

Détecteurs réflex, élimination d'arrière-plan EAP

Barrières réflex

Barrières simples

W 250 : une série compacte pour un vaste domaine d'application

détecteur réflex WT 250 à distance de détection réglable entre 300 et 600 mm et élimination d'arrière-plan.

Deux plages de tension d'alimentation avec l'interface correspondante pour le traitement des signaux de sortie sont disponibles : basse tension CC 10...30 V avec sortie PNP ou NPN, connecteur M12, 4 pôles (orientable 90°) ou câble. Le câble de commande L.ON/D.ON permet de diviser par deux le nombre de variantes.

La série de barrières optoélectroniques W 250 se caractérise par des portées élevées, un maniement très simple et un large éventail d'applications.

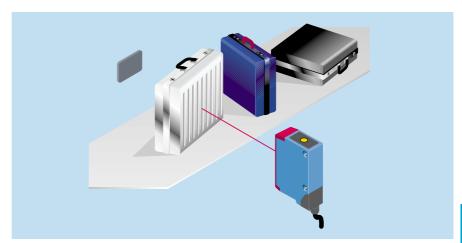
Principaux domaines d'utilisation

- stockage et manutention,
- commande de portes et portails,
- travail du bois.

des W 250:

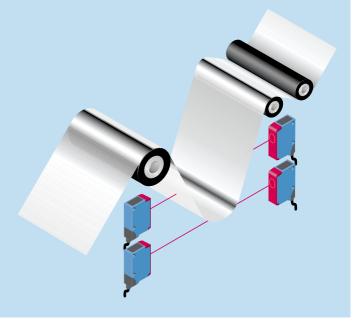
avec sortie relais inverseur sans potentiel.

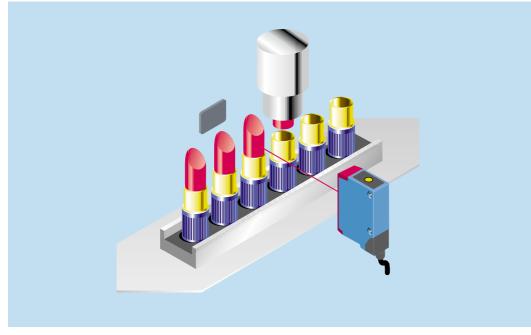
Alimentation universelle


L'équerre de fixation et, sur la WL 250, le réflecteur P 250, sont inclus dans la livraison. L'émetteur LED à lumière rouge visible facilite en outre le maniement.

CC 12...240 V ou CA 24...240 V,

Portées:

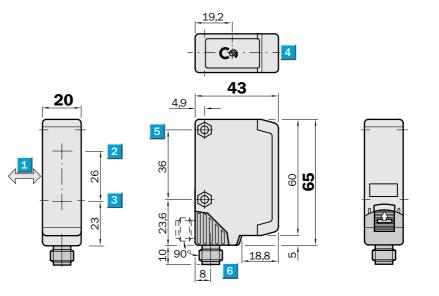

- barrière simple WS/WE 250 :
- barrière réflex WL 250 : 11 m (PL 80 A), avec filtre polarisant,

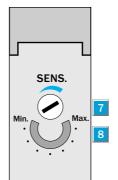

► Les barrières réflex WL 250 détectent avec fiabilité même les objets brillants sur les convoyeurs à bande.

lacktriangle Contrôle de hauteur sur une ligne d'emballage : une tâche effectuée grâce au détecteur réflex WT 250.

 ${\color{red}\blacktriangle}$ Pas de perturbations dans la production continue de bandes de film ou de tôle. Pour que la tension soit toujours correcte, les barrières simples contrôlent la longueur de la boucle.

◆ Pas de surprise désagréable à l'achat : les barrières réflex WL 250 se chargent aussi de vérifier que la longueur du bâton de rouge à lèvres est correcte.

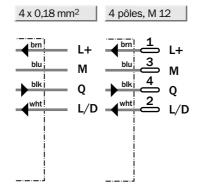

- Elimination d'arrière-plan (EAP)
- Distance de détection réglable en continu, potentiomètre (2 tours) avec indicateur de position (270°)
- Aide à l'alignement par lumière rouge et témoin de réception
- Connecteur M 12 orientable 90°



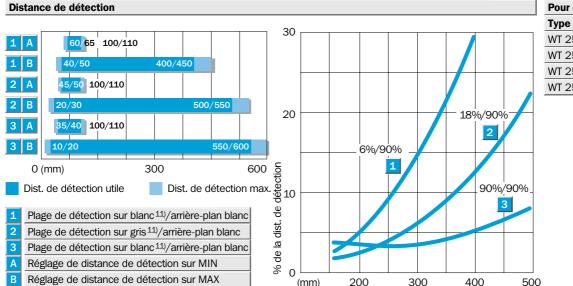
Accessoires	page
Connecteurs	496
Equerres de fixation*	510

^{*} inclus dans la livraison

Possibilités de r	églage
WT 250-P 162	
WT 250-P 460	
WT 250-N 162	
WT 250-N 460	
	•


- Direction de l'objet à détecter
- Axe d'émission
- Axe de réception
- Témoin de réception, rouge
- Trou traversant Ø 4,2 mm, des deux côtés pour écrou hexagonal M 4
- 6 Câble ou connecteur M 12, 4 pôles ; connecteur orientable à 90° (V > H),
 - $V \rightarrow position verticale$,
 - H o position horizontale; blocage par curseur
- Réglage distance de détection (2 tours), impossible à fausser
- Indicateur de position réglage de distance de détection (270°)

