

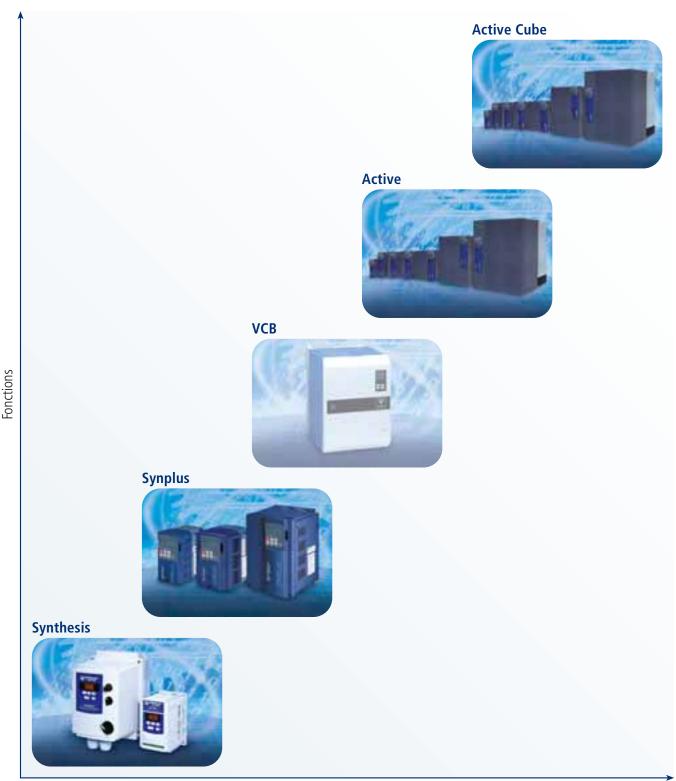
Matières

Introduction	
	01101010101012
Revue	
	01101010101010101
Série ACU201 – Désignation	
0.7	6
Série ACU401 – Désignation	
100	7/10/10/10/19
Caractéristiques techniques	
/00	8
Données techniques générales	
JA0112	10
ACU201 – Données techniques	070
10077	07707017017
ACU401 – Données techniques	
101-10110	13
Sélection et dimensionnement des varia	teurs
1010101	18
Modules en option	
71400	20
Modules d'interface	010100 01010
	22

La série **Active Cube** (ACT³) de Bonfiglioli est conçue pour optimiser les opportunités de l'automatisation des machines. Un grand nombre de fonctionnalités et de commandes du moteur permettent d'utiliser Active Cube dans la conception de solutions d'automatisation simples et efficaces pour une grande variété de machines et d'installations industrielles.

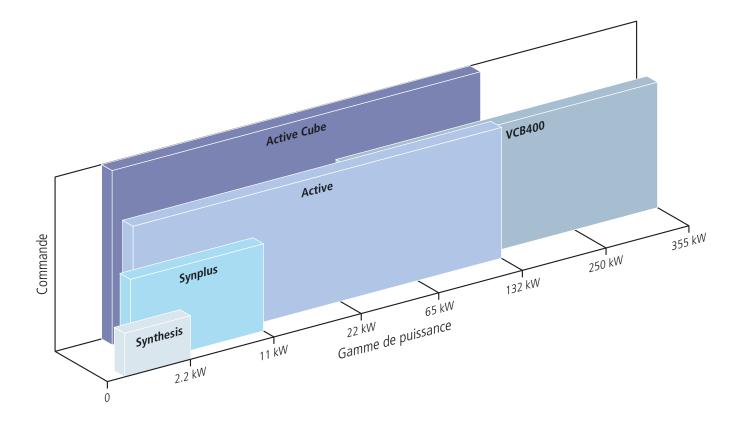
D'excellentes performances en termes de précision et de temps de réponse permettent d'insérer Active Cube dans la gamme d'actionnements Bonfiglioli Vectron de haut de gamme.

La gamme comprend des dispositifs monophasés et triphasés, avec tension d'alimentation 230 V et 400 V et avec les produits triphasés disponibles jusqu'à 132 Kw. La série Active Cube comprend de nombreuses fonctions qui en font un produit adapté pour une utilisation universelle, aussi bien en tant qu'efficace « System Drive » qu'en tant que « Servo Drive », en mesure de satisfaire les conditions requises de la majeure partie des applications de contrôle du mouvement.

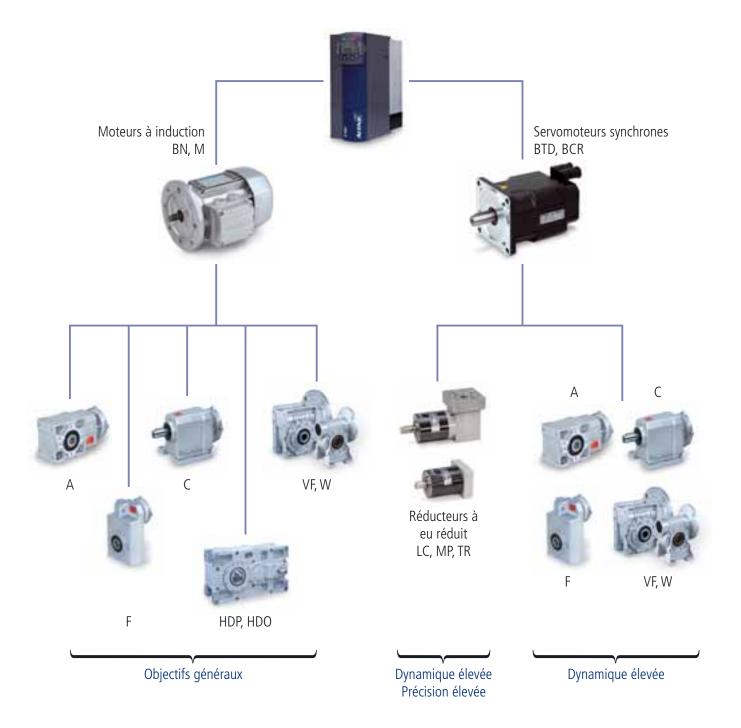

Des fonctions logiques étendues et intégrées donnent aux utilisateurs d'Active Cube la possibilité de reconfigurer simplement et efficacement les routines d'actionnement. Les toutes nouvelles fonctionnalités peuvent être utilisées pour personnaliser l'actionnement selon des exigences de commande spécifiques, afin d'obtenir des solutions optimales.

La série Active Cube tient compte des besoins en matière de sécurité des processus et des machines, grâce aux fonctions « orientées vers la sécurité » intégrées dans l'actionnement standard. La communication avec des contrôleurs logiques programmables, PC et systèmes de visualisation industriels est assurée par le grand nombre de protocoles Fieldbus disponibles, tandis que le réseau bus de système de la propriété réservée de Bonfiglioli permet un dialogue extrêmement rapide et fiable pour la synchronisation et/ou l'échange de données avec d'autres actionnements Bonfiglioli au sein du système.

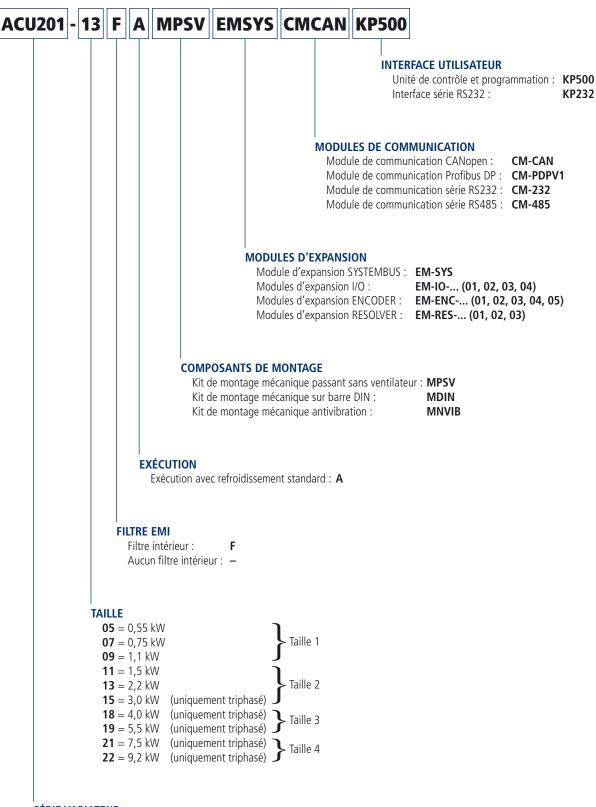
Dans le cadre des applications « servo » Active Cube tire profit de la pleine compatibilité avec le vaste programme de servomoteurs synchrones et accessoires (série BTD et BCR) Bonfiglioli, qui offrent ensemble la possibilité d'obtenir un « servo-système » Bonfiglioli complet.


