd (1)	V	R/W	-	R/W
No direction							0		
Fwd direction							1		
Rev direction							2		
No direction		1140	2		1 (0)		3	ID.	D //4/
Forward sign	293	U16	0	1	not sel (0)	-	R/W	ID	R/W
FWD selected							1 0	Н	
FWD not selected Reverse sign	294	U16	0	1	not sel (0)	-	R/W	ID	R/W
REV selected		010	U	'	1101 361 (0)	1	1 1	H	11/ ۷۷
REV not selected							0	i i	
Enable ramp	245	l16	0	1	Enabled (1)	√	R/Z	-	-
Enabled					(.)		1		
Disabled							0		
Ramp out = 0	344	U16	0	1	Not act. (1)	√	R/W	ID	R/W
Actived							0	L	
Not Actived	•						1	Н	
Ramp in $= 0$	345	U16	0	1	Not act. (1)		R/W	ID	R/W
Actived							0	L	
Not Actived		1140			N (4)	/	1	H	D 444
Freeze ramp	373	U16	0	1	Not act. (1)	√	R/W	ID	R/W
Actived Not Actived							0 1	L H	
Ramp +	346	U16	0	1	-	-	R	QD	R
Acc. clockwise +		010	U	· ·			1	Н	1,
Dec. counter-clockwise							· ·		
Other states							0	L	
	347	U16	0	1	-	-	R	QD	R
Ramp - Acc. counter-clockwise +							1	Н	
Dec. clockwise Other states							0	L	
	440	14.0	00700	SPEED REGUL		-	-	0.1	
Speed ref [rpm]	118	116	-32768	32767	-	√ √	R	QA	R
Speed reg output [%] Lock speed reg	236 322	I16 U16	0	1	- OFF (0)		R R/W	QA ID	R R/W
ON		010	U	l '	OFF (U)	'	1	L	IT/ VV
OFF							0	H	
Enable spd reg	242	l16	0	1	Enabled (1)	√	R/Z	-	-
Enabled							1		
Disabled							0		
Lock speed I	348	U16	0	1	Not act. (1)	√	R/W	ID	R/W
Actived							0	L	
Not Actived							1	Н	
Aux spd fun sel	1016	U16	0	1	Speed up (0)	V	R/Z	-	-
Speed up							0		
Inertia-loss cp		1140	^	1000		./	1		
Prop. filter [ms]	444	U16	0	1000	0	V	R/W	-	-

				Value			Access via		
Parameter	No	Format	min	max	Factory	Keyp.	RS485/ BUS/	Terminal	Opt2-A
			111111	max	Tuotory		Opt2-M		71 50
			SPEED	REGULAT \ Sp					
Enable spd=0 I	123	U16	0	1	Disabled (0)		R/Z	-	-
Enable							1		
Disable	-	114.0	0		D'11-1 (0)	,	0		
Enable spd=0 R	124	U16	0	1	Disabled (0)	√	R/Z	-	-
Enable Disable							1 0		
Enable spd=0 P	125	U16	0	1	Disabled (0)	V	R/Z		+-
Enable		010	U	l '	Disabled (0)	V	1	-	-
Disable							0		1
Enable lck sls	422	U16	0	1	Disabled (0)	V	R/Z	_	-
Enable		0.0			Bloublou (0)	'	1		
Disable							0		
Spd=0 P gain [%]	126	Float	0.00	100.00	10.00	√	R/W	-	-
Ref 0 level [FF]	106	U16	1	32767	10	V	R/W	-	-
Enable zero pos	890	U16	0	1	Disabled (0)	V	R/Z	-	1 -
Enable	b				, ,		1		
Disable	d						0		
Lock zero pos	891	U16	0	1	OFF (0)	V	R/W	ID	R/W
10	١						1	L	1
OF.							0	Н	
Zero pos gain [%]	892	U16	0	100	10	$\sqrt{}$	R/W	-	-
0 1 50/3	4.45	-		ED REGULAT \			5.44		_
Speed up gain [%]	445	Float	0.00	100.00	0.00	V	R/W	-	-
Speed up base [ms]	446	Float	0	16000	1000	√ /	R/W	-	-
Speed up filter [ms]	447	U16	0 SPEED	1000 REGULAT \ Dro	0	V	R/W	-	-
Droop gain [%]	696	Float	0.00	100.00	0.00	V	R/W	-	_
Droop filter [ms]	697	U16	0.00	100.00	0.00	1	R/W	_	 .
Load comp [%]	698	116	F	F	0	V	R/W	IA	R/W
Droop limit [FF]	700	U16	0	2 × P45	1500	V	R/W	-	-
Enable droop	699	U16	0	1	Disabled (0)	V	R/W	ID	R/W
Enable					(-)		1	Н	'
Disable	d						0	L	1
			SPEED	REGULAT \ Ine	rtia/loss cp				
Inertia [kg*m*m]	1014		0.001	999.999	S	V	R/W	-	-
Friction [N*m]	1015		0.000	99.999	S	√	R/W	-	-
Torque const [N*m/A]	1013		0.01	99.99	S	√	R	-	├ -
Inertia c filter [ms]	1012	U16	0	1000	0	V	R/W	-	-
Current norm	067	Floot		CURRENT REG	S S		D		
Current norm Torque current	267 350	Float Float	0.00 S	9999.99 S	5	-	R R	QA	+-
Flux current	351	Float	S	S		_	R	QA	1
F current ref	352	Float	S	S		-	R	QA	+ -
Zero torque	353	U16	0	1	Not Act. (1)	1	R/W	ID	R/W
Active		010	Ů	· '	14017101. (1)	'	0	L	1,000
Not Active							1	H	
				FLUX REGULA	TION				
Flux reg mode	469	U16	0	1	Volt.control (1)	√	R/Z		-
Constant curren	t						0	-	1
Voltage contro							1		
Flux reference	500	Float*	0.0	100.0	-	V	R	QA	R
Flux	234	Float*	0.00	100.00	-	V	R	QA	R
Out vlt level [%]	921	Float*	0.0	100.0	100.0	√	R/W	IA,QA	R/W
Canad D 10/3	07				ues \ Speed regulato		D/W		
Speed P [%]	87	Float	0.00	100.00	S	1	R/W	-	1 -
Speed I [%]	88	Float	0.00	100.00	S values \ Current reg	V	R/W	-	-
Current P [%]	89	Float	0.00	100.00	Values \ Current reg	V	R/W	_	
Current I [%]	90	Float	0.00	100.00	\$ \$	V V	R/W		l i
	50				Current reg\Dead tim		1 1/ V V		
Voltage comp lim [V]	644	Float	0.1	30.0	6.0	√	R/W	-	-
· orago comp mm [V]	017	Hoat	0.1	00.0	0.0	1 1	R/W		1

				Value			Access via		
Parameter	No	Format	min	max	Factory	Кеур.	RS485/ BUS/ Opt2-M	Terminal	Opt2-A /PDC
					lues \ Flux regulator	,			
Flux P [%]	91 92	Float	0.00	100.00 100.00	S S	√ √	R/W	-	-
Flux I [%]	92	Float			values \ Voltage reg	V	R/W	-	-
Voltage P [%]	1022	Float	0.00	100.00	15.00	V	R/W	-	-
Voltage I [%]	902	Float	0.00	100.00	4.00	$\sqrt{}$	R/W	-	-
Conned D boso [A/mms]	00				es \ Speed regulator	-/	D/7		
Speed P base [A/rpm] Speed I base[A/rpm×ms]	93 94	Float Float	0.001 0.001	99.999 99.999	S S	√ √	R/Z R/Z	-	-
Speed I base[A/Ipili×ilis]	34	Hoat			lues \ Current reg	V	Π/L	-	-
Current P base [V/A]	95	Float	0.1	99999.9	S	$\sqrt{}$	R/Z	-	-
Current I base [V/A×ms]	96	Float	0.1	9999.9	S	V	R/Z	-	-
Flux D book [A \/o]	07				ues \ Flux regulator	•/	D/7		
Flux P base [A/Vs] Flux I base [A/Vs×ms]	97 98	Float Float	0.1 0.01	9999.9 999.99	S S	√ √	R/Z R/Z	-	 -
riux i base [A/VS×IIIS]	90	riuat			llues \ Voltage reg	V	Π/L	-	-
Voltage P base [Vs/V]	1023	Float	0.00001	9.99999	S	V	R/W	-	-
Voltage I base [Vs/V x s]	903	Float	0.00001	9.99999	S	√	R/W	-	-
0 I D. !	0.0			RAMETERS \ II		/	5		
Speed P in use [%]	99	Float Float	0.00	100.00 100.00	S S	√ √	R R	-	-
Speed I in use [%]	100	rioat	0.00	100.00 CONFIGURAT		٧	К		
Main commands	252	U16	0	1	Terminals (0)	V	R/Z	-	-
Terminals					()		0		
Digital							1		
Control mode	253	U16	0	1	Local (0)	√	R/Z	-	-
Local							0		
Bus Speed base value [FF]	45	U32***	1	16383	1500	√	1 R/Z		R
Regulation mode	321	U16	0	3	V/f control (3)	V √	R/Z	-	n -
Sensorless vect		010		U	V/1 Control (C)	'	0		
Self-tuning							1		
Field oriented							2		
V/f control							3		
Full load curr [A]	179	Float	0.10	999.00	S	V	R/Z	-	-
Flt_100_mf	303	l16	0	32767	S	-	R	-	R
Magn ramp time [s]	675	Float	0.01	5.00	1.00	√ √	R/Z	-	-
Magn boost curr [%] Ok relay funct	413 412	U16 I16	10 0	136 1	30 Drive healthy (0)	V √	R/Z R/Z	-	-
Drive healthy Ready to start		110	U	'	Drive fleating (0)	'	0	-	-
Switching freq	240	U16	S	S	S	√	R/Z	-	-
4 KHz							0		
8 KHz							1		
16 KHz							2		
2 KHz					5	/	3		
Qstp opt code Ramp stop	713	l16	-2	-1	Ramp stop (1)	V	R/Z	-	-
DC braking							1 2		
Npar displayed	1291	U16	0	65535	0	V	R/W	-	-
Pword 1 :	85	132	00000	99999	Disabled (0)	√	W	-	-
Enabled							1		
Disabled							0		
				GURATION \ Mo					
Speed fbk sel	414	U16	0	1	Enc.1 (1)		R/Z	ID 	R/W
Encoder 1		l					1	H	
Encoder 1 type	415	l16	0	1	Digital (1)	√	0 R/Z	L	
Encoder 1 type Sinusoidal		110	U	'	Digital (1)	'	R/Z 0	-	-
Digital		l					1		
Encoder 1 pulses	416	Float*	600	9999	1024	V	R/Z	-	R