Raccordement


WT 250-P 162 WT 250-P 460 WT 250-N 162 WT 250-N 460

Caractéristiques techniques	WT 250-	P162 P46	0 N 162 N 460	
Distance de détection, réglable	max. 10600 mm ¹⁾			
	min. 35110 mm ¹⁾			
Réglage distance de détection	potentiomètre, 2 tours,			
	avec indicateur de position			
Emetteur ²⁾ , type	LED, lumière rouge visible			
Diamètre du faisceau lumineux	env. 35 mm à 500 mm de distance			
Angle d'ouverture émetteur	env. 3°			
Tension d'alimentation V _a	CC 1030 V ³⁾			
Ondulation résiduelle ⁴⁾	≤ 5 V _{PP}			
Consommation ⁵⁾	≤ 35 mA			
Sorties de commutation	PNP, collecteur ouvert : Q			
	NPN, collecteur ouvert : Q	,,		
Courant de sortie l _a max.	100 mA			
Récepteur, commutation	commutation claire/sombre			
	par câble de commande :	,,		
	+ V _a = commutation claire			
	0 V = commutation sombre			
Temps de réponse ⁶⁾	≤ 2 ms			
Fréquence de commutation ⁷⁾	250/s			
Raccordement	Câble PVC, 2 m ⁸⁾			
	4 x 0,18 mm ² , Ø 3,8 mm			
	Connecteur M 12, 4 pôles, orientable 90°			
Classe de protection VDE ⁹⁾				
Circuits de protection 10)	A, B, C, D			
Indice de protection	IP 67			
Température ambiante T _A	Utilisation – 25 °C+ 55 °C			
- Д	Stockage -40 °C+ 70 °C			
Poids		,		
avec câble 2 m	env. 80 g			
avec connecteur M 12, 4 pôles				
Matériau du boîtier	Boîtier : ABS/Optique : PC			
1) Objet avec 90 % de rémission (par rapport au blanc standard selon DIN 5033) 2) Durée de vie moyenne à T _A = +25 °C; LED, lumière rouge 100.000 h 3) Valeur limite 4) Na doit pas dépasser les tolérances	5) Sans charge 6) Durée du signal en charge ohmique 7) Pour un rapport clair/sombre de 1:1 8) En dessous de 0 °C ne pas déformer le câble 9) Tension de référence CC 50 V	inversi B = Sorties les cou C = Suppre parasit		11) Noir = 6 % de rémission Gris = 18 % de rémission Blanc = 90 % de rémission
 Ne doit pas dépasser les tolérances limites de V_a 		D= Sorties surcha	s protégées contre les orges	
Distance de détaction				Dour commander

Pour commander Référence WT 250-P 162 6 010 704 WT 250-P 460 6 010 706 WT 250-N 162 6 010 701 WT 250-N 460 6 010 703

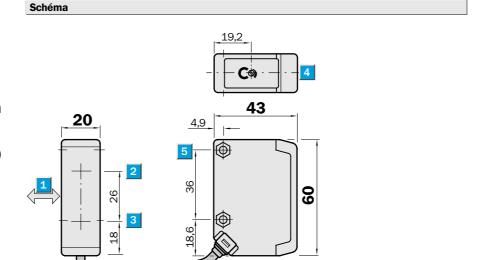
(mm)

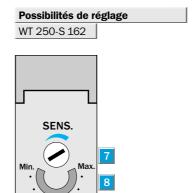
300

400

500

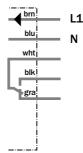
- Elimination d'arrière-plan (EAP)
- Distance de détection réglable en continu, potentiomètre (2 tours) avec indicateur de position (270°)
- Aide à l'alignement par lumière rouge et témoin de réception
- Alimentation universelle



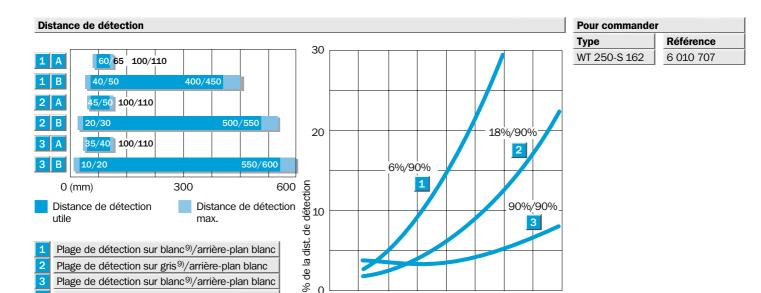


Accessoires	page
Equerres de fixation*	510

* inclus dans la livraison


- Direction de l'objet à détecter
- Axe d'émission
- Axe de réception
- Témoin de réception, rouge
- Trou traversant Ø 4,2 mm, des deux côtés pour écrou hexagonal M 4
- Réglage distance de détection (2 tours), impossible à fausser
- Indicateur de position réglage de distance de détection (270°)

Raccordement


WT 250-S 162

Caractéristiques techniques	WT 250-	S 162
Distance de détection, réglable	max. 10600 mm ¹⁾	
	min. 35110 mm ¹⁾	
Réglage distance de détection	potentiomètre, 2 tours,	
	avec indicateur de position	
Emetteur ²⁾ , type	LED, lumière rouge visible	
Diamètre du faisceau lumineux	env. 35 mm à 500 mm de distance	
Angle d'ouverture émetteur	env. 3°	
Tension d'alimentation V _a ³⁾	CC 10240 V	
u	CA 24240 V	
Puissance	≤ 2 VA	
Sorties de commutation	Relais inverseur, séparé galv.	
Courant de commutation max.4)	3 A/CA 240 V; 3 A/CC 30 V	
Récepteur, commutation	commutation claire	
Temps de réponse	≤ 15 ms	
Fréquence de commutation ⁵⁾	33/s	
Raccordement	Câble PVC ⁶⁾ , 2 m	
	5 x 0,76 mm ² , Ø 6,3 mm	
Classe de protection VDE ⁷⁾		
Circuits de protection ⁸⁾	A, C	
Indice de protection	IP 67	
Température ambiante T _A	Utilisation – 25 °C+ 55 °C	
	Stockage -40 °C+70 °C	
Poids	env. 160 g	
Matériau du boîtier	Boîtier : ABS/Optique : PC	
Objet avec 90 % de rémission (par rapport au blanc standard selon	En cas de charge inductive ou capacitive, prévoir des réseaux RC de protection	7) Tension de référence UC 250 V 9) Noir = 6 % de rémission 8) A = Alimentation protégée contre les Gris = 18 % de rémission

inversions de polarité

parasites

300

500

C = Suppression des impulsions

5) Pour un rapport clair/sombre de 1:1

6) En dessous de 0 °C ne pas déformer

le câble

DIN 5033)