Le logiciel d'engineering et de configuration Vplus comprend des outils diagnostiques et de recherche de pannes efficaces et modernes : analyseur et oscilloscope en temps réel, fenêtre de contrôle des variables et « tableaux de bord » pour les mesures de processus les plus importantes n'en sont que quelques exemples. Le support technique est un élément clé dans le programme Active Cube, donc le Drive Service Centre Bonfiglioli local est disponible pour vous aider et soutenir les services techniques pendant l'analyse des conditions requises des machines et du système, la définition de l'architecture du système de commande, la sélection et le dimensionnement des produits, la mise en exploitation et le démarrage.

Gamme d'actionnements Bonfiglioli


Performances

Gamme de puissance/commande des actionnements Bonfiglioli



Gamme de « système » Bonfiglioli

Note:

Le présent catalogue concerne la série Active Cube et les accessoires Active Cube. Pour des informations sur d'autres produits illustrés ci-dessus, consulter les catalogues concernés.

SÉRIE VARIATEUR

Variateur ACTIVE CUBE monophasé/triphasé x 200-240 V CA +/- 10 %: ACU201

Série ACU401 – Désignation

ACU401 - 15 F A MPSV EMSYS CMCAN KP500 **INTERFACE UTILISATEUR** Unité de contrôle et programmation : KP500 Interface série RS232 : **KP232 MODULES DE COMMUNICATION** Module de communication CANopen : CM-CAN Module de communication Profibus DP : $\mbox{CM-PDPV1}$ Module de communication série RS232 : CM-232 Module de communication série RS485 : CM-485 **MODULES D'EXPANSION** Module d'expansion SYSTEMBUS : EM-SYS EM-IO-... (01, 02, 03, 04) Modules d'expansion I/O : Modules d'expansion ENCODER : EM-ENC-... (01, 02, 03, 04, 05) Modules d'expansion RESOLVER : EM-RES-... (01, 02, 03) **COMPOSANTS DE MONTAGE** Kit de montage mécanique passant sans ventilateur : MPSV MDIN Kit de montage mécanique sur barre DIN : **MNVIB** Kit de montage mécanique antivibration : **EXÉCUTION** Exécution avec refroidissement standard : A **FILTRE EMI** Filtre intérieur : Aucun filtre intérieur : -**TAILLE** 05 = 0.55 kW**27** = 18.5 kW **07** = 0.75 kW Taille 1 Taille 5 **29** = 22 kW 09 = 1.1 kW**31** = 30 kW 11 = 1.5 kW**33** = 37 kW 12 = 1.85 kW35 = 45 kW- Taille 6 13 = 2.2 kW**37** = 55 kW Taille 2 15 = 3.0 kW**39** = 65 kW 18 = 4.0 kW43 = 75 kW19 = 5.5 kW**45** = 90 kW Taille 7 21 = 7.5 kWTaille 3 47 = 110 kW**22** = 9.2 kW **49** = 132 kW 23 = 11 kWTaille 4 25 = 15 kW

SÉRIE VARIATEUR

Variateur ACTIVE CUBE triphasé x 360-480 V CA +/- 10 % a: ACU401

Caractéristiques techniques

Matériel

Performances

- Boucle de commande à grande vitesse et temps de réponse rapide
- Aussi bien « system drive » que « servo drive »
- Combinaison optimisée avec les servomoteurs Bonfiglioli série BTD et BCR

Automatisation

- Petites dimensions et « densité de puissance » dans toutes les tailles
- Tailles plus petites en « livre » pour une intégration facile dans les armoires d'automatisation
- Fonction « Safe Torque Off » intégrée, conformément à la norme EN 954-1 cat. 3
- Entrée 24 V extérieur pour alimentation de carte de commande de systèmes de backup
- Evaluation thermique moteur
- Entrée feedback position et vitesse (encoder/resolver)
- Disponibilité de différentes modalités de montage mécanique : montage sur barre DIN, montage passant, montage latéral
- Fieldbus (bus de système) de propriété réservée pour la rapidité de communication entre actionnements Active Cube Bonfiglioli

Partie électrique

- Bornier de commande extractible pour une connexion simple et rapide
- Bornier de puissance extractible jusqu'à 4 kW
- Bus pour tension CC pour le « partage de l'énergie » dans les architectures des systèmes multidrive
- Filtres EMI intégrés (EN 61800-3) jusqu'à 9,2 kW
- Transistor de freinage intégré dans toutes les tailles

Options et accessoires

- Série complète de modules d'expansion en option pour augmenter considérablement les I/O et l'acquisition du feedback par les appareils de base
- Série complète de modules de communication en option, pour relier Active Cube aux dispositifs de commande en utilisant les protocoles de communication des bus de champ industriels
- Clavier multifonction avec fonctions de contrôle et programmation
- Kit de connexion actionnement-PC pour la configuration avancée avec le logiciel VPlus
- Kit de télé-assistance pour l'entretien et le diagnostic à distance
- Série complète de câbles de puissance et de commande pour un branchement facile et rapide d'Active Cube aux servomoteurs BTD et BCR de Bonfiglioli

Caractéristiques techniques

Logiciel

Flexibilité

- Commande d'actionneurs asynchrones et synchrones
- Série complète de modalités de fonctionnement, librement sélectionnables
 - Servocommande synchrone avec feedback resolver
 - Contrôle (vectoriel) à orientation de champ avec capteur de vitesse
 - Contrôle (vectoriel) à orientation de champ sans capteur
- Attribution flexible des entrées et des sorties numériques aux variables du module du logiciel de commande
- Fonction de « chopper moteur » pour augmenter la puissance de freinage sans résistances de freinage
- 4 set de données indépendants
- Reprise au vol

Automatisation

- Logiciel d'engineering facile et puissant pour l'attribution des paramètres, le diagnostic et la mise en service guidée
- Puissantes fonctions logiques intégrées
- Synchronisation de vitesse et position entre les actionnements à travers Systembus
- Suiveur master/slave
- Engrenage électronique
- Contrôle PID
- Limites de courant intelligentes
- Moto-potentiomètre commandé par entrée numérique, unité de contrôle et interface de communication

Servo

- Contrôle de vitesse et de position très précis et fiable
- Logiciel de mouvement intégré comprenant des fonctions de homing, convertisseur d'unité et « motion blocks » programmables pour concevoir et tester des profils de mouvement même complexes
- Fonction de table rotative
- Sélection de rampes S avec accélération/décélération réglables séparément et limitation du jerk
- Valeurs préétablies pour les servomoteurs BTD/BCR Bonfiglioli

- Contrôle de la tension de réseau et fonction de « bridging » pour surmonter des pannes de réseau de courte durée
- Protection contre la surcharge et réglage automatique optimal de la fréquence de commutation
- Fonction de « safe torque off »

Diagnostic

- Contrôle des phases
- Mémorisation des valeurs moyennes et de pic

Fonctions d'application avancées

- Contrôle de relâchement de frein avancé (applications de levage)
- Contrôle pour moteurs de mandrin jusqu'à 1 000 Hz avec position de « changement d'outil »
- Contrôle de « translation » pour enrouleurs
- Fonction « index » pour synchronisation sans capteur avancée
- Fonction de détection de charge

Logiciel d'engineering

- Interface facile de programmation
- Oscilloscope en temps réel et écrans des valeurs variables pour une analyse de recherche des pannes avancée pendant la phase de mise en fonctionnement
- Gestion facile et efficace des paramètres « motion block »
- Procédure simple et guidée pour le paramétrage des servomoteurs Bonfiglioli
- Section de programmation des fonctions logiques avec 8 fonctions et 16 variables

4	•
	w

Données techniques générales

Site

Température opérationnelle	0° C - 40° C (40° C-55° C avec déclassement)
Catégorie d'environnement	Fonctionnement 3K3 (EN 60721-3-3) Humidité relative 15 %85 %, sans condensation
Altitude d'installation	Jusqu'à 1 000 m (jusqu'à 4 000 avec déclassement)
Conditions de stockage	Informément à la norme EN 50178
Degré de protection	IP20

Partie électrique

Tension de réseau nominale	ACU201 dans l'intervalle 184264 V - ACU401 dans l'intervalle 320528 V
Fréquence de réseau nominale	4566 Hz
Courant de surcharge	150 % du courant nominal
Courant de pic	200 % du courant nominal pour la majeure partie des classes
Protection électrique	Résistance court-circuit/dispersion à la terre
Transistor de freinage	Incorporé dans les dispositifs standards

Normes

Conformité CE	Directive basse tension 73/23/CEE et EN 50178 / DIN VDE 0160 et EN 61800
Immunité aux interférences	Conformément à la norme EN 61800-3 pour l'utilisation dans des environnements industriels
Approbation UL	Marquage UL, conformément à la norme UL508c