				Value			Access via		
Parameter	No	Format	min	max	Factory	Keyp.	RS485/ BUS/ Opt2-M	Terminal	Opt2-A /PDC
Enc1 supply vlt	1146	U16	0	3	5.41 V (0)	V	R/Z		
5.41 V							0		
5.68 V 5.91 V							1 2		
6.18 V							3		
Encoder 2 pulses	169	Float*	600	9999	1024	√	R/Z	-	R
Encoder repeat Encoder 2	1054	U16	0	1	Encoder 1 (1)	V	R/Z 0	-	-
Encoder 1							1		
Encoder 1 state Encoder 1 OK	648	U16	0	1	-	-	R 1	QD H	R
Encoder 1 NOT OK							0	L L	
Encoder 2 state	651	U16	0	1	-	-	R	QD	R
Encoder 2 OK							1	Н	
Encoder 2 NOT OK	-	114.0	0	4	Disabled (0)	-/	0	L	
Refresh enc 1 Enabled	649	U16	0	1	Disabled (0)	V	R/W 1	-	-
Disabled							0		
Refresh enc 2	652	U16	0	1	Disabled (0)	V	R/W	-	-
Enabled							1		
Disabled Enable ind store	911	U16	0	1	Disabled (0)	V	0 R/W	-	R/W
Enable and store Enabled		010	U	'	Disabled (0)	v	1	-	I II/ VV
Disabled							0		
Ind store ctrl	912	U16	0	65535	0	_	R/W	-	R/W
Index storing	913	U32	0	2 ³² -1	-	-	R	-	R
aux otomig	010	002	-	FIGURATION \ I	Orive type				
Mains voltage	333	U16	S	2	400 V (1)	V	R/Z	-	-
230 V 400 V 460 V							0 1 2		
Ambient temp [°C] 50°C (122°F) 40°C (104°F)	332	U16	0	1	40°C (1)	V	R/Z 0 1	-	-
Rated drive curr	334	U16	0	16	S	-	R	-	R
7.5							0		
12.6 17.7							1 2		
24.8							3		
33 47							4 5		
63							6		
63 79							7		
93							8		
114 142							9 10		
185							11		
210							12		
250 324							13 14		
485							15		
580							16		
2.4							17 18		
5.6 9.6							19 20		
Continuous curr [A]	802	Float	S	S	S	V	R	-	-
Software version	331	Text			18	V	R R	-	- R
Drive type (AVy)	300	U16	CONFIG	- Buration \ Din			n	-	n
Dim factor num	50	132***	1	65535	1	V	R/Z	-	R
Dim factor den	51	132***	1	2 ³² -1	1	√	R/Z	-	R
Dim factor text	52	Text	CONFIG	URATION \ Fac	rom e value fact	V	R/Z	-	-
Face value num	54	116	1	32767	1	√ (R/Z	-	R
Face value den	53	l16	1	32767	1	√	R/Z	-	R

				Value		1/:-	Access via	Tarrel	Louge
Parameter	No	Format	min	max	Factory	Кеур.	RS485/ BUS/ Opt2-M	Terminal	Opt2-A /PDC
			CONFIGURAT	ION \ Prog alar	ms \ Undervoltage		0 012 111		
Latch (0	357)N FF	U16	0	1	ON (1)	 	R/Z 1 0	-	-
	358)N FF	l16	0	1	ON (1)	V	R/W 1 0	-	-
Restart time [ms]	359	U16	0	65535	1000	V	R/W	-	-
N of attempts	360	U16	0	100	1	V	R/W	-	-
Latch	361	U16	CUNFIGURAL 0	IUN \ Prog ala	rms \ Overvoltage ON (1)	V	R/Z	-	-
()N FF		Ů	'	. ,		1 0	_	
Ok relay open (O	362)N FF	116	0	1	ON (1)	√ V	R/W 1 0	-	-
			CONFIGURATIO	N \ Prog alarn	ıs \ Heatsink sensor				
Activity Warni Disable dri Quick st Normal st Curr lim st	ve op op	U16	1	5	Disable drive (2)	V	R/Z 1 2 3 4 5	-	-
Latch (369)N FF	U16	0	1	ON (1)	V	R/Z 1 0	-	-
Ok relay open (370)N FF	l16	0	1	ON (1)	V	R/W 1 0	-	-
Heatsink tmp thr [*C]	1294	U16	0	255	50	√	R/W	-	-
HS tmp thr state	1295		0	1	0	-	-	-	R
				TION \ Prog ala	rms \ Heatsink ot				
	1152)N FF	l16	0	1	ON (1)	√ 	R/W 1 0	1	-
					rms \ Intake air ot				
Activity Warni Disable dri Quick st Normal st Curr lim st	ve op op	U16	1	5	Disable drive (2)	√	R/Z 1 2 3 4 5	-	-
	1141)N FF	U16	0	1	ON (1)	V	R/Z 1 0	-	-
Ok relay open (1142)N FF	l16	0	1	ON (1)	V	R/W 1 0	1	-
					ms \ Regulation ot		2.0		
Activity Igno Warnii		U16	0	1	Warning (1)	√	R/Z 0 1	-	-
Latch (1149)N FF	U16	0	1	ON (1)	V	R/Z 1 0	-	-
Ok relay open (1150)N FF	l16	0	1	ON (1)	V	R/W 1 0	-	-
			CONFIGURATIO	N∖Prog alarm	s \ Module overtemp				
	1151)N FF	116	0	1	ON (1)	V	R/W 1 0	-	-
					s \ Overtemp motor				
Activity Warnii Disable dri		U16	1	5	Disable drive (2)	√ 	R/Z 1 2	-	-

				Value			Access via		
Parameter	No	Format	min	max	Factory	Кеур.	RS485/ BUS/ Opt2-M	Terminal	Opt2-A /PDC
Quick st Normal st Curr lim st	ор						3 4 5		
Latch	366 ON FF	U16	0	1	ON (1)	V	R/Z 1 0	-	-
Ok relay open	367 ON FF	l16	0	1	ON (1)	V	R/W 1 0	-	-
	11		CONFIGURAT	ION \ Prog alar	ms \ External fault		0		
Activity Warni Disable dr Quick st Normal st Curr lim st	ive op op	U16	1	5	Disable drive (2)	V	R/Z 1 2 3 4 5	-	-
Latch	355 ON FF	U16	0	1	ON (1)	V	R/Z 1 0	-	-
OK relay open	356 DN FF	l16	0	1	ON (1)	V	R/W 1 0	-	-
	0.00	114.0			rms \ Overcurrent		D /7		
	363 ON FF	U16	0	1	ON (1)	√	R/Z 1 0	-	-
	364 ON FF	l16	0	1	ON (1)	V	R/W 1 0	-	-
					ms \ Output stages				
	210 ON FF	U16	0	1	ON (1)	√ 	R/Z 1 0	-	-
OK relay open	211 ON FF	l16	O	1	ON (1)	V	R/W 1 0	-	-
Activity	639	U16	2	TION \ Prog ala 5	rms \ Opt2 failure Disabled drive (2)	V	R/Z	-	-
Disable dr Quick st Normal st Curr lim st	op op				,		2 3 4 5		
OK relay open	640 ON FF	l16	0	1	ON (1)	V	R/W 1 0	-	-
					larms \ Bus loss		- 6		
Activity Warni Disable dr Quick st Normal st Curr lim st	ive op op op	U16	1	5	Disabled drive (2)	√ 	R/Z 1 2 3 4 5	-	-
	633 ON FF	U16	0	1	ON (1)	V	R/Z 1 0	-	-
OK relay open (C	635 ON FF	l16	0	1	ON (1)	√	R/W 1 0	-	-
Hold off time [ms]	636	U16	0	10000	0	√ √	R/W	-	-
Restart time [ms]	637	U16	0 Configurati (10000 ON \ Prog alarn	U ns∖Hw opt1 failure	٧	R/W	-	
Activity Warni	386 ng	U16	1	5	Disabled drive (2)	V	R/Z 1	-	-

No No 387	Format	min	max	Factory	Keyp.	RS485/ BUS/	Terminal	Opt2-A /PDC
387						Opt2-M		
387						2 3 4 5		
	l16	0	1	ON (1)	V	R/W 1 0	-	-
		CONFIGURATI	ON∖Prog alar	ms \ Enable seq err		U		
728	U16	0	2	Disabled drive (2)	V	R/Z 0 2	-	-
	U16	0	1	ON (1)	V	R/Z 1 0	-	-
730	l16	0	1	ON (1)	V	R/W 1	-	-
		CONFICURAT	ION \ Prog ala	rms \ BH overlead		0		
	U16	1	5	Disabled drive (2)	V	R/Z 1 2 3 4 5	-	-
738	l16	0	1	ON (1)	V	R/W 1 0	-	-
		CONFIG	URATION \ Set	serial comm				
		0	127	0	√ /	R/Z	-	<u> </u>
								-
3	010		2	U	ľ	0 1 2	-	
)))	U16	0	4	1	V	R/W 0 1 2 3 4	-	-
d	U16	0	1	0	V	R/W 0 1	-	-
66	1116				1/	D/7		
1 2 5 6 6 7 7 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8						1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16		
	729 730 737 9 9 737 9 9 9 9 9 9 9 9 9 9 9 9 9 9	729 U16 730 I16 737 U16 737 U16 738 I16 738 U16 738 U1				T29		T29

				Value			Access via		
Parameter	No	Format	min	max	Factory	Кеур.	RS485/ BUS/ Opt2-M	Terminal	Opt2-A /PDC
Output voltage							20		
Voltage U							21		
Voltage V							22		
DC link voltage							23		
Analog input 1							24		
Analog input 2							25		
Analog input 3							26		
Flux Active power							27 28		
Torque							20 29		
Rr adap output							30		
Pad 0							31		
Pad 1							32		
Pad 4							33		
Pad 5							34		
Flux reference							35		
Pad 6							38		
PID output							39		
Feed fwd power							78		
Out vlt level							79		
Flux level							80		
F act spd (rpm)							81		
F T curr (%)							82		
Spd draw out							84		
PL next factor							87		
PL active limit							88		
Scale output 1	62	Float	-10.000	10.000	1.000	V	R/W	-	-
Select output 2	67	U16	0	88	T current (14)	V	R/Z	_	-
(Select like output 1)		010			1 ourroint (11)	<u> </u>	11/2		
Scale output 2	63	Float	-10.000	10.000	1.000	V	R/W	-	-
Calant autout O	0.0	HAC			\ Analog output 3	•/	D/7		
Select output 3 (Select like output 1)	68	U16	0	88	Current U (17)	√	R/Z	-	-
Scale output 3	64	Float	-10.000	10.000	1.000	V	R/W	-	
oodio odipat o	01	Hout			\ Analog output 4	· ·	11/ **		
Select output 4	69	U16	0	88	Motor current (16)	$\sqrt{}$	R/Z	-	-
(Select like output 1)					, ,				
Scale output 4	65	Float	-10.000	10.000	1.000	V	R/W	-	-
	70	1140			\ Analog input 1		D./7		
Select input 1	70	U16	0	28	Ramp ref 1 (4)	√	R/Z	-	-
OFF							0		
Jog reference							1		
Speed ref 1 Speed ref 2							2 3		
Ramp ref 1							4		
Ramp ref 2							5		
T current ref 1							6		
T current ref 2							7		
Adap reference							8		
T current lim							9		
T current lim +							10		
T current lim -							11		
Pad 0							12		
Pad 1							13		
Pad 2							14		
Pad 3							15		
Load comp							19		
PID offset 0							21		
PI central v3							22		
PID feed-back							23		
V/f flux level							24		
Flux level			I				25		l .
Out vit level Speed ratio							26 28		