3) ± 10 %

2) Durée de vie moyenne à $T_A = +25$ °C;

Plage de détection sur blanc⁹⁾/arrière-plan blanc

Réglage de distance de détection sur MIN

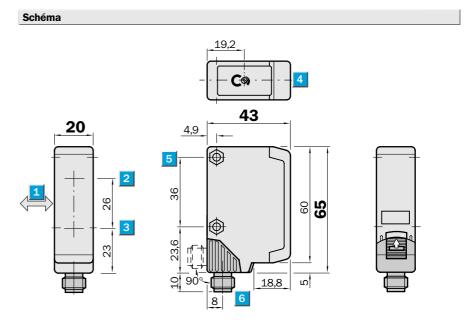
Réglage de distance de détection sur MAX

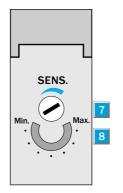
LED, lumière rouge 100.000 h

Blanc = 90 % de rémission

0

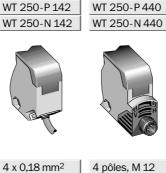
(mm)

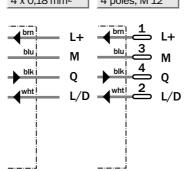

- Elimination d'arrière-plan (EAP)
- Distance de détection réglable en continu, potentiomètre (2 tours) avec indicateur de position (270°)
- Aide à l'alignement par lumière rouge et témoin de réception
- Connecteur M 12 orientable 90°



Accessoires	page
Connecteurs M 12	496
Equerres de fixation*	510

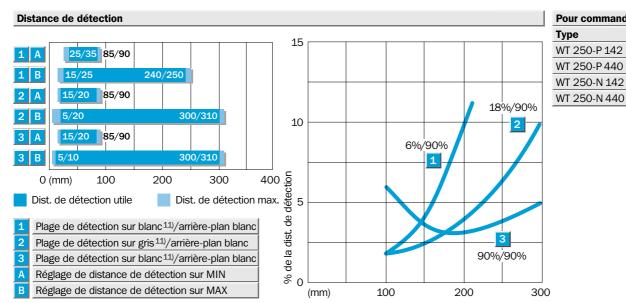
^{*} inclus dans la livraison




Possibilités de re	églage
WT 250-P 142	
WT 250-P 440	
WT 250-N 142	
WT 250-N 440	

Raccordement

- Direction de l'objet à détecter
- Axe d'émission
- Axe de réception
- Témoin de réception, rouge
- Trou traversant Ø 4,2 mm, des deux côtés pour écrou hexagonal M 4
- 6 Câble ou connecteur M 12, 4 pôles ; connecteur orientable à 90° (V > H),
 - $V \rightarrow position verticale$,
 - H o position horizontale; blocage par curseur
- Réglage distance de détection (2 tours), impossible à fausser
- Indicateur de position réglage de distance de détection (270°)