ACU201 – Données techniques

Active Cube 11

De 0,55 à 3,0 kW

					Taille 1			Taille 2	
144	DIATEUR			ACU201-05	ACU201-07	ACU201-09	ACU201-11	ACU201-13	ACU201-15
VA	RIATEUR				F			F	
					Α			А	
	Courant nominal en sortie moteur	l _n	А	3.0	4.0	5.5	7.0	9.5	12.5
anı	Tension nominale en sortie moteur	Un	V			3 x (de 0 à la te	nsion de réseau)		
té mote	Courant de surcharge	I_{pk}	А	4.5	6.0	7.3	10.5	14.3	16.2
Sortie, côté moteur	Puissance nominale moteur conseillée	Pn	kW	0.55	0.75	1.1	1.5	2.2	3.0
Sol	Fréquence de commutation	f _c	kHz			De 2	à 16		
	Fréquence nominale moteur	f _n	Hz			De 0 à	1 000		
	Tension de réseau nominale	U	V			184 .	264		
éseau	Fréquence de réseau nominale	f	Hz			45 .	66		
Entrée, côté réseau	Courant nominal triphasé/PE	1	А	3.0	4.0	5.5	7.0	9.5	10.5
Entrée,	Courant nominal mono- phasé/N/PE ; biphasé/PE	1	А	5.4	7.2	9.5	13.2	16.5	16.5
	Filtre EMI	-				Inté	rieur		
les	Protection contre tout court-circuit / court-circuit vers la masse	-				Oui, ill	imitée		
généra	Type de montage	-				Ver	tical		
informations générales	Classe de protection	-	-						
Informa	Dimensions std A	HxLxP	mm		190 x 60 x 175			250 x 60 x 175	
	Poids (environ)	m	kg		1.2			1.6	
به	Température de refroidissement	Tn	°C			De 0 à 40 (3K3 [DIN IEC 721-3-3)		
Site	Humidité relative de l'air	-	%		D	e 15 à 85, sans ea	au de condensatio	on	
oires	Inductance de ligne en entrée	-	-	Externe (en fonction de l'alimentation de réseau)					
accesso	Filtre EMI	-	-		Interne	e Classe A (EN 618	300-3) ; externe C	lasse B	
Options et accessoires	Module de freinage	-				Transistor de fr	einage interne		
Opti	Unité de contrôle numérique	-	-			0	ui		

ACU201 – Données techniques

De 4,0 à 9,2 kW

				Tail	le 3	Tail	lle 4
VAI	RIATEUR			ACU201-18	ACU201-19	ACU201-21	ACU201-22
۷۸۱	MAILON			- 0	u F		-
				, i	1		A
	Courant nominal en sortie moteur	In	Α	18.0	22.0	32.0	35.0
Site Informations générales Entrée, côté réseau Sortie, côté moteur	Tension nominale en sortie moteur	Un	V		3 x (de 0 à la te	ension de réseau)	
té mot	Courant de surcharge	I _{pk}	A	26.2	30.3	44.5	51.5
ortie, cô	Puissance nominale moteur conseillée	Pn	kW	4.0	5.5	7.5	9.2
So	Fréquence de commutation	f _c	kHz		De 2	2 à 16	
Entrée, côté réseau	Fréquence nominale moteur	f _n	Hz		De 0 a	à 1 000	
Tension de réseau		U	V		184	264	
té rése	Fréquence de réseau nominale	f	Hz		45	66	
Intrée, côt	Courant nominal triphasé/PE	-1	А	18	18 20		35.6
	Fusibles de réseau triphasé/PE	-1	А	2	5	35	50
	Protection contre tout court-circuit / court-circuit vers la masse	-	-		Oui, i	llimitée	
généra	Type de montage	-	-		Ver	rtical	
	Classe de protection	-	-		IP 20 (EN	N60529) ⁽⁰⁾	
Inform	Dimensions std A	HxLxP	mm	250 x 10	00 x 200	250 x 1	125 x 200
	Poids (environ)	m	kg	3.	0	:	3.7
ē	Température de refroidissement	Tn	°C		De 0 à 40 (3K3	DIN IEC 721-3-3)	
Ξ	Humidité relative de l'air	-	%		De 15 à 85, sans e	eau de condensation	
oires	Inductance de ligne en entrée	-	-		Externe (en fonction de	l'alimentation de réseau)	
Options et accessoires	Filtre EMI	-	-	Interne C	lasse A (EN 61800-3) ; ext	terne Classe B (voir tablea	nu page 48)
ons et	Module de freinage	-	-		Transistor de f	freinage interne	
Opti	Unité de contrôle numérique	-	-		(Dui	

ACU401 – Données techniques

De 0,55 à 3,0 kW

					<u>Tail</u>	le 1			Taille 2	
VA	RIATEUR			ACU401-05	ACU401-07		ACU401-11	ACU401-12		ACU401-15
VA	VARIATEON					F			F	
					A			Α		
	Courant nominal en sortie moteur	l _n	Α	1.8	2.4	3.2	3.8	4.2	5.8	7.8
eur	Tension nominale en sortie moteur	Un	V			3 x (de	0 à la tension d	de réseau)		
té mot	Courant de surcharge	I_{pk}	А	2.7	3.6	4.8	5.7	6.3	8.7	11.7
Sortie, côté moteur	Puissance nominale moteur conseillée	Pn	kW	0.55	0.75	1.1	1.5	1.85	2.2	3.0
Sol	Fréquence de commutation	f _c	kHz				De 2 à 16			
	Fréquence nominale moteur	f _n	Hz				De 0 à 1 000			
an	Tension de réseau nominale	U	V				320 528			
é rése	Fréquence de réseau nominale	f	Hz				45 66			
Entrée, côté réseau	Courant nominal triphasé/PE	1	А	1.8	2.4	2.8	3.3	4.2	5.8	6.8
Ent	Fusibles de réseau triphasé/PE	1	А			6	10			
es	Protection contre tout court-circuit / court-circuit vers la masse	-					Oui, illimitée			
généra	Type de montage	-	-				Vertical			
Informations générales	Classe de protection	-	-			ı	P 20 (EN60529)(0)		
Informa	Dimensions std A	HxLxP	mm		190 x 6	60 x 175		250 x 60 x 175		
	Poids (environ)	m	kg		1	.2		1.6		
به	Température de refroidissement	Tn	°C			De 0 à 4	10 (3K3 DIN IEC	721-3-3)		
Site	Humidité relative de l'air	-	%			De 15 à 85	, sans eau de d	condensation		
ires	Inductance de ligne en entrée	-			E	externe (en fond	ntation de résea	au)		
Options et accessoires	Filtre EMI	-		Interne Classe A (EN 61800-3) ; externe Classe B (voir tableau page 48)						
ons et a	Module de freinage	-		Transistor de freinage interne						
Optic	Unité de contrôle numérique	-	-				Oui			

ACU401 – Données techniques

De 4,0 à 15 kW

		Taille 2		Taille 3		Tai	lle 4			
VAI	RIATEUR			ACU401-18	ACU401-19	ACU401-21	ACU401-22	ACU401-23	ACU401-25	
VARIALEON				F		- ou F			-	
				А		Α		Į.	1	
	Courant nominal en sortie moteur	In	A	9.0	14.0	18.0	25.0	32.0		
enr	Tension nominale en sortie moteur	Un	V			3 x (de 0 à la te	nsion de réseau)			
Sortie, côté moteur	Courant de surcharge	I_{pk}	А	13.5	21.0	26.3	30.3	37.5	44.5	
rtie, cô	Puissance nominale moteur conseillée	Pn	kW	4.0	5.5	7.5	9.2	11.0	15.0	
So	Fréquence de commutation	f _c	kHz			De 2	à 16			
	Fréquence nominale moteur	f_n	Hz			De 0 à	1 000			
an	Tension de réseau nominale	U	V			320 .	528			
Entrée, côté réseau	Fréquence de réseau nominale	f	Hz			45 .	66			
trée, cô	Courant nominal triphasé/PE	I	А	7.8	14.2	15.8	20.0	26.0	28.2	
	Fusibles de réseau triphasé/PE	1	А	10.0	16.0 25.0			35.0		
	Protection contre tout court-circuit / court-circuit vers la masse	-				Oui, il	limitée			
généra	Type de montage	-				Ver	tical			
Informations générales	Classe de protection	-				IP 20 (EN	160529) ⁽⁰⁾			
Inform	Dimensions std A	HxLxP	mm	250 x 60 x 175		250 x 100 x 200		250 x 1	25 x 200	
	Poids (environ)	m	kg	1.6		3.0		3	3.7	
Site	Température de refroidissement	Tn	°C			De 0 à 40 (3K3 l	DIN IEC 721-3-3)			
ιΣ	Humidité relative de l'air	-	%		D	e 15 à 85, sans e	au de condensatio	n		
oires	Inductance de ligne en entrée	-			Extern	e (en fonction de	l'alimentation de i	réseau)		
Options et accessoires	Filtre EMI	-	-	Interne	Classe A (EN 618	300-3) ; externe C	lasse B	Externe	Classe B	
ons et	Module de freinage	-	-			Transistor de f	reinage interne			
Opti	Unité de contrôle numérique	-	-			0	ui			