				Value			Access via		
Parameter	No	Format	min	max	Factory	Кеур.	RS485/ BUS/ Opt2-M	Terminal	Opt2-A /PDC
An in 1 target	295	U16	0	1	Assign. (0)	V	R/W	ID	R/W
Assigned Not assigned				·			0	L	.,
Input 1 type	71	U16	0	2	± 10 V (0)	√	R/Z	-	-
-10V + 10 V					, ,		0		
020 mA, 010 V							1		
420 mA							2		
Input 1 sign	389	U16	0	1	Positive (1)	V	R/W	-	R/W
Positive							1		
Negative						,	0		
Scale input 1	72	Float	-10000	10.000	1.000	√ /	R/W	-	-
Tune value inp 1	73	Float	0.1	10.000	1.000	√ /	R/W	-	-
Auto tune inp 1	259	U16	0	65535	-	V	С	-	-
Auto tune	792	1110	0	1000	0	V	1	-	
Input 1 filter [ms] Input 1 compare	1042	U16 I16	-10000	1000	0	V	R/W R/W	-	-
Input 1 compare	1042	U16	0	10000	0	V √	R/W	-	_
Input 1 cp delay	1043	U16	0	65000	0		R/W	-	-
Input 1 cp match	1044	U16	0	1	-	-	R	QD	R
Input 1 not thr.val.	.010						0	L	''
Input 1=thr.val							1	H	
Offset input 1	74	l16	-32768	32767	0	V	R/W	-	-
·			I/O CONFIG		\ Analog input 2				
Select input 2 (Select like Input 1)	75	U16	0	28	OFF (0)	V	R/Z	-	-
An in 2 target	296	U16	0	1	Assign.(0)	V	R/W	ID	R/W
Assigned					3 ()		0	L	
Not assigned							1	Н	
Input 2 type	76	U16	0	2	± 10 V (0)	V	R/Z	-	-
-10V + 10 V							0		
020 mA, 010 V							1		
420 mA							2		
Input 2 sign	390	U16	0	1	Positive (1)	V	R/W	-	R/W
Positive							1		
Negative	_						0		
Scale input 2	77	Float	-10000	10.000	1.000	√ /	R/W	-	-
Tune value inp 2	78	Float	0.1	10.000	1.000	√ /	R/W	-	-
Auto tune inp 2	260	U16	0	65535	-	V	С	-	-
Auto tune	79	14.0	-32768	32767	0	V	1		-
Offset input 2	79	l16			\ Analog input 3	V	R/W	-	-
Select input 3	80	U16	0	28	OFF (0)	V	R/Z	-	_
(Select like Input 1)		0.0		20	011 (0)		1,72		
An in 3 target	297	U16	0	1	Assign. (0)	V	R/W	ID	R/W
Assigned					3 (3)		0	L	'
Not assigned							1	Н	
Input 3 type	81	U16	0	2	± 10 V (0)	V	R/Z	-	-
-10V + 10 V							0		
020 mA, 010 V							1		
420 mA	-						2		
Input 3 sign	391	U16	0	1	Positive (1)	V	R/W	-	R/W
Positive							1		
Negative		F1 :	40000	40.000	1 000	/	0		
Scale input 3	82	Float	-10000	10.000	1.000	√ √	R/W	-	-
Tune value inp 3	83	Float	0.1	10.000	1.000	√ √	R/W	-	-
Auto tune inp 3	261	U16	0	65535	-	V	C	-	-
Auto tune Offset input 3	84	l16	-32768	32767	0	√	1 R/W	-	-
onset input s	04	110	-32100 1/0 1	CONFIG \ Digita		٧	∩/ V V		
Digital output 1	145	U16	0	63	Ramp + (8)	V	R/Z	-	-
OFF		"."					0		
Speed zero thr							1		
Spd threshold							2		
3 թա և և և բջությա									
Set speed							3		

				Value			Access via		
Parameter	No	Format	min	max	Factory	Кеур.	RS485/ BUS/ Opt2-M	Terminal	Opt2-A /PDC
Drive ready							5		
Overld available							6		
Ramp +							8		
Ramp -							9		
Speed limited							10		
Undervoltage							11		
Overvoltage							12 13		
Heatsink sensor Overcurrent							13 14		
Overtemp motor							15		
External fault							16		
Failure supply							17		
Pad A bit							18		
Pad B bit							19		
Virt dig input							20		
Speed fbk loss							25		
Bus loss							26		
Output stages							27		
Hw opt 1 failure							28		
Opt 2 failure							29		
Encoder 1 state							30		
Encoder 2 state							31		
Ovld mot state							32		
Enable seq err							35		
BU overload							36		
Diameter calc st							38		
Mot setup state							46		
Input 1 cp match							49		
Overload 200%							51		
PL stop active							52		
PL next active							53		
PL time-out sig							54		
Regulation ot							55		
Module overtemp.							56		
Heatsink ot							57		
Intake air ot							62		
Heatsink tmp thr	4.40	114.0	0	00	D (0)	/	63		-
Digital output 2	146	U16	0	63	Ramp - (9)	√	R/Z	-	
(Select like output 1)		114.0	0	00	On dithernal hald (O)	√	D/7		-
Digital output 3	147	U16	0	63	Spd threshold (2)	l v	R/Z	-	
(Select like output 1)		114.0	0	00	0	-/	D /7		
Digital output 4	148	U16	0	63	Overld available (6)	V	R/Z	-	-
(Select like output 1)		114.0	0	00	Oran lineit etete (4)	-/	D/7		
Digital output 5	149	U16	0	63	Curr limit state (4)	√	R/Z	-	-
(Select like output 1)	150	1116	0	60	Over veltage (10)	V	D/7		
Digital output 6		U16	U	63	Over-voltage (12)	l v	R/Z	-	-
(Select like output 1)	151	111.0	0	CO	Under veltage (11)	√	D /7		
Digital output 7		U16	0	63	Under-voltage (11)	l v	R/Z	-	-
(Select like output 1) Digital output 8	152	111.0	0	CO	Over everent (1.4)	√	D/7		
= :		U16	0	63	Over-current (14)	l '	R/Z	-	-
(Select like output 1) Relay 2	629	U16	0	63	Speed zero thr (1)	V	R/Z	83-85	-
(Select like output 1)		010	0	03	Speed Zeio IIII (1)	'	11/2	03-03	-
(Ocidet like output 1)			1/0	CONFIG \ Digit	al inputs				
Digital input 1	137	U16	0	67	OFF (0)	V	R/Z	-	-
OFF				j.			0		
Motor pot reset							1		
Motor pot up					1		2		
Motor pot down					1		3		
Motor pot sign +					1		4		
Motor pot sign -					1		5		
Jog +					1		6		
Jog -					1		7		
559		1	1		I .	1	8		I

141

Ch.8

				Value			Access via		
Parameter	No	Format	min	max	Factory	Кеур.	RS485/ BUS/ Opt2-M	Terminal	Opt2-A /PDC
Torque reduct							9		
Ramp out $= 0$							10		
Ramp in $= 0$							11		
Freeze ramp							12		
Lock speed reg							13		
Lock speed I							14		
Auto capture							15		
Input 1 sign +							16		
Input 1 sign -							17		
Input 2 sign +							18		
Input 2 sign -							19		
Input 3 sign +							20		
Input 3 sign –							21		
Zero torque							22		
Speed sel 0							23		
Speed sel 1		l					24		
Speed sel 2							25		
Ramp sel 0		l					26		
Ramp sel 1							27		
Speed fbk sel							28		
PAD A bit 0		l					32		
PAD A bit 1		l					33		
PAD A bit 2		l					34		
PAD A bit 3		l					35		
PAD A bit 4							36		
PAD A bit 5		l					37		
PAD A bit 6							38		
PAD A bit 7							39		
Fwd sign		l					44		
Rev sign							45		
An in 1 target							46		
An in 2 target		l					47		
An in 3 target							48		
Enable droop							49		
Quick stop							51		
Enable PI PID							52		
Enable PD PID							53		
PI int freeze PID							54		
PID offs. sel		l					55		
PI central v s0							56		
PI central v s1						1	57		
Diameter calc							58		
Lock zero pos						1	59		
Lock save eng						1	60		
Mot setup sel 0							62		
PL mains status		l					66		
PL time-out ack		l					67		
Digital input 2	138	U16	0	67	OFF (0)	V	R/Z	-	-
(Select like input 1)		<u> </u>							
Digital input 3	139	U16	0	67	OFF (0)	V	R/Z	-	-
(Select like input 1)									
Digital input 4	140	U16	0	67	OFF (0)	V	R/Z	-	-
(Select like input 1)		<u> </u>							
Digital input 5	141	U16	0	67	OFF (0)	√	R/Z	-	-
(Select like input 1)		<u> </u>							
Digital input 6	142	U16	0	67	OFF (0)	V	R/Z	-	-
(Select like input 1)		<u> </u>							
Digital input 7	143	U16	0	67	OFF (0)	V	R/Z	-	-
(Select like input 1)		<u> </u>				<u></u>			
Digital input 8	144	U16	0	67	OFF (0)	V	R/Z	-	-
(Select like input 1)	I	l	1			1			1