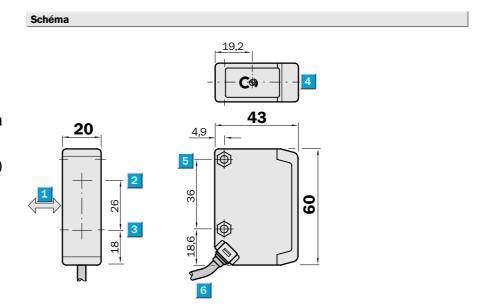
				N 440					
5 010 ti		1	1						
· · · · · · · · · · · · · · · · · · ·									
avec indicateur de position									
LED. lumière rouge visible									
-									
env. 3°									
≤ 35 mA									
PNP, collecteur ouvert : Q									
NPN, collecteur ouvert : Q									
100 mA									
commutation claire/sombre									
par câble de commande :									
+ V _a = commutation claire									
0 V = commutation sombre									
≤ 2 ms									
250/s									
Câble PVC, 2 m ⁸⁾									
4 x 0,18 mm ² , Ø 3,8 mm									
Connecteur M 12, 4 pôles, orientable 90°									
<u> </u>									
17-67			J						
Utilisation −25 °C+55 °C									
Stockage -40 °C+ 70 °C									
env. 80 g									
env. 40 g									
Boîtier : ABS/Optique : PC									
	CC 1030 V³) ≤ 5 V _{PP} ≤ 35 mA PNP, collecteur ouvert : Q NPN, collecteur ouvert : Q 100 mA commutation claire/sombre par câble de commande : + V _a = commutation claire 0 V = commutation sombre ≤ 2 ms 250/s Câble PVC, 2 m ⁸) 4 x 0,18 mm², \emptyset 3,8 mm Connecteur M 12, 4 pôles, orientable 90° □ A, B, C, D IP 67 Utilisation -25 °C+ 55 °C Stockage -40 °C+ 70 °C env. 80 g env. 40 g	min. 1590 mm¹) potentiomètre, 2 tours, avec indicateur de position LED, lumière rouge visible env. 25 mm à 300 mm de distance env. 3° CC 1030 V³) ≤ 5 V _{PP} ≤ 35 mA PNP, collecteur ouvert : Q NPN, collecteur ouvert : Q 100 mA commutation claire/sombre par câble de commande : + V _a = commutation sombre ≤ 2 ms 250/s Câble PVC, 2 m ⁸) 4 x 0,18 mm², Ø 3,8 mm Connecteur M 12, 4 pôles, orientable 90° □ A, B, C, D IP 67 Utilisation −25 °C+55 °C Stockage −40 °C+70 °C env. 80 g env. 40 g	min. 1590 mm¹) potentiomètre, 2 tours, avec indicateur de position LED, lumière rouge visible env. 25 mm à 300 mm de distance env. 3° CC 1030 V³) ≤ 5 V _{PP} ≤ 35 mA PNP, collecteur ouvert : Q NPN, collecteur ouvert : Q 100 mA commutation claire/sombre par câble de commande : + V _a = commutation claire 0 V = commutation sombre ≤ 2 ms 250/s Câble PVC, 2 m ⁸) 4 x 0,18 mm², Ø 3,8 mm Connecteur M 12, 4 pôles, orientable 90° □ A, B, C, D IP 67 Utilisation −25 °C+55 °C Stockage −40 °C+70 °C env. 80 g env. 40 g	min. 1590 mm¹) potentiomètre, 2 tours, avec indicateur de position LED, lumière rouge visible env. 25 mm à 300 mm de distance env. 3° CC 1030 V³) ≤ 5 V _{PP} ≤ 35 mA PNP, collecteur ouvert : Q NPN, collecteur ouvert : Q 100 mA commutation claire/sombre par câble de commande : + V _a = commutation claire 0 V = commutation sombre ≤ 2 ms 250/s Câble PVC, 2 m ⁸) 4 x 0,18 mm², Ø 3,8 mm Connecteur M 12, 4 pôles, orientable 90° □ A, B, C, D IP 67 Utilisation - 25 °C+ 55 °C Stockage - 40 °C+ 70 °C env. 80 g env. 40 g	min. 1590 mm ⁻¹⁾ potentiomètre, 2 tours, avec indicateur de position LED, lumière rouge visible env. 25 mm à 300 mm de distance env. 3° CC 1030 V³) ≤ 5 V _{PP} ≤ 35 mA PNP, collecteur ouvert : Q NPN, collecteur ouvert : Q 100 mA commutation claire/sombre par câble de commande : + V _a = commutation sombre ≤ 2 ms 250/s Câble PVC, 2 m ⁸⁾ 4 x 0,18 mm², Ø 3,8 mm Connecteur M 12, 4 pôles, orientable 90° □ A, B, C, D IP 67 Utilisation −25 °C+55 °C Stockage −40 °C+70 °C env. 80 g env. 40 g	min. 1590 mm³) potentiomètre, 2 tours, avec indicateur de position LED, lumière rouge visible env. 25 mm à 300 mm de distance env. 3° CC 1030 V³) ≤ 5 V _{PP} ≤ 35 mA PNP, collecteur ouvert : Q NPN, collecteur ouvert : Q 100 mA commutation claire/sombre par câble de commande : + V _a = commutation sombre ≤ 2 ms 250/s Câble PVC, 2 m³) 4 x 0,18 mm², ∅ 3,8 mm Connecteur M 12, 4 pôles, orientable 90° □ A, B, C, D IP 67 Utilisation −25 °C+55 °C Stockage −40 °C+70 °C env. 80 g env. 40 g	min. 1590 mm¹¹) potentiomètre, 2 tours, avec indicateur de position LED, lumière rouge visible env. 25 mm à 300 mm de distance env. 3° CC 1030 V³) ≤ 5 V _{PP} ≤ 35 mA PNP, collecteur ouvert : Q NPN, collecteur ouvert : Q 100 mA commutation claire/sombre par câble de commande : + V _a = commutation claire 0 V = commutation sombre ≤ 2 ms ≤ 250/s Câble PVC, 2 m³) 4 x 0,18 mm², Ø 3,8 mm Connecteur M 12, 4 pôles, orientable 90° □ A, B, C, D IP 67 Utilisation −25°C+55°C Stockage −40°C+70°C env. 80 g env. 40 g	min. 1590 mm¹) potentiomètre, 2 tours, avec indicateur de position LED, lumière rouge visible env. 25 mm à 300 mm de distance env. 3° CC 1030 V³) ≤ 5 V _{PP} ≤ 35 mA PNP, collecteur ouvert : Q NPN, collecteur ouvert : Q 100 mA commutation claire/sombre par câble de commande : + V _a = commutation sombre ≤ 2 ms 250/s Câble PVC, 2 m ⁸) 4 x 0,18 mm², Ø 3,8 mm Connecteur M 12, 4 pôles, orientable 90° □ A, B, C, D IP 67 Utilisation − 25 °C+55 °C Stockage − 40 °C+70 °C env. 80 g env. 40 g	min. 1590 mm¹) potentiomètre, 2 tours, avec indicateur de position LED, lumière rouge visible env. 25 mm à 300 mm de distance env. 3° CC 1030 V³) ≤ 5 Vpp ≤ 35 mA PNP, collecteur ouvert : Q NPN, collecteur ouvert : Q NPN, collecteur ouvert : Q 100 mA commutation claire/sombre par câble de commande : + V₃ = commutation claire 0 V = commutation sombre ≤ 2 ms 250/s Câble PVC, 2 m³) 4 x 0.18 mm², Ø 3.8 mm Connecteur M 12, 4 pôles, orientable 90° □ A, B, C, D IP 67 Utilisation −25 °C+55 °C Stockage −40 °C+70 °C env. 80 g env. 40 g