ACU401 – Données techniques

Active Cube

De 18,5 à 30 kW

					Taille 5				
VΔ	RIATEUR			ACU401-27	ACU401-29	ACU401-31			
٧٨	HIA LON								
	Courant nominal en	l _n	A	40.0	A 45.0	60.0			
<u>∟</u>	sortie moteur Tension nominale en sortie moteur	Un		-	3 x (de 0 à la tension de réseau)				
é moteu	Courant de surcharge	I _{pk}	Α	60.0	67.5	90.0			
Sortie, côté moteur	Puissance nominale moteur conseillée	P _n	kW	18.5	22.0	30.0			
Sor	Fréquence de commutation	f _c	kHz		De 2 à 16				
	Fréquence nominale moteur	f _n	Hz		De 0 à 1 000				
an	Tension de réseau nominale	U	V		320 528				
Entrée, côté réseau	Fréquence de réseau nominale	f	Hz		45 66				
trée, cô	Courant nominal triphasé/PE	-1	А	35.6	52.0	58.0			
Ent	Fusibles de réseau triphasé/PE	-1	А	5(0.0	63.0			
les	Protection contre tout court-circuit / court-circuit vers la masse	-	-		Oui, illimitée				
généra	Type de montage	-			Vertical				
Informations générales	Classe de protection	-	-		IP 20 (EN60529) ⁽⁰⁾				
Inform	Dimensions std A	HxLxP	mm		250 x 200 x 260				
	Poids (environ)	m	kg		8.0				
Site	Température de refroidissement	Tn	°C		De 0 à 40 (3K3 DIN IEC 721-3-3)				
Si	Humidité relative de l'air	-	%		n				
oires	Inductance de ligne en entrée	-		Extern	e (en fonction de l'alimentation de r	éseau)			
Options et accessoires	Filtre EMI	-			Externe Classe B				
ons et	Module de freinage	-	-		Transistor de freinage interne				
Opti	Unité de contrôle numérique	-			Oui				

ACU401 – Données techniques

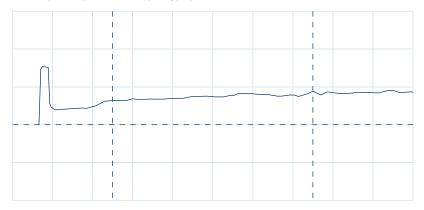
De 37 à 65 kW

				Taille 6						
VA	RIATEUR			ACU401-33	ACU401-35	ACU401-37	ACU401-39			
					- -					
	Courant nominal en		۸	75.0			125.0			
	sortie moteur	l _n	A	75.0	90.0	110.0	125.0			
teur	Tension nominale en sortie moteur	Un	V		3 x (de 0 à la te	nsion de réseau)				
é mot	Courant de surcharge	I_{pk}	А	112.5	135.0	165.0	187.5			
Sortie, côté moteur	Puissance nominale moteur conseillée	Pn	kW	37.0	45.0	55.0	65.0			
So	Fréquence de commutation	f _c	kHz		De 2	. à 8				
	Fréquence nominale moteur	f _n	Hz		De 0 à	1 000				
an	Tension de réseau nominale	U	V		320	528				
té rése	Fréquence de réseau nominale	f	Hz		45	66				
Entrée, côté réseau	Courant nominal triphasé/PE	-1	А	72	86	105	120			
Ent	Fusibles de réseau triphasé/PE	-1	А	80	100	125	125			
les	Protection contre tout court-circuit / court-circuit vers la masse	-	-		Oui, ill	imitée				
généra	Type de montage	-	-		Vert	ical				
nformations générales	Classe de protection	-	-		IP 20 (EN	60529) ⁽⁰⁾				
Informa	Dimensions std A	HxLxP	mm		400 x 27	75 x 260				
	Poids (environ)	m	kg		2	0				
به	Température de refroidissement	Tn	°C		De 0 à 40 (3K3 [DIN IEC 721-3-3)				
Site	Humidité relative de l'air	-	%		De 15 à 85, sans ea	au de condensation				
oires	Inductance de ligne en entrée	-	-		Externe (en fonction de l	'alimentation de réseau)				
Options et accessoires	Filtre EMI	-	-		Externe	Classe B				
ons et	Module de freinage	-	-		Transistor de fr	einage interne				
Opti	Unité de contrôle numérique	-	-		0	ui				

ACU401 – Données techniques

De 75 à 132 kW

					Tail	le 7	
VA	RIATEUR			ACU401-43	ACU401-45	ACU401-47	ACU401-49
						- A	
	Courant nominal en sortie moteur	In	А	150.0	180.0	210.0	250.0
Þ	Tension nominale en sortie moteur	Un	V		3 x (de 0 à la te	nsion de réseau)	
é mote	Courant de surcharge	I _{pk}	А	225.0	270.0	315.0	332.0
Sortie, côté moteur	Puissance nominale moteur conseillée	Pn	kW	75.0	90.0	110.0	132.0
Sor	Fréquence de commutation	f _c	kHz		De 2	2 à 8	
	Fréquence nominale moteur	f _n	Hz		De 0 à	1 000	
an	Tension de réseau nominale	U	V		320 .	528	
Entrée, côté réseau	Fréquence de réseau nominale	f	Hz		45 .	66	
trée, cô	Courant nominal triphasé/PE	1	А	143	172	208	249
End	Fusibles de réseau triphasé/PE	1	А	160	200	250	315
les	Protection contre tout court-circuit / court-circuit vers la masse	-	-		Oui, il	limitée	
généra	Type de montage	-			Ver	tical	
Informations générales	Classe de protection	-	-		IP 20 (EN	(60529) ⁽⁰⁾	
Inform	Dimensions std A	HxLxP	mm		510 x 4	12 x 351	
	Poids (environ)	m	kg	4	5	4	8
Site	Température de refroidissement	Tn	°C		De 0 à 40 (3K3 I	DIN IEC 721-3-3)	
Si	Humidité relative de l'air	-	%		De 15 à 85, sans e	au de condensation	
oires	Inductance de ligne en entrée	-	-		Externe (en fonction de	e (en fonction de l'alimentation de réseau)	
Options et accessoires	Filtre EMI			Externe	Classe B		
ons et	Module de freinage	-	-		Transistor de f	reinage interne	
Opti	Unité de contrôle numérique	-	-		0	ui	


Sélection et dimensionnement des variateurs

Le choix du variateur le plus adapté aux exigences de l'application est essentiel pour obtenir le meilleur de la série Active Cube. Le choix d'un variateur trop petit peut provoquer des performances insatisfaisantes et une faible et décevante productivité de la machine. Le choix d'un variateur trop grand peut augmenter les coûts et provoquer des problèmes dans le réglage de la commande moteur. La présente section fournit quelques conseils de base pour déterminer la puissance optimale et le modèle d'actionnement adapté aux conditions requises de l'application.

Puisqu'Active Cube est en mesure de fonctionner, aussi bien en tant que « system drive » haute technologie, combiné à des moteurs à induction asynchrones que comme « servo drive », avec les servomoteurs synchrones, nous proposons deux critères différents :

Moteurs à induction asynchrones (charge continue)

Active Cube actionne des moteurs traditionnels à induction à cage d'écureuil (par ex, Bonfiglioli série M et BN). Les applications sont habituellement caractérisées par l'alimentation d'un couple continu pour des durées prolongées avec des besoins occasionnels en surcharge graduelle. Un exemple de profil de couple typique est illustré ci-dessous.

En cas de couple continu, pour le dimensionnement et la sélection d'Active Cube, il convient de procéder comme indiqué ci-après :

- a. Contrôler les phases de l'alimentation de réseau (monophasé ou triphasé) et la tension d'alimentation de réseau (≈230 V ou ≈400 V) Si la tension de réseau est monophasée -230 V ou triphasée -230 V ⇒ Série ACU201 Si la tension de réseau est triphasée -400 V ⇒ Série ACU401
- b. Contrôler si les conditions d'application (température ambiante, altitude, valeurs de réseau, ...) rentrent dans les conditions nominales