				Value			Access via		
Parameter	No	Format	min	max	Factory	Кеур.	RS485/ BUS/ Opt2-M	Terminal	Opt2-A /PDC
Select enc 1	1000	U16		ONFIG \ Encod		V	D/7		
Select enc 1 OFF	1020	016	0	5	OFF (0)	l v	R/Z 0	-	-
Speed ref 1							2		
Speed ref 2							3		
Ramp ref 1							4		
Ramp ref 2							5		
Select enc 2	1021	U16	0	5	OFF (0)	√	R/Z	-	-
OFF							0		
Speed ref 1							2		
Speed ref 2							3		
Ramp ref 1							4		
Ramp ref 2	415	116	0	1	Digital (1)	V	5 D/7		-
Encoder 1 type Sinusoidal	415	110	U	'	Digital (1)	l v	R/Z 0	-	-
Digital							1		
Encoder 1 pulses	416	Float*	600	9999	1024	√	R/Z	_	R
Encoder 2 pulses	169	Float*	600	9999	1024	√	R/Z		R
Refresh enc 1	649	U16	0	1	Disabled (0)	√	R/W	-	- · ·
Enabled				·			1		
Disabled							0		
Refresh enc 2	652	U16	0	1	Disabled (0)	V	R/W	-	-
Enabled					,		1		
Disabled							0		
				ADD SPEED FU		,			
Auto capture	388	U16	0	1	OFF (0)	√	R/W	ID	-
ON							1	H	
OFF			Ann en	PEED FUNCT \ A	dan end rog		0	L	
Enable spd adap	181	U16	0	1	Disabled (0)	V	R/Z	-	-
Enabled		0.0	Ü	·	Biodbiod (0)	`	1		
Disabled							0		
Sel adap type	182	U16	0	1	Speed (0)	√	R/Z	-	-
Speed					. , ,		0		
Adap reference							1		
Adap reference [FF]	183	l16	-32768	32767	1000	√	R/W	IA	R/W
Adap speed 1 [%]	184	Float	0.0	200.0	20.3	√	R/W	-	<u> </u>
Adap speed 2 [%]	185	Float	0.0	200.0	40.7	√ /	R/W	-	-
Adap joint 1 [%]	186	Float	0.0	200.0	6.1	√ /	R/W	-	-
Adap joint 2 [%] Adap P gain 1 [%]	187	Float	0.0	200.0	6.1	√ √	R/W	-	-
Adap I gain 1 [%]	188 189	Float Float	0.00	100.00 100.00	10.00 1.00	V √	R/W R/W	-	
Adap P gain 2 [%]	190	Float	0.00	100.00	10.00	V √	R/W		
Adap I gain 2 [%]	191	Float	0.00	100.00	1.00	√	R/W		
Adap P gain 3 [%]	192	Float	0.00	100.00	10.00	√	R/W	_	-
Adap I gain 3 [%]	193	Float	0.00	100.00	1.00	√	R/W	-	-
and a feel				EED FUNCT \ S			,		
Spd threshold + [FF]	101	U16	1	32767	1000	V	R/W	-	-
Spd threshold - [FF]	102	U16	1	32767	1000	V	R/W	-	-
Threshold delay [ms]	103	U16	0	65535	100	√	R/W	-	-
Spd threshold	393	U16	0	1		-	R	QD	R
Speed exceeded							0	L	
Speed not exceeded		1110	4	20767	100	√	1 D/W	Н	
Set error [FF] Set delay [ms]	104 105	U16 U16	1 0	32767 65535	100 100	√ √	R/W	-	-
Set speed	394	U16	0	1	100	- V	R/W R	QD	R
Speed not ref. val.	394	010	U				К 0	ŲD L	I N
Speed not ref. val.							1	Н	
opecu = Iei. Val.			ADD S	PEED FUNCT \	Speed zero				
Speed zero level [FF]	107	U16	1	32767	10	V	R/W	-	-
Speed zero delay [ms]	108	U16	0	65535	100	V	R/W	-	-
Spd zero thr	395	U16	0	1		-	R	QD	R
Drive not rotating							0	L	
Drive rotating							1	Н	

				Value			Access via		
Parameter	No	Format			-	Keyp.	RS485/	Terminal	Opt2-A
			min	max	Factory		BUS/ Opt2-M		/PDC
			Fl	JNCTIONS \ Mo	tor pot		ΟριΖ-ΙνΙ		
Enab motor pot	246	l16	0	1	Disabled (0)	V	R/Z	-	-
Enabled							1		
Disabled						,	0		
Motor pot oper	-	14.0	0		D	√		- ID	-
Motor pot sign Positive	248	l16	0	1	Positive (1)		R/W	ID	-
Negative	1						1 0		
Motor pot reset	249	U16	0	65535		√	Z/C	ID H=reset	_
Motor pot up	396	U16	0	1	No acc. (0)	-	R/W	ID	R/W
No acceleration					()		0	L	
Acceleration							1	Н	
Motor pot down	397	U16	0	1	No dec. (0)	-	R/W	ID	R/W
No deceleration							0	L	
Deceleration			FILE	IOTIONO \ Iom	hun akin n		1	Н	
Enable iog	244	l16	0 0	NCTIONS \ Jog 1	Enabled (1)	V	D/7		
Enable jog Enabled		110	U	ı	Ellabled (1)	·	R/Z 1	-	-
Disabled							0		
Jog operation	-					V	-	-	-
Jog selection	375	U16	0	1	Spd inp. (0)	V	R/Z	-	-
Speed input							0		
Ramp input							1		
Jog reference [FF]	266	l16	0	32767	100	√	R/W	IA	-
Jog +	398	U16	0	1	No jog+ (0)	-	R/W	ID	R/W
No jog forward							0	L	
Forward jog Jog -	399	U16	0	1	No jog- (0)		1 R/W	H ID	R/W
No backward jog		010	U	'	140 Jug- (0)		0	L	11/ VV
Backward jog							1	H	
, ,			FUN	CTIONS \ Multi	speed fct				
Enab multi spd	153	I16	0	1	Disabled (0)	$\sqrt{}$	R/Z	-	-
Enabled							1		
Disabled		114.0	0	7	0	V	0		D/M
Multi speed sel Multi speed 1 [FF]	208 154	U16 I16	-32768	32767	0	V	R/W R/W	-	R/W
Multi speed 2 [FF]	155	I16	-32768	32767	0	√	R/W	_	-
Multi speed 3 [FF]	156	I16	-32768	32767	0	√	R/W	-	-
Multi speed 4 [FF]	157	I16	-32768	32767	0	√	R/W	-	-
Multi speed 5 [FF]	158	I16	-32768	32767	0	V	R/W	-	-
Multi speed 6 [FF]	159	l16	-32768	32767	0	V	R/W	-	-
Multi speed 7 [FF]	160	I16	-32768	32767	0	V	R/W	-	-
Speed sel 0	400	U16	0	1	Not sel. (0)	-	R/W	ID .	R/W
Value 2 ⁰ not selected							0	L	
Value 2 ⁰ selected Speed sel 1	401	U16	0	1	Not sel. (0)		1 R/W	H ID	R/W
Value 2 ¹ not selected		010	U	'	NOT SEL. (U)	-	0	L	IT/ VV
Value 2 Hot selected Value 2 ¹ selected							1	Н	
Speed sel 2				- 1	Not sel. (0)		R/W	ID	R/W
		1116	()						
Value 2 ² not selected	402	U16	0	1	1101 561. (0)	-			
Value 2 ² not selected Value 2 ² selected	402	U16	0	'	NOT 561. (U)		0	L	
Value 2 ² selected	402	U16		CTIONS \ Multi			0		
Value 2 ² selected Enab multi rmp	402 243	U16 I16					0	L	-
Value 2 ² selected Enab multi rmp Enabled	243		FUN	CTIONS \ Multi	ramp fct		0 1 R/Z 1	L H	-
Value 2 ² selected Enab multi rmp Enabled Disabled	243	l16	FUN 0	CTIONS \ Multi 1	ramp fct Disabled (0)		0 1 R/Z 1 0	L H -	·
Value 2 ² selected Enab multi rmp Enabled	243	I16 U16	FUN 0	CTIONS \ Multi	ramp fct Disabled (0)	V	0 1 R/Z 1	L H	- R/W
Value 2 ² selected Enab multi rmp Enabled Disabled Multi ramp sel	243	U16 FU	FUN 0 0 NCTIONS \ Mu	CTIONS \ Multi 1 3 ti ramp fct \ Ra	ramp fct Disabled (0) 0 mp 0 \ Acceleration	√ 0	0 1 R/Z 1 0 R/W	L H -	- R/W
Value 2 ² selected Enab multi rmp Enabled Disabled Multi ramp sel Acc delta speed0 [FF]	243 202 659	U16 FU U32	FUN 0 0 NCTIONS \ Mu	CTIONS \ Multi 1 3 ti ramp fct \ Ra 2 ³² -1	ramp fct Disabled (0)	V	0 1 R/Z 1 0 R/W	L H -	·
Value 2 ² selected Enab multi rmp Enabled Disabled Multi ramp sel Acc delta speed0 [FF] Acc delta time 0 [s]	243	U16 FU	FUN 0 0 NCTIONS \ Mu	CTIONS \ Multi 1 3 ti ramp fct \ Ra	ramp fct Disabled (0) 0 mp 0 \ Acceleration 100	√ 0 √	0 1 R/Z 1 0 R/W	L H -	- R/W
Value 2 ² selected Enab multi rmp Enabled Disabled Multi ramp sel Acc delta speed0 [FF]	243 202 659 660	U16 FU U32 U16 Float	FUN 0 0 NCTIONS\Mu 0 0 100	3 ti ramp fct \ Ra 2 ³² -1 65535 3000	ramp fct Disabled (0) 0 mp 0 \ Acceleration 100 1	√ 0 √ √	0 1 R/Z 1 0 R/W	- -	- R/W
Value 2 ² selected Enab multi rmp Enabled Disabled Multi ramp sel Acc delta speed0 [FF] Acc delta time 0 [s]	243 202 659 660	U16 FU U32 U16 Float	FUN 0 0 NCTIONS\Mu 0 0 100	3 ti ramp fct \ Ra 2 ³² -1 65535 3000	ramp fct Disabled (0) 0 mp 0 \ Acceleration 100 1 500	√ 0 √ √	0 1 R/Z 1 0 R/W	- -	- R/W
Value 2 ² selected Enab multi rmp Enabled Disabled Multi ramp sel Acc delta speed0 [FF] Acc delta time 0 [s] S acc t const 0 [ms]	243 202 659 660 665	U16 FU U32 U16 Float	O O O O O O O O O O O O O O O O O O O	CTIONS \ Multi 1 3 ti ramp fct \ Ra 2 ³² -1 65535 3000 ti ramp fct \ Ra	ramp fct Disabled (0) 0 mp 0 \ Acceleration 100 1 500 mp 0 \ Deceleration	0 √ √ √ √ √ 0 0	0 1 R/Z 1 0 R/W R/W	- - -	- R/W - -