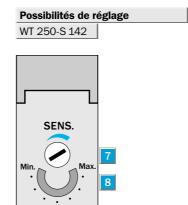
- port au blanc standard selon DIN 5033)
- 2) Durée de vie moyenne à $T_A = +25$ °C; LED, lumière rouge 100.000 h
- 3) Valeur limite
- 4) Ne doit pas dépasser les tolérances limites de V_a
- 6) Durée du signal en charge ohmique
- 7) Pour un rapport clair/sombre de 1:1, sans temporisation
- 8) En dessous de 0 °C ne pas déformer le câble
- 9) Tension de référence CC 50 V
- inversions de polarité
 - B = Sorties Q et \overline{Q} protégées contre les courts-circuits
 - C = Suppression des impulsions parasites
 - D= Sorties protégées contre les surcharges

Gris = 18 % de rémission Blanc = 90 % de rémission

Pour commander Référence 6 010 619 6 010 621 6 010 616 6 010 618

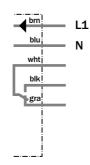
- Elimination d'arrière-plan (EAP)
- Distance de détection réglable en continu, potentiomètre (2 tours) avec indicateur de position (270°)
- Aide à l'alignement par lumière rouge et témoin de réception
- Alimentation universelle, sortie de commutation relais inverseur

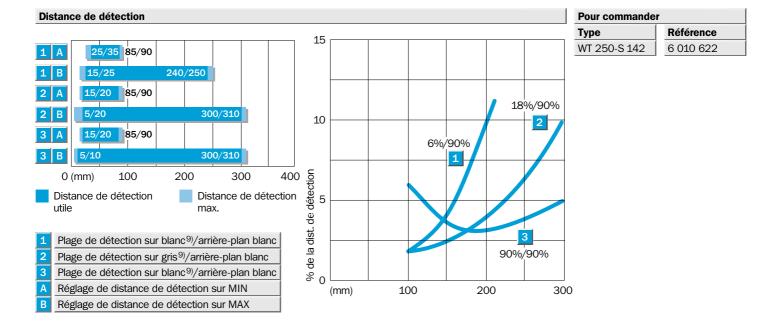




Accessoires	page
Equerres de fixation*	510

^{*} inclus dans la livraison


- Direction de l'objet à détecter
- Axe d'émission
- Axe de réception
- Témoin de réception, rouge
- Trou traversant Ø 4,2 mm, des deux côtés pour écrou hexagonal M 4
- Réglage distance de détection (2 tours), impossible à fausser
- Indicateur de position réglage de distance de détection (270°)


WT 250-S 142

Caractéristiques techniques	WT 250-	S 142								
	- 0.0 A)									
Distance de détection, réglable	max. 5310 mm ¹⁾									
	min. 1590 mm ¹⁾									
Réglage distance de détection	potentiomètre, 2 tours,									
	avec indicateur de position									
Emetteur ²⁾ , type	LED, lumière rouge visible									
Diamètre du faisceau lumineux	env. 25 mm à 300 mm de distance									
Angle d'ouverture émetteur	env. 3°									
Tension d'alimentation V _a ³⁾	CC 12240 V									
	CA 24240 V									
Puissance	< 2 VA									
Sorties de commutation	Relais inverseur, séparé galv.									
Courant de commutation max. ⁴⁾	3 A/CA 240 V; 3 A/CC 30 V									
Récepteur, commutation	commutation claire									
Temps de réponse	≤ 15 ms									
Fréquence de commutation ⁵⁾	33/s									
Raccordement	Câble PVC ⁶⁾ , 2 m									
	5 x 0,76 mm ² , Ø 6,3 mm									
Classe de protection VDE ⁷⁾										
Circuits de protection ⁸⁾	A, C									
Indice de protection	IP 67									
r										
Température ambiante T _A	Utilisation -25 °C+55 °C									
	Stockage -40 °C+70 °C									
Poids	env. 160 g									
Matériau du boîtier	Boîtier : ABS/Optique : PC									
1) Objet avec 90 % de rémission (par rapport au blanc standard selon	4) En cas de charge inductive ou capacitive, prévoir des réseaux RC de protection El Paur un respect de la (capacité de 1.1).	8) A = A	on de réfé imentation	n protég	gée cont	Gri	oir = 6 is = 18	% de réi	mission	

inversions de polarité

parasites

C = Suppression des impulsions

5) Pour un rapport clair/sombre de 1:1

6) En dessous de 0 °C ne pas déformer

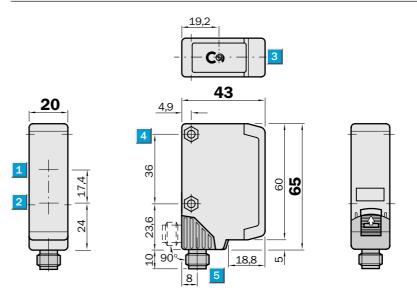
DIN 5033)

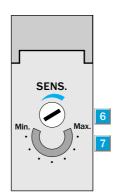
3) ± 10 %

2) Durée de vie moyenne à T_A = +25 °C;

LED, lumière rouge 100.000 h

Blanc = 90 % de rémission

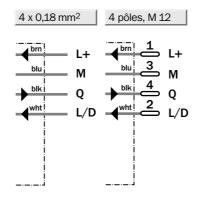

- Filtre polarisant pour une détection sûre des objets à surface brillante
- Boîtier en plastique robuste et compact
- Sensibilité réglable (2 tours) avec indicateur de position (270°)
- Connecteur M 12 orientable 90°



Accessoires	page
Connecteurs	496
Equerres de fixation*	510
Réflecteurs P 250**	520
Réflecteurs	520