 ⇒ En cas de conditions opérationnelles insolites, consulter le DSC pour obtenir un « déclassement » ad hoc du produit.
- c. Vérifier le courant nominal du moteur pour une charge continue l_{N moteur} (voir la plaque des données du moteur courant nominal), le courant de surcharge du moteur l_{MAX moteur} et le temps de surcharge.
 - Sélectionner la puissance de l'actionnement (voir les fiches de données dans la section « Données techniques » du présent catalogue) en appliquant, ensemble, les conditions suivantes :
 - IN actionnement ≥ IN moteur (courant nominal de l'actionnement supérieur au courant nominal du moteur)
 - $I_{pk} \ge I_{MAX \ moteur}$ (courant de surcharge de l'actionnement supérieur au courant de surcharge du moteur)
 - **Temps de surcharge** ≤ **60s** (temps de surcharge inférieur à 60 s toutes les 10 min)
- d. Classe de protection EMC requise
 - a. A1 ⇒ Aucune protection requise jusqu'à 9,2 kW
 - b. A2 \Rightarrow Filtre EMC extérieur requis (voir les filtres EMC dans la section « Accessoires » du présent catalogue)
 - c. B ⇒ Filtre EMC extérieur requis (voir les filtres EMC dans la section « Accessoires » du présent catalogue)
- e. Des entrées, sorties, acquisition de feedback, communication entre les actionnements sont-ils nécessaires ?
 - ➡ Sélectionner les modules d'expansion (voir les modules en option dans la section « Modules d'expansion » du présent catalogue)
- f. La communication avec d'autres dispositifs électroniques (PLC, HMI, DCS, ...) est-elle nécessaire ?
 - ⇒ Sélectionner les modules de communication (voir les modules en option dans la section « Modules de communication » du présent catalogue)
- g. Prévoit-on des problèmes d'harmoniques ?
 - ⇒ Sélectionner l'inductance de ligne (voir l'inductance de ligne dans la section « Accessoires » du présent catalogue)
- h. Le moteur est équipé d'un dispositif de feedback encoder ou resolver ? L'émulation du codificateur est-elle nécessaire ?
 - ⇒ Sélectionner le module de feedback (voir les modules en option dans la section « Modules d'expansion » du présent catalogue)
- i. La résistance de freinage est-elle requise ?
 - ➡ Sélectionner la résistance de freinage (voir la résistance de freinage dans la section « Accessoires » du présent catalogue)

Sélection et dimensionnement des variateurs

Active Cube

Servomoteurs synchrones à aimants permanents (charge intermittente)

Active Cube actionne des servomoteurs PM synchrones à hautes performances (par ex, Bonfiglioli série BTD et BCR). Les applications sont habituellement caractérisées par l'exigence d'un couple intermittent très élevé sur de courtes périodes. Un exemple de profil de couple typique est illustré ci-dessous.

En cas de couple intermittent avec des pics élevés, pour le dimensionnement et la sélection d'Active Cube, il convient de procéder comme indiqué ci-après :

- a. Contrôler les phases de l'alimentation de réseau (monophasé ou triphasé) et la tension d'alimentation de réseau (≈230 V ou ≈400 V) Si la tension de réseau est monophasée -230 V ou triphasée -230 V ⇒ Série ACU201 Si la tension de réseau est triphasée -400 V ⇒ Série ACU401
- b. Contrôler si les conditions d'application (température ambiante, altitude, valeurs de réseau, ...) sont conformes aux conditions nominales 🖈 En cas de conditions opérationnelles insolites, consulter le DSC pour obtenir un « déclassement » ad hoc du produit.
- c. Calculer le couple RMS M_{RMS} et le courant moteur correspondant RMS I_{RMS} requis par le graphique du profil de charge de l'application
- d. Calculer le couple de pic du moteur M_{MAX} à partir du graphique du profil de charge de l'application et le courant de pic obtenu nécessaire I_{MAX}.
- e. Sélectionner l'actionnement en tenant compte des conditions suivantes :
 - In actionnement ≥ I_{RMS moteur} (courant nominal de l'actionnement supérieur au courant équivalent du moteur)
 - I_{pk actionnement} ≥ I_{MAX moteur} (courant de pic de l'actionnement supérieur au courant de pic du moteur)
- f. Utilise-t-on un servomoteur BTD ou BCR Bonfiglioli?

Oui: ⇒Sélectionner le module de feedback EMRESO3 spécialisé (voir les modules en option dans la section « Modules d'expansion » du présent catalogue) Non: ⇒ Sélectionner le module de feedback (voir les modules en option dans la section « Modules d'expansion » du présent catalogue)

- g. Classe de protection EMC requise
 - a. A1 ⇒ Aucune protection requise jusqu'à 9,2 kW
 - b. A2 ⇒ Filtre EMC extérieur requis (voir les filtres EMC dans la section « Accessoires » du présent catalogue)
 - c. B ➡ Filtre EMC extérieur requis (voir les filtres EMC dans la section « Accessoires » du présent catalogue)
- h. Des entrées, sorties, acquisition de feedback, communication entre les actionnements sont-ils nécessaires ?
 - ⇒ Sélectionner les modules d'expansion (voir les modules en option dans la section « Modules d'expansion » du présent catalogue)
- i. La communication avec d'autres dispositifs électroniques (PLC, HMI, DCS, ...) est-elle nécessaire ?
 - ⇒ Sélectionner les modules de communication (voir les modules en option dans la section « Modules de communication » du présent catalogue)
- j. Prévoit-on des problèmes d'harmoniques ?
 - ⇒ Sélectionner l'inductance de ligne (voir l'inductance de ligne dans la section « Accessoires » du présent catalogue)
- k. La résistance de freinage est-elle reguise ?
 - ➡ Sélectionner la résistance de freinage (voir la résistance de freinage dans la section « Accessoires » du présent catalogue)

Modules en option

Active Cube est réalisé pour assurer la flexibilité maximale du matériel de l'actionnement afin de l'adapter à toute condition requise de commande. Les concepteurs de machines peuvent choisir parmi une vaste gamme de modules d'expansion matériels possibles qui peuvent être installés directement dans les 3 fentes disponibles dans les modèles Active Cube standard. Le montage et la connexion sont faciles et rapides grâce aux dispositifs de fixation incorporés. L'utilisation des modules en option permet d'augmenter considérablement les caractéristiques et les possibilités d'intégration d'Active Cube. Le nombre de configurations hardware possibles que l'on peut obtenir en combinant les différents modules est étonnamment élevé. Il est possible de réaliser la meilleure configuration hardware d'Active Cube pour chaque application !

Modularité du matériel

Module d'interface

Branchement du clavier en option KP500, de l'adaptateur pour interface série KP232 ou du câble de branchement éloigné de l'unité de contrôle pour l'accessoire KPCMK

Module de communication CM

Panneau de connexion pour différents protocoles de communication :

- CM-232, interface RS232
- CM-485, interface RS485
- CM-PDPV1, Interface Profibus-DP
- CM-CAN Interface CANopen
- Autres protocoles sur demande

Module d'expansion EM

Panneau de branchement pour l'adaptation des entrées et des sorties aux différentes applications sur la base des exigences spécifiques du client :

- EM-I/O, entrées et sorties analogiques et numériques, disponible dans 4 variantes
- EM-ENC, interface capteur de vitesse, sortie en fréquence et bus de système, disponible dans 5 variantes
- EM-RES, interface resolver, sortie en fréquence et bus de système, disponible dans 3 variantes
- EM-SYS, bus de système pour communication Systembus (sur demande, bus de système combiné au module de communication CM-CAN)
- Autres modules personnalisables sur demande

Modules en option

Active Cube

Les modules en option peuvent être commandés séparément ou avec l'unité ACU de base, comme un pack de puissance « étendu ». La majeure partie des modules en option Active Cube peut être utilisée également dans la série Active, en permettant ainsi une utilisation facile des actionnements des deux séries dans le même système d'automatisation.

Sélectionner ci-dessous le module hardware pour personnaliser Active Cube et réaliser un actionnement unique qui s'adapte au mieux aux exigences de son application.

								Encode	er de vitesse	Bus de
		Al	AO	DI	DO	Relais	RF	Type(s)	Impulsion zéro	système
EQUIPEMENT DE BASE D'ACTIVE CUBE		1 ²⁾	-	6 ³⁾	1	1	-	HTL	Oui	Oui
SEC. SEC. S.	EM-IO-01	1	1	3	-	2	-	HTL	Oui	Oui
	EM-IO-02	1	1	3	-	1	-	HTL	Oui	Oui
PROBE	EM-IO-03	1	2	2	-	1	-	HTL	Non	Oui
10000	EM-IO-04	-	-	2	1 ¹⁾	-	-	-	-	Oui
And the same	EM-ENC-01	1	-	-	-	-	Oui 5)	TTL & HTL	Non	Oui
	EM-ENC-02	1	1	-	1 ¹⁾	-	-	TTL & HTL	Non	Oui
	EM-ENC-03	-	-	-	-	-	-	TTL & HTL	Non	Oui
-	EM-ENC-04	1	1	-	-	1	-	TTL & HTL	Oui	Non
1000	EM-ENC-05	1	1	-	-	-	-	TTL & HTL	Oui	Oui
	EM-RES-01	1	-	-	-	-	Oui ⁵⁾	R	esolver	Oui
	EM-RES-02	1	-	-	-	-	Oui ⁶⁾	R	esolver	Non
	EM-RES-03	1	-	3	2	-	-	Re	solver ⁴⁾	Oui
	EM-SYS	-	-	-	-	-	-	-	-	Oui

- 1) Il peut être utilisé en alternative comme une entrée numérique
- 2) MFI1 peut être utilisé en alternative comme une entrée numérique
- 3) UNO est utilisé pour l'activation de commande. DI peut être utilisé pour l'encoder 1 si nécessaire.
- 4) EM-RES-03: Resolver et PTC utilisent un connecteur DSub 9.
- 5) Fréquence de répétition sans impulsion de zéro
- 6) Fréquence de répétition avec impulsion de zéro
- RF: Fréquence de répétition, simulation de capteur de vitesse.