				Value			Access via		
Parameter	No	Format	min	max	Factory	Кеур.	RS485/ BUS/ Opt2-M	Terminal	Opt2-A /PDC
Acc delta speed1 [FF]	23	U32	NCTIONS \ Mu 0	Iti ramp fct \ Ra 2 ³² -1	amp 1 \ Acceleration	1 √	R/W	_	_
Acc delta time 1 [s]	24	U16	0	65535	1	\ \	R/W		-
S acc t const 1 [ms]	667	Float	100	3000	500	√	R/W	-	-
		FU			mp 1 \ Deceleration				
Dec delta speed1 [FF]	31	U32	0	2 ³² -1	100	V	R/W	-	-
Dec delta time 1 [s]	32	U16	0	65535	1	√	R/W	-	-
S dec t const 1 [ms]	668	Float	100	3000	500 amp 2 \ Acceleration 2	√ 2	R/W	-	-
Acc delta speed2 [FF]	25	U32	0	2 ³² -1	100		R/W	-	-
Acc delta time 2 [s]	26	U16	0	65535	1	√	R/W	-	-
S acc t const 2 [ms]	669	Float	100	3000	500	√	R/W	-	-
		FU	NCTIONS \ Mu		amp 2 \ Deceleration	2			
Dec delta speed2 [FF]	33	U32	0	2 ³² -1	100	√	R/W	-	-
Dec delta time 2 [s]	34	U16	0	65535	1	√	R/W	-	-
S dec t const 2 [ms]	670	Float	100	3000	500	√	R/W	-	-
Acc delta speed3 [FF]	27	U32	NCTIONS \ MU 0	2 ³² -1	amp 3 \ Acceleration 3	ა √	R/W	_	_
Acc delta time 3 [s]	28	U32 U16	0	65535	100	V	R/W	-	-
S acc t const 3 [ms]	671	Float	100	3000	500		R/W		-
	J, 1				amp 3 \ Deceleration		. 4 **		
Dec delta speed3 [FF]	35	U32	0	2 ³² -1	100	√	R/W	-	-
Dec delta time 3 [s]	36	U16	0	65535	1	√	R/W	-	-
S dec t const 3 [ms]	672	Float	100	3000	500	√	R/W	-	-
Ramp sel 0 Value 2 ⁰ not selected Value 2 ⁰ selected		U16	0	1	Not sel. (0)	-	R/W 0 1	ID L H	R/W
Ramp sel 1 Value 2 ¹ not selected Value 2 ¹ selected	404	U16	0	1 NCTIONS \ Stop	Not sel. (0)	-	R/W 0 1	ID L H	R/W
Stop mode	626	U16	0	3	1	V	R/Z	-	-
OFF Stop & Speed 0 Fast stp & Spd 0 Fst / stp & spd 0					_		0 1 2 3		
Spd 0 trip delay [ms]	627	U16	0	40000	0	√	R/W	-	-
Jog stop control ON OFF		U16	0	1	OFF (0)	V	R/Z 1 0	-	-
On and makin	1017	14.0		NCTIONS \ Spe		./	D/M	1.0	D/M
Speed ratio Spd draw out (d)	1017 1018	I16 I16	0 -32767	32767 32767	10000	√ √	R/W R	QA	R/W R
Spd draw out (%)	1019	Float	-200.0	+200.0	-	√	R	- -	-
opa aran oat (10)	1010	11041		NCTIONS \ Mot	or setup				
Mot setup sel Setup 0 Setup 1	943	U16	0	1	Setup 0 (0)	V	R/Z 0 1	-	R/W
Mot setup sel 0 Value 2° not sel Value 2° sel		U16	0	1	Not sel (0)	-	R/Z 0 1	ID L H	R/W
Copy mot setup Setup 0	941	U16	0	1	Setup 0 (0)	V	R/Z 0 1	-	·
Setup 1 Mot setup state Not running Running		U16	0	1	0	-	R 0 1	QD L H	R
Actual mot setup Setup 0 Setup 1	942	U16	0	1	Setup 0 (0)	√	R 0 1	<u>-</u>	R
			FUNCTIONS	Overload cont	r \ Ovld mot contr				
Motor cont curr [%]	656	U16	50	100	100	√	R/W	-	-
Trip time 50% [s]	657	U16	0	120	60	√	R/W	-	T -

				Value			Access via		
Parameter	No	Format	min	may	Factory	Keyp.	RS485/ BUS/	Terminal	Opt2-A /PDC
			111111	max	ractory		Opt2-M		/ ۲ D G
Ovld mot state	658	U16	0	1	Not ovrl (1)	-	R	QD	R
Overload							0	L	
Not overload			EUNCTIONS	Overleed cont	r \ Ovid drv contr		1	Н	
I sgrt t accum [%]	655	U16	0	100	o Via arv Contr	V	R	_	R
Ovld Available	406	U16	0	1	-	-	R	QD	R
Overload not possible		0.0	ŭ	·			0	L	
Overload possible							1	Н	
Overload 200%	1139	U16	0	1	-	-	R	QD	R
Overload not possible							0	L	
Overload possible			F1	INOTIONS \ Dec	lea conità		1	Н	
Enable BU	736	U16	0 0	JNCTIONS \ Bra 1	Disabled (0)	V	R/W		_
Enabled		010	U	'	Disabled (0)	'	1	-	-
Disabled							0		
BU ovld time [s]	740	Float	0.10	50.00	S	V	R/W		
BU duty cycle [%]	741	U16	1	75	S	V	R/W	-	-
BU DC vlt [V]	801	U16	0	2	1	√	R/W	-	-
230							0		
400							1		
460			EIIN	CTIONS \ Pwr Io	nee etan f		2		
PL stop enable	1083	U16	0 0	2	0 0	V	R/W	-	-
Disabled		010	O	_	Ü	'	0		
Enabled as Mst							1		
Enabled as Slv							2		
PL stop t limit [%]	1082	U16	0	F	100	$\sqrt{}$	R/W	-	-
PL stop acc [rpm/s]	1080	U32	0	99999999	100	V	R/W	-	-
PL stop dec [rpm/s]	1081	U32	0	10000	10000	√	R/W	-	-
PL stop vdc ref [V]	1084	U16	0	800	646	√ /	R/W	-	-
PL time-out [s]	1087 1086	U16 Float	0.00	65535 100.00	10 5.00	√ √	R/W R/W	-	-
PL stop P Gain [%] PL stop I Gain [%]	1085	Float	0.00	100.00	0.30	V	R/W	-	
PL stop realing	1088	U16	0.00	1	Not active (0)	√	R	-	R
Not active		0.0	· ·	·	(0)		0		"
Active							1		
PL active limit [%]	1089		-	-	-	V	R	-	-
PL next active	1090	U16	0	1	Not active (0)	V	R	-	R
Not active							0		
Active		140	0	00707	10000	√	1		
PL next factor PL time-out sig	1091 1093	I16 U16	0	32767 1	10000 Not active (0)	V √	R R	-	R R
Not active		010	U	'	Not active (0)	'	0	-	11
Active							1		
PL time-out ack	1094	U16	0	1	Not acknowledged	√	R/W	-	R/W
Not acknowledged					(0)		0		
Acknowledged						,	1		
PL mains status	1092	U16	0	1	Not ok (0)		R/W	-	R/W
Not ok Ok							0 1		
ÜK			FUN	ICTIONS \ VDC	control f		ı		
VDC Ctrl P Gain [%]	1289	Float	0.00	100	10	V	R/W	-	-
VDC Ctrl I Gain [%]	1290	Float	0.00	100	10	V	R/W	-	-
		1115		UNCTIONS \ Te		/	- /-		
Gen access	58	U16	0	4	Not conn. (0)	√	R/Z	-	-
Not connected F current ref							0		
T current ref							1 2		
Flux ref							3		
Ramp ref							4		
Gen frequency [Hz]	59	Float	0.1	62.5	1.0	V	R/W	-	-
Gen amplitude [%]	60	Float	0.00	200.00	0.00	$\sqrt{}$	R/W	-	-
	61	Float	-200.00	200.00	0.00	√	R/W		