- inclus dans la livraison
- ** Réflecteur P 250 inclus dans la livraison

Possibilités de r	églage
WL 250-P 132	
WL 250-P 430	
WL 250-N 132	
WL 250-N 430	


- Axe de réception
- Axe d'émission
- Témoin de réception, rouge
- Trou traversant Ø 4,2 mm, des deux côtés pour écrou hexagonal M 4
- 5 Câble ou connecteur M 12, 4 pôles ; connecteur orientable à 90° (V > H),
 - $V \rightarrow position verticale$,
 - $\ensuremath{\mathsf{H}} \to \ensuremath{\mathsf{position}}$ horizontale ; blocage par curseur
- Réglage distance de détection (2 tours), impossible à fausser
- Indicateur de position réglage de distance de détection (270°)

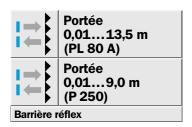
Raccordement

WL 250-P 132 WL 250-P 430 WL 250-N 132 WL 250-N 430

Caractéristiques techniques	WL 250-	P 132	P 430	N 132	N 430		
Portée max./sur réflecteur	0,0113,5 m/PL 80 A						
max./sur réflecteur	0,019 m/P250 (inclus)						
Portée utile recommandée	0,018 m/P250						
Réglage de sensibilité	Potentiomètre, 2 tours,						
	avec indicateur de position						
Emetteur ¹⁾ , type	LED, lumière rouge visible						
	avec filtre polarisant						
Diamètre du faisceau lumineux	env. 400 mm à 8 m de distance						
Angle d'ouverture émetteur	env. 2,5 °						
Tension d'alimentation V _a	CC 1030 V ²⁾						
Ondulation résiduelle 3)	≤ 5 V _{PP}						
Consommation ⁴⁾	≤ 35 mA						
Sorties de commutation	PNP, collecteur ouvert : Q						
	NPN, collecteur ouvert : Q						
Courant de sortie I _a max.	100 mA						
Récepteur, commutation	commutation claire/sombre par						
	câble de commande :						
	+ U _V = commutation claire						
	0 V = commutation sombre						
Temps de réponse ⁵⁾	≤ 0,7 ms						
Fréquence de commutation 6)	700/s						
Raccordement	Câble PVC, 2 m ⁷⁾						
	4 x 0,18 mm ² , Ø 3,8 mm						
	Connecteur M 12, 4 pôles, orientable 90°						
Classe de protection VDE ⁸⁾							
Circuits de protection ⁹⁾	A, B, C, D						
Indice de protection	IP 67						
Température ambiante T _A	Utilisation -25 °C+55 °C						
	Stockage -40 °C+70 °C						
Poids							
avec câble 2 m	env. 80 g						
avec connecteur M 12, 4 pôles	env. 40 g						
Matériau du boîtier	Boîtier : ABS/Optique : PMMA						

- 1) Durée de vie moyenne à $T_A = +\ 25\,^{\circ}\text{C}$; LED, lumière rouge 100.000 h
- 2) Valeur limit

Feuille réfl.


«Diamond Grade»

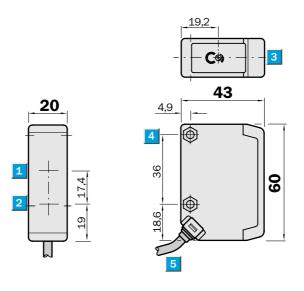
0,01...4,0 m

- 3) Ne doit pas dépasser les tolérances limites de V_a
- 4) Sans charge
- 5) Durée du signal en charge ohmique
- 6) Pour un rapport clair/sombre de 1:1, sans temporisation
- 7) En dessous de 0 °C ne pas déformer le câble
- 8) Tension de référence CC 50 V
- 9) A = Alimentation protégée contre les inversions de polarité
- B = Sorties Q et \overline{Q} protégées contre les courts-circuits
- C = Suppression des impulsions parasites
- D=Sorties protégées contre les surcharges

Portée et réserve de fonctionnement Pour commander Référence Type 100 WL 250-P 132 6 010 608 0,01 WL 250-P 430 6 010 610 0.01 WL 250-N 132 6 010 605 3 0,01 WL 250-N 430 6 010 607 0.01 0,01 10 Réserve de fonctionnement 0 (m) 7 14 Portée utile Portée max. Type de réflecteur Portée utile Portée utile 0,01...11,0 m PL 80 A P250 $0,01...8,0 \, m$ Portée max. PL 50 A ou 0,01...9,5 m PL 40 A 0,01...9,5 m 2 6 10 12 (m) 4 8 14 PL 30 A ou 0,01...7,0 m PL 31 A 0,01...7,0 m PL 20 A 0,01...5,0 m

Barrière réflex WL 250, lumière rouge - UC

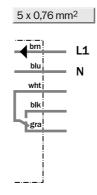
- Filtre polarisant pour une détection sûre des objets à surface brillante
- Boîtier en plastique robuste et compact
- Aide à l'alignement par émetteur LED lumière rouge
- Alimentation universelle, sortie de commutation relais inverseur



Accessoires	page
Equerres de fixation*	510
Réflecteurs**	520

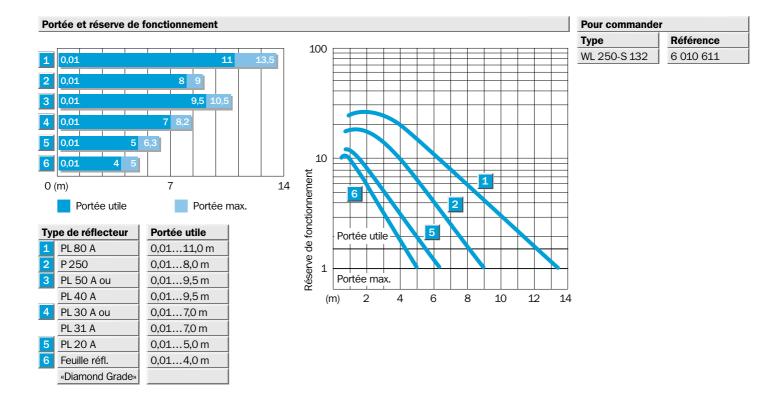
- * inclus dans la livraison
- ** Réflecteur P 250 inclus dans la livraison