Toutes les entrées et les sorties sont réalisées avec des bornes déconnectables

Communication				
SACRE	CM-CAN			
	CM-PDPV1	Connecteurs réalisés avec		
	CM-485	des broches DSub 9		
	CM-232			

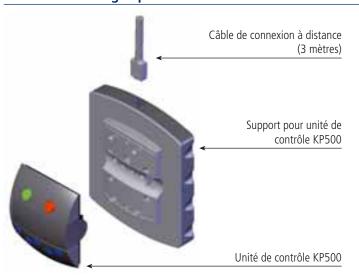
Communication				
	CM-CAN-T			
	CM-PDPV1-T	Sans connecteurs		
	CM-485-T			

Modules d'interface

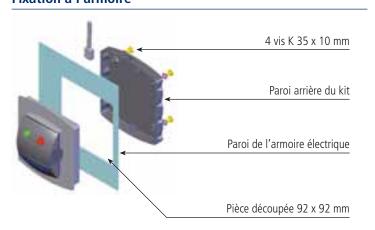
Unité de contrôle / KP500

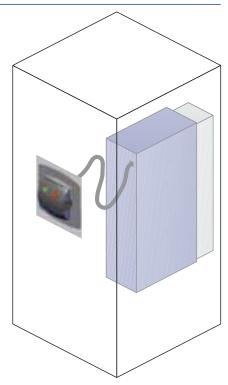
L'unité de contrôle KP500 est dotée d'une fonction Couple Paramètres qui permet à l'utilisateur de copier les valeurs paramétriques du variateur sur une mémoire non volatile comprise dans le dispositif KM500, pour revenir ensuite décharger les mêmes valeurs sur un autre variateur.

L'unité de contrôle permet de paramétrer le variateur pour des applications spécifiques et permet la visualisation des valeurs en service de grandeurs physiques et électriques. Le variateur peut également être contrôlé par l'unité de contrôle pour la commande marche/arrêt et pour la commande d'augmentation/diminution de la référence de fréquence. L'unité de contrôle n'est pas essentielle pour le fonctionnement du variateur et peut être branchée quand l'utilisateur le juge utile ou nécessaire.


Modules d'interface

Kit de branchement éloigné de l'unité de contrôle / KPCMK


Le kit KPCMK est utilisé pour la commande éloignée du variateur de l'unité KP500.


Branchement éloigné palmaire

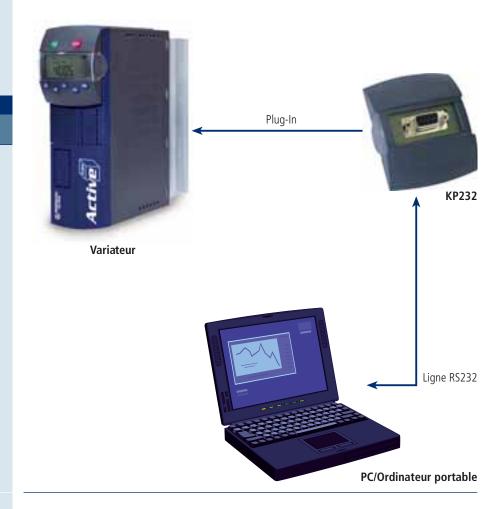
Fixation à l'armoire

Connexion à distance à l'extérieur du cadre

Modules d'interface

Interface / KP-232

L'interface série KP232 peut être utilisée en alternative à l'unité de contrôle KP500. Cette connexion permet d'effectuer le paramétrage, le contrôle, la gestion des réglages, le contrôle du variateur et même la mise en service par le biais du PC ou d'un ordinateur portable. Le branchement en série point-à-point entre variateur et PC est conforme à la spécification pour la transmission entre terminal de données (DTE) et appareillage pour la communication de données (DCE), en exigeant alors un câble série de broche à broche avec connecteur DB9 mâle sur le côté variateur.


L'interface KP232 permet d'utiliser une ligne non supérieure à 15 m de long. Le protocole de transmission série garantit une sécurité des données élevée et n'exige pas de signaux d'établissement d'une liaison entre ordinateur et variateur.

L'application logicielle VPlus est disponible comme accessoire. Ce programme fonctionne dans un environnement Windows et est consacré à la gestion complète du variateur Active Cube à l'aide d'un PC, y compris la mise en service et le paramétrage, qui exige l'interface hardware KP232, CM232 ou CM485. Le paquet VPlus comprend également une Fonction Oscilloscope numérique à quatre traces configurables pour le contrôle même de type graphique du variateur.

Données techniques

Vitesse en Baud (kBaud)

Jusqu'à 115,2 kb

Communication série RS232 / CM-232

La fiche de communication en option CM-232 permet d'effectuer la connexion série RS232 du variateur Active Cube à un dispositif de contrôle externe ou à un PC conformément à la norme ANSI EIA/TIA-232E et CCITT V.28. La norme définit les caractéristiques électriques et mécaniques des branchements série entre les terminaux de données (DTE) et les appareils de communication de données (DCE).

L'interface série prévue comme fiche DB9 est équipée de brochage de type DCE.

Le protocole de transmission série garantit un degré de sécurité des données élevé et établit la connexion même sans signaux d'établissement d'une liaison ; ce qui permet de réduire à trois le nombre de fils nécessaires pour la communication.

La distance maximale autorisée entre les différents nœuds (variateur) du bus et le master (PC, PLC) dépend du câble utilisé et de la vitesse de transmission choisie.

Le programme VPlus est disponible également pour cette option pour la programmation et le contrôle du variateur.

Position du module CM-232 sur le variateur

Ligne RS232

Donnees techniques		
	2,4	
Vitesse en	4,8	
Baud (kBaud)	9,6	
	19,2	

Pour la vitesse de transmission maximale, les câbles ne doivent pas dépasser 30 mètres de longueur. Des câbles de longueur supérieure sont autorisés en cas de vitesses de transmission inférieures.

Modules de communication

Communication série RS485 / CM-485

Position du module CM-485 sur le variateur

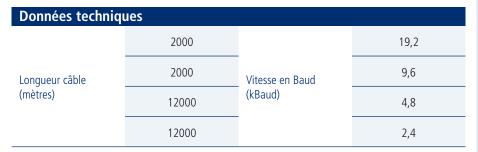
Le module de communication CM-485 a été conçu pour la transmission de données à vitesse élevée sur de grandes distances dans les applications industrielles. Le bus RS485 supporte l'échange de données entre 30 nœuds avec un système basé sur une paire bidirectionnelle.

L'interface se base sur un connecteur DB9, conformément aux normes pour la transmission physique des données ITU V.11 et ANSI EIA/TIA-422B. La fiche de communication CM-485 comprend la résistance de terminaison de fin de ligne qui peut être activée ou désactivée par le biais d'un DIP switch à bord.

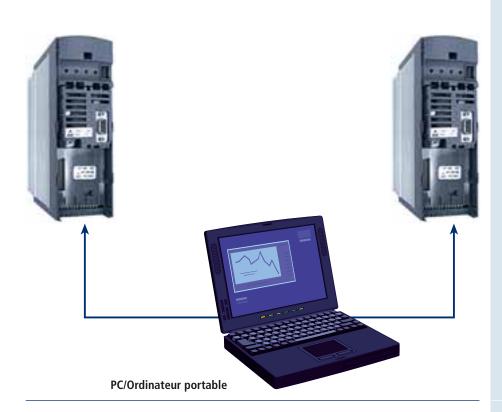
L'adresse de réseau RS485 du variateur est établie par le biais de paramètres logiciels à l'aide de l'unité de contrôle KP500 ou au moyen d'un PC en communication série avec KP-232. RS485 est conforme à la norme ISO 1745 pour la transmission de données liées par un code. La vitesse d'échange de données standard et les fonctions de contrôle peuvent être établies avec le logiciel VPlus.

Données techniques				
	2000		19,2	
Longueur câble	2000	Vitesse en Baud	9,6	
(mètres)	12000	(kBaud)	4,8	
	12000		2,4	

Les valeurs reportées dans le tableau sont fournies à titre indicatif et peuvent varier en fonction des caractéristiques du câble.


Modules de communication

Communication série RS485 / CM-485


Communication Modbus

Le module de communication CM-485 permet d'utiliser le profil de communication Modbus simplement en changeant la valeur d'un paramètre. Il représente donc une solution économique pour connecter le variateur Active Cube dans un environnement de communication Modbus avec des dispositifs Active Cube standard et un module de communication standard.