				Value			Access via		
Parameter	No	Format				Keyp.	RS485/	Terminal	Opt2-A
i didiliotoi	110	Tomat	min	max	Factory		BUS/		/PDC
				SPEC FUNCTION	INS		Opt2-M		
Enable rr adap	435	U16	0	1	Disabled (0)	$\sqrt{}$	R/W	=	-
Enabled					(-,		1		
Disabled	l						0		
Save parameters	256	U16	0	65535		√	С	-	
Load default	258	U16	0	65535		√	Z/C	-	-
Life time [h.min]	235	Float	0.00	65535.00		√ /	R	-	-
Failure register	-					√	R	-	-
Failure text	327	Text	0	CEEDE		-	R	-	-
Failure hour Failure min	328 329	U16 U16	0	65535 59		-	R R	-	-
Failure code	417	U16	0	65535		-	R	-	
No failure		010	U	03333			0000h	_	_
Overcurren							2300h		
Overvoltage							3210h		
Undervoltage							3220h		
Heatsink sensor							4210h		
Heatsink of	t						4211h		
Regulation of	t						4212h		
Module overtemp							4213h		
Intake air o							4214h		
Overtemp motor							4310h		
Failure supply							5100h		
Curr fbk loss							5210h		
Output stages							5410h		
DSP error							6110h		
Interrupt error							6120h		
BU overload							7110h		
Speed fbk loss Opt2							7301h 7400h		
Hw Opt 1failure							740011 7510h		
Bus loss							8110h		
External fault							9000h		
Enable seg en							9009h		
Pointer	330	U16	1	10	10	-	R/W	-	-
Failure reset	262	U16	0	65535		√	Z/C	ID	W
								H=reset	
Failure reg del	263	U16	0	65535			С	-	-
DC broking mode	904	1116		FUNCTIONS \ [OC braking 0		D/7		
DC braking mode Enabled		U16	0	1	U	ı v	R/Z	-	-
Disabled							1 0		
Brk time @ stop [ms]	905	U16	0	30000	1000	V	R/W	_	
DC braking curr [%]	717	U16	0	100	50	√	R/W		-
DC braking delay [ms]	716	U16	0	65535	500	· √	R/W	_	-
Do braining dolay [mo]	110	010		UNCTIONS \ Li		·	19 **		
Source	484	U16	0	65535	0	$\sqrt{}$	R/W	-	-
				CEEOE	0	√	R/W	_	-
Destination	485	U16	0	65535	0		1 1/ V V		
			0 -10000	10000	1	V √	R/W	-	-
Destination Mul.Gain	485	U16 Float Float	-10000 -10000	10000 10000		√ √	R/W R/W		-
Destination Mul.Gain Div.Gain	485 486	U16 Float	-10000 -10000 -2 ³¹	10000 10000 2 ³¹ -1	1 1 0	√ √ √	R/W	-	
Destination Mul.Gain Div.Gain Input max	485 486 487	U16 Float Float	-10000 -10000 -2 ³¹ -2 ³¹	10000 10000 2 ³¹ -1 2 ³¹ -1	1 1	√ √ √ √	R/W R/W	-	-
Destination Mul.Gain Div.Gain Input max Input min	485 486 487 488	U16 Float Float Float	-10000 -10000 -2 ³¹ -2 ³¹ -2 ³¹	10000 10000 2 ³¹ -1 2 ³¹ -1 2 ³¹ -1	1 1 0	√ √ √ √	R/W R/W R/W	- -	-
Destination Mul.Gain Div.Gain Input max Input min Input offset	485 486 487 488 489	U16 Float Float Float Float	-10000 -10000 -2 ³¹ -2 ³¹	10000 10000 2 ³¹ -1 2 ³¹ -1	1 1 0 0 0	\frac{}{}	R/W R/W R/W	- - -	- - -
Destination	485 486 487 488 489 490	U16 Float Float Float Float Float Float	-10000 -10000 -2 ³¹ -2 ³¹ -2 ³¹	10000 10000 2 ³¹ -1 2 ³¹ -1 2 ³¹ -1	1 1 0 0	√ √ √ √	R/W R/W R/W R/W	- - -	- - -
Destination Mul. Gain Div. Gain Input max Input min Input offset Output offset Input absolute ON	485 486 487 488 489 490 491 492	U16 Float Float Float Float Float Float Float Float	$ \begin{array}{r} -10000 \\ -10000 \\ -2^{31} \\ -2^{31} \\ -2^{31} \\ -2^{31} \end{array} $	10000 10000 2 ³¹ -1 2 ³¹ -1 2 ³¹ -1	1 1 0 0 0	\frac{}{}	R/W R/W R/W R/W R/W R/W R/W	- - -	- - -
Destination Mul. Gain Div. Gain Input max Input min Input offset Output offset Input absolute	485 486 487 488 489 490 491 492	U16 Float Float Float Float Float Float Float Float	$ \begin{array}{r} -10000 \\ -10000 \\ -2^{31} \\ -2^{31} \\ -2^{31} \\ -2^{31} \\ 0 \end{array} $	10000 10000 2 ³¹ -1 2 ³¹ -1 2 ³¹ -1 1	1 1 0 0 0 0 0 0 OFF (0)	\frac{}{}	R/W R/W R/W R/W R/W R/W	- - -	- - -
Destination Mul.Gain Div.Gain Input max Input min Input offset Output offset Input absolute OFF	485 486 487 488 489 490 491 492	U16 Float Float Float Float Float Float Float U16	-10000 -10000 -2 ³¹ -2 ³¹ -2 ³¹ -2 ³¹ 0	10000 10000 2 ³¹ -1 2 ³¹ -1 2 ³¹ -1 1	1 1 0 0 0 0 0 OFF (0)	\frac{}{}	R/W R/W R/W R/W R/W R/W 0		-
Destination Mul. Gain Div. Gain Input max Input min Input offset Output offset Input absolute OFF	485 486 487 488 489 490 491 492	U16 Float Float Float Float Float Float Float U16	-10000 -10000 -2 ³¹ -2 ³¹ -2 ³¹ -2 ³¹ 0	10000 10000 2 ³¹ -1 2 ³¹ -1 2 ³¹ -1 1	1 1 0 0 0 0 0 OFF (0)	\frac{1}{\sqrt{1}} \frac{1}{\sqr	R/W R/W R/W R/W R/W R/W 1 0		-
Destination Mul. Gain Div. Gain Input max Input min Input offset Output offset Input absolute ON OFF	485 486 487 488 489 490 491 492 553 554	U16 Float Float Float Float Float Float U16 U16	-10000 -10000 -2 ³¹ -2 ³¹ -2 ³¹ -2 ³¹ 0	10000 10000 2 ³¹ -1 2 ³¹ -1 2 ³¹ -1 1 1	1 1 0 0 0 0 0 0 0FF (0)	\frac{}{} \frac\	R/W R/W R/W R/W R/W R/W 1 0		
Destination Mul. Gain Div. Gain Input max Input min Input offset Output offset Input absolute ON OFF Source Destination Mul. Gain	485 486 487 488 489 490 491 492 553 554 555	U16 Float Float Float Float Float Float U16 U16 Float	-10000 -10000 -2 ³¹ -2 ³¹ -2 ³¹ -2 ³¹ 0 SPEC F 0 0 -10000	10000 10000 2 ³¹ -1 2 ³¹ -1 2 ³¹ -1 1 1 1 UNCTIONS \ Li 65535 65535 10000	1 1 0 0 0 0 0 0 0FF (0)	\frac{}{}	R/W R/W R/W R/W R/W R/W 1 0 R/W R/W		
Destination Mul. Gain Div. Gain Input max Input min Input offset Output offset Input absolute ON OFF	485 486 487 488 489 490 491 492 553 554	U16 Float Float Float Float Float Float U16 U16	-10000 -10000 -2 ³¹ -2 ³¹ -2 ³¹ -2 ³¹ 0	10000 10000 2 ³¹ -1 2 ³¹ -1 2 ³¹ -1 1 1	1 1 0 0 0 0 0 0 0FF (0)	\frac{}{} \frac\	R/W R/W R/W R/W R/W R/W 1 0		

				Value			Access via		
Parameter	No	Format	min	max	Factory	Кеур.	RS485/ BUS/ Opt2-M	Terminal	Opt2-A /PDC
Input offset	559	Float	-2 ³¹	2 ³¹ -1	0	√	R/W	-	-
Output offset	560	Float	-2 ³¹	2 ³¹ -1	0	√	R/W	-	-
Input absolute	561	U16	0	1	OFF (0)	√	R/W	_	-
	ON				211 (2)		1		
	OFF						0		
				JNCTIONS \ Pa			- 4		
Pad 0	503	I16	-32768	32767	0	√ /	R/W	IA, QA	R/W
Pad 1	504	I16	-32768	32767	0	√ √	R/W	IA, QA	R/W
Pad 2 Pad 3	505 506	I16 I16	-32768 -32768	32767 32767	0	V √	R/W R/W	IA IA	R/W R/W
Pad 4	507	I16	-32768	32767	0	√	R/W	QA	R/W
Pad 5	508	I16	-32768	32767	0	· √	R/W	QA	R/W
Pad 6	509	I16	-32768	32767	0	√	R/W	QA	R/W
Pad 7	510	I16	-32768	32767	0	V	R/W	-	R/W
Pad 8	511	I16	-32768	32767	0	√	R/W	-	R/W
Pad 9	512	I16	-32768	32767	0	√	R/W	-	R/W
Pad 10	513	l16	-32768	32767	0	V	R/W		R/W
Pad 11	514	I16	-32768	32767	0	√	R/W	-	R/W
Pad 12	515	I16	-32768	32767	0	V	R/W	-	R/W
Pad 13	516	I16	-32768	32767	0	V	R/W	-	R/W
Pad 14	517	I16	-32768	32767	0	V	R/W	-	R/W
Pad 15	518	I16	-32768	32767	0	√ /	R/W	-	R/W
Bitword Pad A	519	U16	0	65535	0	V	R/W	ID*, QD*	R/W
Pad A Bit 0	520 521	U16	0	1	0	-	R/W	ID, QD	R/W
Pad A Bit 1 Pad A Bit 2	521	U16 U16	0	1	0	-	R/W R/W	ID, QD ID, QD	R/W R/W
Pad A Bit 3	523	U16	0	1	0	-	R/W	ID, QD	R/W
Pad A Bit 4	524	U16	0	1	0		R/W	ID, QD	R/W
Pad A Bit 5	525	U16	0	1	0	-	R/W	ID, QD	R/W
Pad A Bit 6	526	U16	0	1	0	-	R/W	ID, QD	R/W
Pad A Bit 7	527	U16	0	1	0	-	R/W	ID, QD	R/W
Pad A Bit 8	528	U16	0	1	0	-	R/W	QD*	-
Pad A Bit 9	529	U16	0	1	0	-	R/W	QD*	-
Pad A Bit 10	530	U16	0	1	0	-	R/W	QD*	-
Pad A Bit 11	531	U16	0	1	0	-	R/W	QD*	-
Pad A Bit 12	532	U16	0	1	0	-	R/W	QD*	-
Pad A Bit 13	533	U16	0	1	0	-	R/W	QD*	-
Pad A Bit 14	534	U16	0	1	0	-	R/W	QD*	-
Pad A Bit 15	535	U16	0	1	0	/	R/W	QD*	- D/M
Bitword Pad B Pad B Bit 0	536 537	U16	0	65535	0	V	R/W	QD*	R/W R
Pad B Bit 1	538	U16	0	1	0	-	R/W R/W	QD	R
Pad B Bit 2	539	U16	0	1	0		R/W	QD	R
Pad B Bit 3	540	U16	0	1	0	-	R/W	QD	R
Pad B Bit 4	541	U16	0	1	0	-	R/W	QD	R
Pad B Bit 5	542	U16	0	1	0	-	R/W	QD	R
Pad B Bit 6	543	U16	0	1	0	-	R/W	QD	R
Pad B Bit 7	544	U16	0	1	0		R/W	QD	R
Pad B Bit 8	545	U16	0	1	0	-	R/W	QD*	-
Pad B Bit 9	546	U16	0	1	0	-	R/W	QD*	-
Pad B Bit 10	547	U16	0	1	0	-	R/W	QD*	-
Pad B Bit 11	548	U16	0	1	0	-	R/W	QD*	-
Pad B Bit 12	549	U16	0	1	0	-	R/W	QD*	-
Pad B Bit 13	550	U16	0	1	0	-	R/W	QD*	-
Pad B Bit 14	551	U16	0	1	0	-	R/W	QD*	-
Pad B Bit 15	552	U16	0	1 OPTIONS \ Opt	0 ion 1		R/W	QD*	
SBI enable	1293 Disabled Enabled	U16	0	1	0	V	R/W 0 1	-	-
Menu	LIIANIU		<u>I</u>	Accessible	L only with optional Fie	ld bus card		[
wionu			OPTIONS\-O		only with optional Fie onfig \ PDC inputs	ia bus ball			
Pdc in 0	1095	U16	0 11000	65535	Only (1 Do Inputs	$\sqrt{}$	R/W	-	