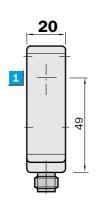
Schéma

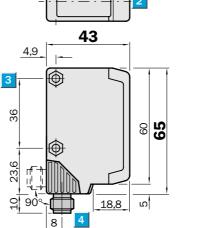

Possibilités de re	églage
WL 250-S 132	
SENS.	
Min Max.	6
· (())·	7
Min. Max.	7

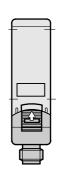
- Axe de réception
 - Axe d'émission
- Témoin de réception, rouge
- Trou traversant Ø 4,2 mm, des deux côtés pour écrou hexagonal M 4
- Câble
- Réglage distance de détection (2 tours), impossible à fausser
- Indicateur de position réglage de distance de détection (270°)

Raccordement


WL 250-S 132


Caractéristiques techniques	WL 250-	S 132						
Portée max./sur réflecteur	0,0113,5 m/PL 80 A							
max./sur réflecteur	0,019 m/P 250 (inclus)							
Portée utile recommandée	0,018 m/P 250							
Réglage de sensibilité	Potentiomètre, 2 tours,							
	avec indicateur de position							
Emetteur ¹⁾ , type	LED, lumière rouge visible							
	avec filtre polarisant							
Diamètre du faisceau lumineux	env. 400 mm à 8 m de distance							
Angle d'ouverture émetteur	env. 2,5 °							
Tension d'alimentation V _a ²⁾	CC 12240 V							
	CA 24240 V							
Puissance	≤ 2 VA							
Sorties de commutation	Relais inverseur, séparé galv.							
Courant de commutation max. ³⁾	3 A/CA 240 V; 3 A/CC 30 V							
Récepteur, commutation	commutation claire							
Temps de réponse	≤ 15 ms							
Fréquence de commutation 4)	33/s							
Raccordement	Câble PVC, 2 m ⁵⁾							
	5 x 0,76 mm ² , Ø 6,3 mm							
Classe de protection VDE ⁶⁾								
Circuits de protection 7)	A, C							
Indice de protection	IP 67							
Température ambiante T _Δ	Utilisation -25 °C+55 °C							
	Stockage - 40 °C+ 70 °C							
Poids	env. 160 g							
Matériau du boîtier	Boîtier : ABS/Optique : PMMA							
1) Durée de vie moyenne à T _A = +25 °C;	4) Pour un rapport clair/sombre de 1:1,	7) A = Al	mentatio		re les			


- LED, lumière rouge 100.000 h
- $2) \pm 10 \%$
- 3) En cas de charge inductive ou capacitive, prévoir des réseaux RC de protection
- sans temporisation
- 5) En dessous de 0 °C ne pas déformer le câble
- 6) Tension de référence UC 250 V
- inversions de polarité
 - $C \! = \! \text{Suppression des impulsions}$ parasites



- Boîtier en plastique robuste et compact
- Aide à l'alignement par émetteur LED lumière rouge
- Connecteur M 12 orientable 90°

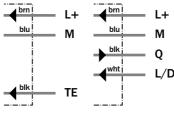
- Milieu axe optique émetteur (WS 250), récepteur (WE 250)
- Témoin de réception, rouge (uniquement récepteur WE 250)
- Trou traversant Ø 4,2 mm, des deux côtés pour écrou hexagonal M 4
- Câble ou connecteur M 12, 4 pôles ; connecteur orientable à 90° (V > H),

 $V \rightarrow position verticale$,

H o position horizontale; blocage par curseur

Accessoires	page
Connecteurs	496
Equerres de fixation*	510

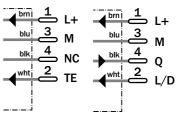
^{*} inclus dans la livraison



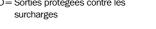
3 x 0,18 m²

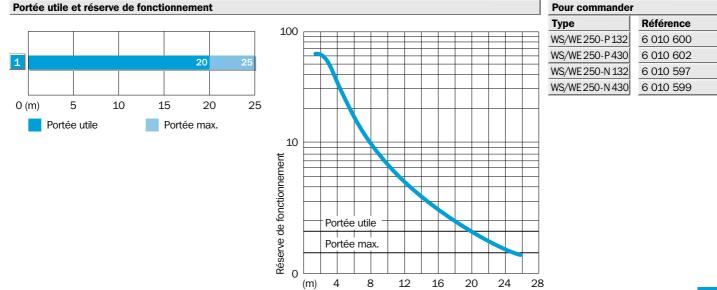
Emetteur	Récepteur
WS 250-D 132	WE 250-P 132
	WE 250-N 132
<u>brn!</u> L+	brn! L+