Deux profils sont disponibles : le Modbus RTU bien connu, qui offre aux utilisateurs Modbus experts la possibilité de communiquer rapidement entre différents dispositifs, et le profil Modbus ASCII, qui permet le paramétrage facile de la communication entre différents dispositifs, en plus des fonctions de diagnostic de la communication. La gamme d'adresses va de 1 à 247.

Les valeurs reportées dans le tableau sont fournies à titre indicatif en cas d'utilisation d'un module CM485 et peuvent varier en fonction des caractéristiques du câble.

Position du module CM-485 sur le variateur

Modules de communication

Communication Profibus DP / CM-PDPV1

DIP-switch interne pour l'activation de la résistance de terminaison de 220 Ω intégrée dans le module.

Position du module CM-PDP sur le variateur

L'interface Profibus DP satisfait la norme européenne sur les bus de champ DIN 19245. La version Profibus, optimisée pour assurer d'excellentes performances en termes de vitesse et de faibles coûts de connexion, a été adaptée pour la communication entre des systèmes d'automatisation et des périphériques décentralisés.

Les profils suivants « d'actionnement à vitesse variable » définis à l'aide de Profidrive pour la technologie des actionnements électriques sont supportés par CMP-DP : PPO1, PPO2, PPO3, PPO4.

L'interface CM-PDP supporte différentes vitesses de transmission conformément à la norme EN 50170. La vitesse de transmission s'adapte automatiquement aux réglages du bus principal de champ. Le module CM-PDP est doté d'un DIP switch pour l'activation d'une résistance de terminaison de fin de ligne, comprise dans la CM-PDP.

Données techniques				
	1200		9,6	
	1200		19,2	
	1200		45,45	
	1200		93,75	
Longueur câble	1000	Vitesse en Baud	187,5	
(mètres)	400	(kBaud)	500	
	200		1500	
	100		3000	
	100		6000	
	100		12000	

Les valeurs reportées dans le tableau sont fournies à titre indicatif et peuvent varier en fonction du câblage et des caractéristiques du câble.

Modules de communication

Communication CANopen / CM-CAN

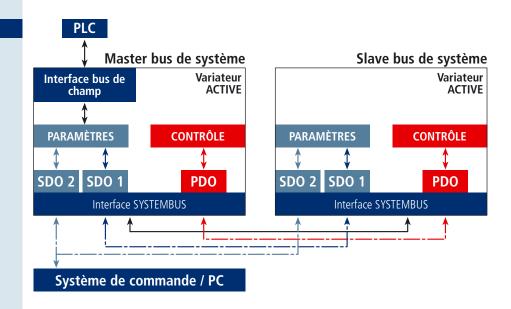
L'option de communication CM-CAN avec interface contrôleur zone réseau est conforme à la norme sur les transmissions ISO/DIS 11898. Le brochage du connecteur DB9 se base sur la spécification de « CAN in Automation e.V. » qui permet le branchement de 127 nœuds maximum dans le réseau. Les adresses des nœuds de réseau sont fournies par le logiciel. La résistance de terminaison est activée au moyen d'un DIP switch sur le module. Le protocole de transmission de terminaison de fin de ligne actuel répond aux spécifications CANopen DS-301 V4.02. La distance maximale autorisée entre les nœuds du bus dépend du câble utilisé et de la vitesse de transmission sélectionnée. Voir tableau.

DIP-switch interne pour l'habilitation de la résistance de terminaison intégrée dans le module.

Position du module CM-CAN sur le variateur

Données techniques				
	5000		10	
	2500		20	
	1000		50	
Longueur câble	800	Vitesse en Baud	100	
(mètres)	500	(kBaud)	125	
	250		250	
	100		500	
	25		1000	

Les valeurs reportées dans le tableau sont fournies à titre indicatif et peuvent varier en fonction du câblage et des caractéristiques du câble.


Position du module CM-SYS sur le variateur

Le « bus de système » des variateurs Active Cube représente un moyen de communication de propriété exclusive basé sur CANopen qui permet un échange rapide de données entre les variateurs ainsi que l'accès aux données paramétriques de l'ensemble des dispositifs connectés sur le bus de système depuis un bus principal de système. Les nœuds présents sur le bus de système (max. 64) sont branchés par une paire.

La terminaison du bus (sur le premier ou sur le dernier nœud) peut être activée par le biais des DIP switch du module EM-SYS. On peut sélectionner une terminaison du bus active ou passive.

Le bus de système est équipé de trois canaux PDO (Objet de Données de Processus) qui permettent un échange de données de processus rapide pour chaque variateur. Deux canaux SDO (Objet Données de Service) sont également prévus pour le paramétrage. Grâce aux trois canaux PDO équipés d'un canal de transmission et d'un canal de réception, il est possible de transmettre toutes les données des variateurs. Cela permet, entre autres, de réaliser, de manière particulièrement facile, des configurations maître/esclave et en cascade pour obtenir un degré de précision et une vitesse élevés.

Chaque canal de transmission et de réception comprend 8 octets qui peuvent être occupés par des objets ; ce qui permet d'offrir un degré important de polyvalence pour les applications les plus diversifiées. La sélection des objets de transmission et des objets de réception est simplifiée par le programme Vplus et aucun autre instrument de configuration n'est nécessaire.

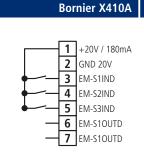
Modules d'expansion

Module entrée-sortie / EM-I/O-01

Le module d'expansion EM-I/O-01 permet d'augmenter le nombre d'entrées et de sorties standard prévus sur les variateurs Active Cube pour les différentes applications. Les entrées et les sorties analogiques peuvent également être disponibles avec des signaux bipolaires. Pour ce faire, elles doivent être configurées en utilisant les paramètres du variateur.

Les entrées numériques supplémentaires prévues sur le module d'expansion sont équivalentes aux entrées standard, d'un point de vue électrique. Le contact en échange relais représente une autre solution pour l'activation à une puissance élevée au niveau de la sortie à relais fournie avec les équipements standard. Le bus de système SYSTEMBUS est disponible sur deux bornes et assure un contrôle facile de systèmes d'actionnement décentralisés.

Le module est équipé d'un bornier qui peut être extrait et divisé en deux parties (X410A et X410B) physiquement séparées entre elles.



Position du module EM-OI-01 sur le variateur

Structure et fonctions du bornier :

Borne	Fonction
X410A.1	Sortie alimentation 20 V DC (180 mA)
X410A.2	Masse de l'alimentation à 20 V
X410A.3	Entrée numérique EM-S1IND multifonction $V_{max} = 30 \text{ V}$ (24 V/10 mA), PLC compatible
X410A.4	Entrée numérique EM-S2IND multifonction $V_{max} = 30 \text{ V}$ (24 V/10 mA), PLC compatible
X410A.5	Entrée numérique EM-S3IND multifonction $V_{max} = 30 \text{ V}$ (24 V/10 mA), PLC compatible
X410A.6 X410A.7	Sortie relais EM-S10UTD multifonction, $U_{max} = 24 \text{ V}$, 1 A (ohmique)

Borne	Fonction	
X410B.1 X410B.2	Sortie relais EM-S2OUTD multifonction, $U_{max} = 24 \text{ V}$, 1 A (ohmique)	
X410B.3	Entrée analogique +/- 10 V et+/- 20 mA EM-S1INA	
X410B.4	Sortie analogique +/-10 V EM-S1OUTA multifonction	
X410B.5	CAN-Low Systembus	
X410B.6	CAN-High Systembus	
X410B.7	Masse pour signaux +/- 10 V	

1	EM-S2OUTD
2	EM-S2OUTD
3	EM-S1INA
4	EM-S10UTA
5	CAN-Low
6	CAN-High
7	GND 10V
	3 4 5

Bornier X410B

Modules d'expansion

Module entrée-sortie / EM-I/O-02

Comme l'EM-IO-01, le module d'expansion EM-IO-02 augmente le nombre des entrées et des sorties standard des variateurs Active Cube.

A la différence de la version -01, le module EM-IO-02 a une disposition légèrement modifiée qui prévoit une entrée pour sonde thermique PTC à la place d'une des sorties à relais du module. Les fonctions de toutes les autres bornes sont égales à celles du module EM-IO-01.