				Value			Access via		
Parameter	No	Format	min	max	Factory	Кеур.	RS485/ BUS/ Opt2-M	Terminal	Opt2-A /PDC
Pdc in 1	1096	U16	0	65535	0	V	R/W	_	-
Pdc in 2	1097	U16	0	65535	0	· √	R/W	-	 -
Pdc in 3	1098	U16	0	65535	0	√	R/W	-	-
Pdc in 4	1099	U16	0	65535	0	√	R/W	-	 -
Pdc in 5	1100	U16	0	65535	0	√	R/W	-	-
			OPTIONS \ O	ption 1\ PDC co	nfig \ PDC outputs				
Pdc out 0	1101	U16	0	65535	0	√	R/W	-	-
Pdc out 1	1102	U16	0	65535	0	V	R/W	-	-
Pdc out 2	1103	U16	0	65535	0	V	R/W	-	-
Pdc out 3	1104	U16	0	65535	0	√	R/W	-	-
Pdc out 4	1105	U16	0	65535	0	√	R/W	-	-
Pdc out 5	1106	U16	0	65535	0	√	R/W	-	-
					onfig \ Virt dig in		- ***		
Virt dig in 0	1107	U16	0	65535	0	√ 	R/W	-	-
Virt dig in 1	1108		0	65535	0	√ 	R/W	-	-
Virt dig in 2	1109	U16	0	65535	0	√ √	R/W	-	-
Virt dig in 3	1110	U16	0	65535	0	√ √	R/W	-	 -
Virt dig in 4	1111	U16	0	65535	0	√ √	R/W	-	-
Virt dig in 5	1112	U16 U16	0	65535 65535	0	V V	R/W R/W	-	-
Virt dig in 6 Virt dig in 7	1113	U16	0	65535 65535	0	V V	R/W R/W	-	+ -
Virt dig in 8	11114	U16	0	65535	0	V	R/W	-	-
Virt dig in 9	1116	U16	0	65535	0		R/W	-	-
Virt dig in 10	1117	U16	0	65535	0		R/W	-	-
Virt dig in 11	11118		0	65535	0		R/W	-	 -
Virt dig in 12	1119		0	65535	0	V √	R/W		-
Virt dig in 13	1120	U16	0	65535	0	V √	R/W		
Virt dig in 14	1121	U16	0	65535	0	· √	R/W	_	
Virt dig in 15	1122	U16	0	65535	0	√	R/W	-	١.
The dig in 10	1122	0.0			onfig \ Virt dig out		. ,		
Virt dig out 0	1123	U16	0	65535	0	V	R/W	-	-
Virt dig out 1	1124	U16	0	65535	0	√	R/W	-	-
Virt dig out 2	1125	U16	0	65535	0	V	R/W	-	-
Virt dig out 3	1126	U16	0	65535	0	V	R/W	-	-
Virt dig out 4	1127	U16	0	65535	0	V	R/W	-	-
Virt dig out 5	1128	U16	0	65535	0	√	R/W	-	-
Virt dig out 6	1129		0	65535	0	V	R/W	-	-
Virt dig out 7	1130	U16	0	65535	0	√	R/W	-	-
Virt dig out 8	1131	U16	0	65535	0	√	R/W	-	-
Virt dig out 9	1132	U16	0	65535	0	√	R/W	-	-
Virt dig out 10	1133		0	65535	0	√ /	R/W	-	-
Virt dig out 11	1134		0	65535	0	√ /	R/W	-	-
Virt dig out 12	1135		0	65535	0	√ /	R/W	-	-
Virt dig out 13	1136		0	65535	0	√ /	R/W	-	-
Virt dig out 14	1137	U16	0	65535	0	√ √	R/W	-	 -
Virt dig out 15	1138	U16	0	65535 OPTIONS \ Opti	0 on 2	٧	R/W	-	-
Menu			Accessil		ional DGF card (See D	GF card	user manual)		
Enable OPT2	425	U16	0	1	Disabled (0)	√ V	R/Z		Т
Enable Disable	d	010		<u>'</u>	Disabled (6)	`	1 0		
				OPTIONS \ P	ID				
Enable PI PID Enable		U16	0	1	Disabled (0)	V	R/W 1	ID	R/W
Disable	_				5	<u> </u>	0		
EI-I- DD DID	770	U16	0	1	Disabled (0)	√	R/W 1	ID	R/W
Enable			-		i e	1	0		
	d			IUNG / DID / DI	D cource				
Enable Disable		1116		10NS \ PID \ PI		v /	D/M/		
Enable Disable PID source	786	U16	0	65535	0	√ √	R/W	-	-
		U16 Float			0 1.000	√ √	R/W R/W	-	-

Ch.8

				Value			Access via		
Parameter	No	Format	min	max	Factory	Кеур.	RS485/ BUS/ Opt2-M	Terminal	Opt2-A /PDC
			OPTIO	NS \ PID \ PID	references		OptZ W		
PID error	759	I16	-10000	10000	0	V	R	-	R
PID feed-back	763	I16	-10000	10000	0	√	R/W	IA	R/W
PID offs. Sel	762	U16	0	1	Offset 0 (0)	V	R/W	ID	R/W
Offest 0							0		
Offset 1	700	14.0	10000	10000	2	- /	1		D 04/
PID offset 0	760	I16	-10000	10000	0	√ √	R/W	IA	R/W
PID offset 1	761 1046	I16	-10000	10000 900.0	0.0	V √	R/W	-	-
PID acc time [s]	1046	Float Float	0.0	900.0	0.0		R/W R/W	-	<u> </u>
PID dec time [s] PID clamp	757	116	0.0	10000	10000	V √	R/W	-	-
r ID Clarify	131	110		IONS \ PID \ PI		٧	11/ 11	-	-
PI P gain PID %	765	Float	0.00	100.00	10.00	V	R/W	-	-
PI I gain PID %	764	Float	0.00	100.00	10.00	√	R/W	-	-
PI steady thr	695	l16	0	10000	0	√	R/W	-	-
PI steady delay [ms]	731	U16	0	60000	0	√	R/W	-	-
P init gain PID %	793	Float	0.00	100.00	10.00	√	R/W	-	-
I init gain PID %	734	Float	0.00	100.00	10.00	√	R/W	-	
PI central v sel	779	U16	0	3	1	√	R/W	ID	R/W
PI central v1	776	Float	P785	P784	1.00	√	R/W	-	-
PI central v2	777	Float	P785	P784	1.00	√	R/W	-	-
PI central v3	778	Float	P785	P784	1.00	√	R/W	IA	-
PI top lim	784	Float	P785	10.00	10.00	V	R/W	-	-
PI bottom lim	785	Float	-10.00	P784	0	V	R/W	-	-
PI integr freeze	783	U16	0	1	0	√	R/W	ID	R/W
ON							1		
OFF				OPTIONS \ P	PID.		0		
PI output PID	771	l16	0	1000 x	1000	V	R	-	R
Τ τ ομιραί τ το	' ' '	'''		P784	1000	'	"		l "
Real FF PID	418	I16	-10000	10000	0	V	R	_	R
				IONS \ PID \ PE	controls				
PD P gain 1 PID [%]	768	Float	0.00	100.00	10.00	V	R/W	-	-
PD D gain 1 PID [%]	766	Float	0.00	100.00	1.00	V	R/W	-	-
PD P gain 2 PID [%]	788	Float	0.00	100.00	10.00	V	R/W	-	-
PD D gain 2 PID [%]	789	Float	0.00	100.00	1.00	√	R/W	-	-
PD P gain 3 PID [%]	790	Float	0.00	100.00	10.00	V	R/W	-	-
PD D gain 3 PID[%]	791	Float	0.00	100.00	1.00	V	R/W	-	-
PD D filter PID [ms]	767	U16	0	1000	0	V	R/W	-	-
PD output PID	421	11.6	-10000	OPTIONS \ P 10000	0	V	R	-	D
PID out sign PID	772	I16 U16	-10000	1	1	V √	R/W	-	R
Positive		010		'	'	'	0	-	-
Bipolar							1		
PID output	774	l16	-10000	10000	0	√	R	QA	R
1 15 output	771	110		TIONS \ PID \ P			11	Q, t	
PID target	782	U16	0	65535	0	V	R/W	-	-
PID out scale	773	Float	-100.000	100.000	1.000	√	R/W	-	-
				DNS \ PID \ Dia					
Diameter calc	794	U16	0	1	0	V	Z/R	ID	R/W
Enabled							1		
Disabled			100		_	,	0		
Positioning spd [rpm]	795	I16	-100	100	0	√	R/W	-	-
Max deviation	796	I16	-10000	10000	8000	√	R/W	-	-
Gear box ratio	797	Float	0.001	1.000	1.000	√ /	R/W	-	<u> </u>
Dancer constant [mm]	798	U16	1	10000	1	√ /	R/W	-	 -
Minimum diameter [cm]	799	U16	1	2000 OPTIONS \ P	1		R/W	-	
PI central vs0	780	U16	0	1	טוי 1		R/W	ID	R/W
PI central vs1	781	U16	0	1	0		R/W	ID	R/W
Diameter calc st	800	U16	0	1	0		R	QD	R
בומוווטנטו טמוט אנ	000	010	U		U		П	QD	11

				Value			Access via		
Parameter	No	Format	min	max	Factory	Кеур.	RS485/ BUS/ Opt2-M	Terminal	Opt2-A /PDC
				DRIVECON					
Malfunction code No failure Overcurrent Overvoltage Undervoltage	t ;	U16	0	65535		√	R 0000h 2300h 3210h 3220h	-	R
Heatsink sensor Heatsink ot Regulation ot Module overtemp Intake air ot Overtemp motor Failure supply Curr fbk loss Output stages DSP error Interrupt error							4210h 4211h 4212h 4213h 4214h 4310h 5100h 5210h 5410h 6110h 6120h		
BU overload Speed fbk loss Opt2 Hw opt 1 failure Bus loss External fault Enable seq en							7110h 7301h 7400h 7510h 8110h 9000h 9009h		
Control Word	55	U16	0	65535	0	V	R/W	-	R/W
Status word	56 44	U16	0	65535	- 0	√ √	R	-	R
Speed input var [FF] (Ramp ref 1) Speed ref var [FF]		I16 I16	-2 × P45 -32768	+2 × P45 32767	U	V V	R/W R	IA, QA	R
(Speed ref) Act speed value [FF]		l16	-32768	32767		V	R	-	R
(Actual spd)									
Speed min amount [FF]	1	U32	DRI 0	VECOM \ Spee 0 2 ³² -1	d amount 0	$\sqrt{}$	R/Z	-	
Speed max amount [FF]	2	U32	0	2 ³² -1	5000	√	R/Z	-	-
			DRIN	ECOM \ Speed					
Speed min pos [FF]	5	U32	0	2 ³² -1	0	√	R/Z	-	-
Speed max pos [FF] Speed min neg [FF]	3 6	U32 U32	0	2 ³² -1 2 ³² -1	5000 0	√ √	R/Z R/Z	-	-
Speed max neg [FF]	4	U32	0	2 ³² -1	5000	√	R/Z	-	-
				IVECOM \ Acce	leration				
Acc delta speed [FF]	21	U32	0	2 ³² -1	100	√	R/W	-	-
Acc delta time [s]	22	U16	0 DB	65535 IVECOM \ Dece	1 Jeration		R/W	-	-
Dec delta speed [FF]	29	U32	0	2 ³² -1	100		R/W	-	-
Dec delta time [s]	30	U16	0	65535	1		R/W	-	-
QStp opt code Ramp stop DC braking curr		l16	-2	RIVECOM \ Quid -1	Ramp stop (1)	V	R/Z 1 2		-
QStp delta speed [FF]	37	U32	0	2 ³² -1	1000	V	R/W	-	_
QStp delta time [s]	38	U16	0	65535	1	V	R/W	-	-
	F.4	14.0		/ECOM \ Face \		/	D /7		Б
Face value num Face value den	54 53	I16 I16	<u>1</u> 1	32767 32767	1	√ √	R/Z R/Z	-	R R
1 400 Yalao Uoli	- 55	110		/ECOM \ Dimer			1 t/ L		- 11
Dim factor num	50	132***	1	65535	1	√ /	R/Z	-	R
Dim factor den	51	132***	1	2 ³² -1	1 rnm	√ √	R/Z	-	R
Dim factor text	52	Text		DRIVECON		V	R/Z	-	_
Speed base value [FF]	45	U32***	1	16383	1500	√ /	R/Z	-	R
Speed input perc [%] Percent ref var [%]	46 116	I16 I16	-32768 -32768	32767 32767	0	√ √	R/W R	-	R/W R
Act percentage [%]	120	I16	-32768	32767	0	√	R	-	R
				SERVICE					
Password 2	86			Service			W	-	-