4 x 0,18 m²

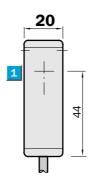


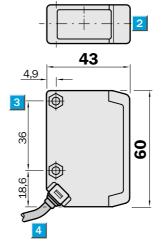
WS/WE 250-P430 WS/WE 250-N 430


4 pôles, M 12	4 pôles, M 12


metteur	Récepteur
VS 250-D 430	WE 250-P 430
	WE 250-N 430

Caractéristiques techniques	WS/WE 250-	P 132	P 430	N 132	N 430					
Portée max.	25 m									
Portée utile	20 m									
Emetteur¹¹), type	LED, lumière rouge visible			1	1					
Diamètre du faisceau lumineux	env. 1,5 m à 20 m de distance									
Angle d'ouverture émetteur	env. 4 °									
Angle de réception										
Tension d'alimentation V _a	CC 1030 V ²⁾									
Ondulation résiduelle ³⁾	≤ 5 V _{PP}									
Consommation 4)			1	1	1					
Emetteur	≤20 mA									
Récepteur	≤35 mA									
Sorties de commutation	PNP, collecteur ouvert : Q									
	NPN, collecteur ouvert : Q		,							
Courant de sortie l _a max.	100 mA									
Récepteur, commutation	commutation claire/sombre par									
	câble de commande :									
	+ V _a = commutation claire									
	0 V = commutation sombre									
Temps de réponse ⁵⁾	≤1 ms									
Fréquence de commutation 6)	500/s									
Entrée test «TE» interruption émission	PNP, NPN; TE à 0 V									
Raccordement	Câble PVC ⁷⁾ , 2 m									
Emetteur WS	3 x 0,18 mm ² , Ø 3,8 mm									
Récepteur WE	4 x 0,18 mm ² , Ø 3,8 mm				i					
·	Connecteur M 12, 4 pôles, orientable 90°	,								
Classe de protection VDE ⁸⁾										
Circuits de protection ⁹⁾		,		'	,					
Emetteur	A, B									
Récepteur	A, B, C, D									
Indice de protection	IP 67									
Température ambiante T _△	Utilisation – 25 °C+ 55 °C									
	Stockage - 40 °C+ 70 °C									
Poids										
avec câble 2 m	env. 150 g									
avec connecteur M 12, 4 pôles										
Matériau du boîtier	Boîtier : ABS/Optique : PC									
	, , ,									
1) Durée de vie moyenne à $T_{\Delta} = +25 ^{\circ}\text{C}$;	Sans charge	8) Tensi	on de ré	férence C	C 50 V	C	= Suppres	ssion des im	pulsions pa	arasite


- 1) Durée de vie moyenne à $T_A = +25\,^{\circ}\text{C}$; LED, lumière rouge 100.000 h
- 2) Valeur limit
- 3) Ne doit pas dépasser les tolérances limites de V_a
- 5) Durée du signal en charge ohmique
- 6) Pour un rapport clair/sombre de 1:1
- 7) En dessous de 0 °C ne pas déformer le câble
- 8) Tension de référence CC 50 V
- 9) A = Alimentation protégée contre les inversions de polarité
 - $B\!=\!$ Sorties Q et \overline{Q} protégées contre les courts-circuits
- $C\!=\!$ Suppression des impulsions parasites D= Sorties protégées contre les

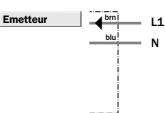


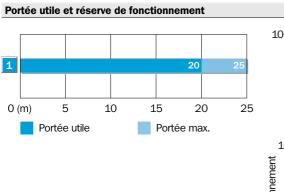
- Boîtier en plastique robuste et compact
- Aide à l'alignement par émetteur LED lumière rouge
- Alimentation universelle, sortie de commutation relais inverseur

- Milieu axe optique émetteur (WS 250), récepteur (WE 250)
- Témoin de réception, rouge (uniquement récepteur WE 250)
- Trou traversant Ø 4,2 mm, des deux côtés pour écrou hexagonal M 4
- Câble

Raccordement

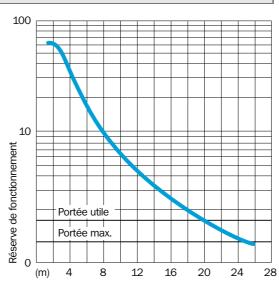
WS/WE 250-S 132



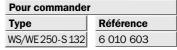

Récepteur

Accessoires	page
Equerres de fixation*	510

* inclus dans la livraison



Caractéristiques techniques	WS/WE 250-	S 132							
Portée max.	25 m								
Portée utile	20 m								
Emetteur ¹⁾ , type	LED, lumière rouge visible								
Diamètre du faisceau lumineux	env. 1,5 m à 20 m de distance								
Angle d'ouverture émetteur	env. 4°								
Angle de réception	env. 20°								
Tension d'alimentation V _a ²⁾	CC 12240 V								
	CA 24240 V								
Puissance									
Emetteur	≤ 2 VA								
Récepteur	≤ 2 VA								
Sorties de commutation	Relais inverseur, séparé galv.								
Courant de commutation max.3)	3 A/CA 240 V; 3 A/CC 30 V								
Récepteur, commutation	commutation claire								
Temps de réponse	≤ 15 ms								
Fréquence de commutation ⁴⁾	33/s								
Raccordement	Câble PVC ⁵⁾ , 2 m								
Emetteur WS	2 x 0,76 mm ² , Ø 6,3 mm								
Récepteur WE	5 x 0,76 mm ² , Ø 6,3 mm								
Classe de protection VDE ⁶⁾									
Circuits de protection 7)	A, C								
Indice de protection	IP 67								
Température ambiante T _A	Utilisation -25 °C+55 °C								
	Stockage -40 °C+ 70 °C								
Poids	env. 290 g								
Matériau du boîtier	Boîtier : ABS/Optique : PC								
1) Durée de vie moyenne à T _A = +25 °C; LED, lumière rouge 100.000 h	3) En cas de charge inductive ou capacitive, prévoir des réseaux RC de protection 4) Pour un rapport clair/sombre de 1-1	5) En de le câb	le		rmer	i	ion proté s de pola	rité	


4) Pour un rapport clair/sombre de 1:1

2) \pm 10 %

6) Tension de référence UC 250 V

C = Suppression des impulsionsparasites