DIRECTIVE CEM

Les Domaines possibles de la Validité de la Directive CEM (89/336)

appliquée au "marquage CE" des PDS prévoient la conformité aux Exigences Essentielles de la Directive CEM, qui est formulée dans les Clauses numéro [.] de la Déclaration de Conformité CE se référant au Document de la Commission Européenne "Guide pour l'application de la Directive 89/336/CEE" édition 1997. ISBN 92-828-0762-2

	Domaine de validité	Description					
à PDS ou CDM ou BDM	1- Produit finit/Composant complexe disponible pour les utilisateurs génériques [Clauses : 3.7, 6.2.1, 6.2.3.1 & 6.3.1] Un PDS (ou CDM/BDM) de la Classe de Distribution sans restrictions	Placé sur le marché comme unité commerciale individuelle pour la distribution et l'utilisation finale. Liberté de mouvement conformément à la Directive CEM - Demande de Déclaration de Conformité CE - Demande marquage CE - PDS ou CDM/BDM devrait être conforme à CEI 1800-3/EN 61800- Le fabricant du PDS (ou CDM/BDM) est responsable quant au comportement CEM du PDS (ou CDM/BDM), en fonction de conditions spécifiques. Les mesures CEM en dehors du dispositif, sont décrites simplement et peuvent également être implémentées par des profanes en matière de Compatibilité Electromagnétique. La responsabilité CEM de l'assembleur du produit final doit être conforme aux suggestions et aux indications fournies par le fabricant. Remarque : Le fabricant du PDS (ou CDM/BDM) n'est pas responsable du comportement de tout système ou installation incorporant le PDS. Voir les Domaines de Validité 3 ou 4.					
Correspondant directement à PDS ou CDM ou BDM	Produit finit/Composant complexe uniquement pour des assembleurs professionnels [Clauses : 3.7, 6.2.1, 6.2.3.2 & 6.3.2] Un PDS (ou CDM/BDM) de la Classe de Distribution limitée vendu pour être installé comme organe dans un système ou dans une installation	Pas placé sur le marché comme unité commerciale individuelle pour la distribution et l'utilisation finale. Adressé uniquement aux assembleurs professionnels ayant un niveau de compétence technique appropriée et une bonne installation. - Déclaration de Conformité CE non demandée - Marquage CE non demandé - PDS ou CDM/BDM devrait être conforme à CEI 1800-3/EN 61800-3 Le fabricant du PDS (ou CDM/BDM) est responsable des instructions pou l'installation qui devront être respectées par le fabricant du système ou de l'installation afin d'obtenir le niveau de conformité requis. Le fabricant du système ou de l'installation, dont les standards ont été déclarés conformes, est responsable pour le comportement CEM.					
Correspondant à des applications PDS ou CDM ou BDM	-3- Installation [Clause: 6.5] Plusieurs organes d'un système, produit fini ou autre assemblés dans un endroit précis. Peut comprendre PDS (CDM ou BDM), de classes différentes - Limitée ou sans Restrictions	Pas destiné à être placé sur le marché comme unité individuelle de fonctionnement (aucune liberté de mouvement). Chaque système installé doit être déclaré conforme aux dispositions de la Directive CEM. - Déclaration de Conformité CE non demandée - Marquage CE non demandé - Pour les PDS ou CDM/BDM les Domaines de Validité 1 ou 2 - La responsabilité du fabricant du PDS peut comprendre la mise en service Le fabricant de l'installation, en coopération avec l'utilisateur (ex. En suivant le plan CEM le plus approprié), est responsable pour le comportement CEM. Les exigences essentielles pour la protection de la Directive CEM sont appliquées en fonction de la zone de l'installation.					
Correspondant à des appli	-4- System [Clause: 6.4] Produits finis prêts à l'emploi. Peut comprendre PDS (CDM ou BDM), de classes différentes - Limitée ou sans Restrictions	Elle a une fonction directe pour l'utilisateur final. Placé sur le marché pour être distribué comme une unité individuelle de fonctionnement ou comme plusieurs unités à raccorder les unes aux autres. - Déclaration de Conformité CE demandée - Marquage CE demandé pour le système - Pour les PDS ou CDM/BDM voir les Domaines de Validité 1 ou 2 Le fabricant du système utilisant une approche modulaire ou un système approprié est, dans certaines conditions, responsable pour le comportement CEM. Remarque : Le fabricant du système n'est pas responsable pour le comportement de toute installation qui incorpore le PDS, voir le Domaine de Validité 3					

Exemples d'application dans les différents Domaines de Validité :

- BDM à utiliser partout: (par exemple dans les milieux domestiques ou pour les distributeurs commerciaux); est vendu sans aucune connaissance de l'acheteur ou de l'application. Le fabricant doit faire en sorte qu'un niveau CEM approprié puisse être obtenu même par un client inconnu ou par un profane du secteur (snapping, switch-on).
- 2 **CDM/BDM ou PDS pour des objectifs généraux**: A incorporer dans une machine ou pour des applications industrielles. Est vendu comme sousensemble à un assembleur professionnel qui l'incorpore dans une machine, un système ou une installation. Les conditions d'emploi sont spécifiées dans la documentation du fabricant. L'échange des données techniques permet d'optimiser la solution CEM (voir la définition de distribution limitée).
- 3 Installation: peut comprendre plusieurs unités commerciales (PDS, mécanique, contrôle de procédé etc.). Les conditions pour l'incorporation du PDS (CDM ou BDM) sont spécifiées lors de la commande; par la suite, il est possible d'avoir un échange de données techniques entre le fournisseur et l'acheteur. La combinaison des différentes pièces dans l'installation devrait avoir une finalité et assurer une compatibilité électromagnétique appropriée. A ce sujet, la compensation harmonique est un exemple bien précis, tant pour des raisons techniques qu'économiques (ex. laminoir, machine continue, grue, etc.).
- 4 Système: Instrument prêt à l'emploi comprenant un ou plusieurs PDS (ou CDM/BDM); ex. appareils électroménagers, climatiseurs, machines outils standard, systèmes de pompage standard, etc.

GEFRAN BENELUX

Lammerdries, 14A B-2250 OLEN Ph. +32 (0) 14248181 Fax. +32 (0) 14248180 info@gefran.be

GEFRAN BRASIL ELETROELETRÔNICA

Avenida Dr. Altino Arantes, 377/379 Vila Clementino 04042-032 SÂO PAULO - SP Ph. +55 (0) 1155851133 Fax +55 (0) 1155851425 gefran@gefran.com.br

GEFRAN DEUTSCHLAND

Philipp-Reis-Straße 9a 63500 SELIGENSTADT Ph. +49 (0) 61828090 Fax +49 (0) 6182809222 vertrieb@gefran.de

GEFRAN SUISSE SA

Rue Fritz Courvoisier 40 2302 La Chaux-de-Fonds Ph. +41 (0) 329684955 Fax +41 (0) 329683574 office@gefran.ch

GEFRAN - FRANCE

4, rue Jean Desparmet - BP 8237 69355 LYON Cedex O8 Ph. +33 (0) 478770300 Fax +33 (0) 478770320 commercial@gefran.fr

GEFRAN INC

Automation and Sensors 8 Lowell Avenue WINCHESTER - MA 01890 Toll Free 1-888-888-4474 Ph. +1 (781) 7295249 Fax +1 (781) 7291468 info@gefranisi.com

GEFRAN INC

Motion Control 14201 D South Lakes Drive NC 28273 - Charlotte Ph. +1 704 3290200 Fax +1 704 3290217 salescontact@sieiamerica

SIEI AREG - GERMANY

Zachersweg, 17 D 74376 - Gemmrigheim Ph. +49 7143 9730 Fax +49 7143 97397 info@sieiareg.de

GEFRAN SIEI - UK Ltd.

7 Pearson Road, Central Park TELFORD, TF2 9TX Ph. +44 (0) 845 2604555 Fax +44 (0) 845 2604556 sales@gefran.co.uk

GEFRAN SIEI - ASIA

Blk. 30 Loyang way 03-19 Loyang Industrial Estate 508769 SINGAPORE Ph. +65 6 8418300 Fax. +65 6 7428300 info@sieiasia.com.sg

GEFRAN SIEI Electric Pte Ltd

Block B, Gr.Fir, No.155, Fu Te Xi Yi Road, Wai Gao Qiao Trade Zone 200131 Shanghai Ph. +86 21 5866 7816 Ph. +86 21 5866 1555 gefransh@online.sh.cn

SIEI DRIVES TECHNOLOGY

No.1265, B1, Hong De Road, Jia Ding District 201821 Shanghai Ph. +86 21 69169898 Fax +86 21 69169333 info@siejasja.com.cn

GEFRAN

GEFRAN S.p.A.

Via Sebina 74 25050 Provaglio d'Iseo (BS) ITALY Ph. +39 030 98881 Fax +39 030 9839063 info@gefran.com www.gefran.com

Drive & Motion Control Unit

Via Carducci 24 21040 Gerenzano [VA] ITALY Ph. +39 02 967601 Fax +39 02 9682653 infomotion@gefran.com

Technical Assistance : technohelp@gefran.com

Customer Service :

motioncustomer@gefran.com Ph. +39 02 96760500 Fax +39 02 96760278