Position du module EM-OI-02 sur le variateur

Structure et fonctions du bornier :

1 +20V / 180mA QND 20V EM-S1IND EM-S2IND EM-S3IND EM-S1OUTD EM-S1OUTD EM-S1OUTD

Bornier X410A

Borne	Fonction
X410A.1	Sortie alimentation 20 V DC (180 mA)
X410A.2	Masse de l'alimentation à 20 V
X410A.3	Entrée numérique EM-S1IND multifonction $V_{max} = 30 \text{ V}$ (24 V/10 mA), PLC compatible
X410A.4	Entrée numérique EM-S2IND multifonction $V_{max} = 30 \text{ V}$ (24 V/10 mA), PLC compatible
X410A.5	Entrée numérique EM-S3IND multifonction $V_{max} = 30 \text{ V}$ (24 V/10 mA), PLC compatible
X410A.6 X410A.7	Sortie relais EM-S10UTD multifonction, $U_{max} = 24 \text{ V}$, 1 A (ohmique)

Bornier X410B	Borne	Fonction
	X410B.1	Entrée pour PTC moteur
PTC PTC	X410B.2	Masse pour PTC moteur
10Vref 2 GND-PTC	X410B.3	Entrée analogique +/- 10 V et+/- 20 mA EM-S1INA
3 EM-S1INA	X410B.4	Sortie analogique +/-10 V EM-S10UTA multifonction
T T EM-S1OUTA	X410B.5	CAN-Low Systembus
5 CAN-Low CAN-High	X410B.6	CAN-High Systembus
7 GND 10V	X410B.7	Masse pour signaux +/- 10 V

Module entrée-sortie / EM-I/O-03

Le module d'expansion EM-I/O-03 représente une variante supplémentaire dans l'expansion des I/O du variateur Active Cube.

Position du module EM-OI-03 sur le variateur

Bornier X410A

1 +20V / 180mA **2** GND 20V EM-S2OUTA

6 EM-S10UTD **7** EM-S10UTD

Bornier X410B

2 GND-PTC **3** EM-S1INA 4 EM-S10UTA CAN-Low

CAN-High

Structure et fonctions du bornier :

X410B.7

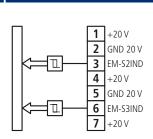
Masse

Borne	Fonction
X410A.1	Sortie alimentation 20 V CC (180 mA)
X410A.2	Masse de l'alimentation à 20 V
X410A.3	Sortie analogique 0-10 V/0-20 mA EM-S2OUTA multifonction
X410A.4	Entrée numérique EM-S2IND multifonction $V_{max} = 30 \text{ V}$ (24 V/10 mA), PLC compatible
X410A.5	Entrée numérique EM-S3IND multifonction $V_{max} = 30 \text{ V}$ (24 V/10 mA), PLC compatible
X410A.6 X410A.7	Sortie relais EM-S10UTD multifonction, $U_{max} = 24 \text{ V}$, 1 A (ohmique)

X410A.7	Sortie relais EM-S10UTD multifonction, $U_{max} = 24 \text{ V}$, 1 A (ohmique)	
Borne	Fonction	
X410B.1	Entrée pour PTC moteur	
X410B.2	Masse pour PTC moteur	PTC -
X410B.3	Entrée analogique +/- 10 V et+/- 20 mA EM-S1INA	10Vref -
X410B.4	Sortie analogique +/-10 V EM-S1OUTA multifonction	
X410B.5	CAN-Low Systembus	T
X410B.6	CAN-High Systembus	

Modules d'expansion

Module entrée-sortie / EM-I/O-04



Le module d'expansion EM-I/O-04 représente une variante supplémentaire dans l'expansion des I/O du variateur Active Cube.

Position du module EM-OI-04 sur le variateur

Structure et fonctions du bornier :

Bornier X410A

Bornier X410B

Borne	Fonction
X410A.1	Sortie tension 20 V
X410A.2	Masse / GND 20 V
X410A.3	Entrée numérique EM-S2IND
X410A.4	Sortie tension 20 V
X410A.5	Masse / GND 20 V
X410A.6	Entrée numérique EM-S3IND
X410A.7	Sortie tension 20 V

	1	EM-MPTC / EM-KTY
	2	
	3	EM-S1IOD
	4	GND 20 V
I V-VcvcI	5	CAN-Low
1 2 2 2 3 2	6	CAN-High
	7	CAN GND

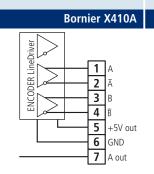
Borne	Fonction
X410B.1 X410B.2	Entrée pour PTC / Etanchéité moteur (EM-MPTC) ou capteur de température (EM-KTY)
X410B.3	Port numérique EM-S1IOD / Entrée / sortie numérique
X410B.4	Masse / GND 20 V
X410B.5	CAN-Low Systembus
X410B.6	CAN-High Systembus
X410B.7	Masse / GND

Modules d'expansion

Module capteur de vitesse / EM-ENC-01

Le module d'expansion EM-ENC-01 augmente le nombre d'entrées du capteur de vitesse du bornier du variateur et augmente également le nombre de sorties à impulsions configurables avec la sortie répétition encoder. L'EM-ENC-01 est en mesure de saisir des capteurs de vitesse incrémentiels TTL et HTL conformément à la norme EIA RS422 (line driver) à 5 volts. Le module EM-ENC-01 est équipé de bornes de connexion pour la gestion des signaux A, Ā, B et B du capteur de vitesse Line Driver et des bornes qui servent à la répétition des mêmes signaux vers l'extérieur (émulation capteur de vitesse). Ce système permet de créer des asservissements maître-esclave entre plusieurs unités distinctes grâce à l'utilisation des signaux de sortie de l'une comme entrées pour l'autre. L'entrée analogique +/-10 V peut être utilisée pour la fréquence de référence du variateur. Le même bornier offre également une alimentation +5 V (200 mA) pour le capteur de vitesse Line Driver.

Comme pour d'autres modules d'expansion EM, le module EM-ENC-01 dispose d'une interface Systembus.



Position du module EM-ENC-01 sur le variateur

Structure et fonctions du bornier :

Borne	Fonction
X410A.1	Canal A entrée capteur de vitesse
X410A.2	Canal Ā entrée capteur de vitesse
X410A.3	Canal B entrée capteur de vitesse
X410A.4	Canal B entrée capteur de vitesse
X410A.5	Sortie alimentation 5 V DC (200 mA)
X410A.6	Masse alimentation +5 V
X410A.7	Sortie répétition canal A capteur de vitesse

Borne	Fonction
X410B.1	Sortie répétition canal Ā capteur de vitesse
X410B.2	Sortie répétition canal B capteur de vitesse
X410B.3	Sortie répétition canal B capteur de vitesse
X410B.4	Entrée analogique +/-10 V EM-S1INA
X410B.5	CAN-Low Systembus
X410B.6	CAN-High Systembus
X410B.7	Masse

	1	Ā out
	2	B out
10Vref —	3	Ē out
←	4	EM-S1INA
	5	CAN-Low
	6	CAN-High
	7	GND

Modules d'expansion

Module capteur de vitesse / EM-ENC-02

Le module capteur de vitesse EM-ENC-02 agrandit le bornier standard du variateur en fournissant une interface pour capteur de vitesse Line Driver avec une alimentation correspondante + 5 V. Sur le même module, se trouvent également une entrée analogique 0... 20 mA et +/- 20 mA et une sortie analogique + 20 mA ainsi qu'une entrée pour sonde thermique PTC et un port numérique configurable comme entrée et comme sortie.

Ce module est également doté d'un port Systembus.

Position du module EM-ENC-02 sur le variateur

Structure et fonctions du bornier :

Bornier X410A					
ENCODER LineDriver	1 2 3	А Ā В			
	4	B			
	5	+5V out			
	6	GND			
/	7	EM-S1IND/OUTD			

Borne	Fonction
X410A.1	Canal A entrée capteur de vitesse
X410A.2	Canal Ā entrée capteur de vitesse
X410A.3	Canal B entrée capteur de vitesse
X410A.4	Canal B entrée capteur de vitesse
X410A.5	Sortie alimentation +5 V (200 mA)
X410A.6	Masse alimentation 5 V
X410A.7	Entrée/Sortie numérique EM-S1IND/OUTD

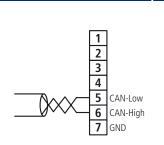
PTC P	1	PTC
	2	GND-PTC
10Vref —	3	EM-S10UTA
	4	EM-S1INA
	5	CAN-Low
<u> </u>	6	CAN-High
	7	GND

Borne	Fonction
X410B.1	Entrée pour PTC moteur
X410B.2	Masse pour PTC moteur
X410B.3	Sortie analogique 0 20 mA EM-S1OUTATA
X410B.4	Entrée analogique +/- 10 V et+/- 20 mA EM-S1INA
X410B.5	CAN-Low Systembus
X410B.6	CAN-High Systembus
X410B.7	Masse

Module capteur de vitesse / EM-ENC-03

Le module EM-ENC-03 agrandit le bornier standard du variateur et fournit une interface pour capteur de vitesse Line Driver.

Ce module est également doté d'un port Systembus.


Position du module EM-ENC-03 sur le variateur

Structure et fonctions du bornier :

Borne	Fonction
X410A.1	Canal A entrée capteur de vitesse
X410A.2	Canal Ā entrée capteur de vitesse
X410A.3	Canal B entrée capteur de vitesse
X410A.4	Canal B entrée capteur de vitesse
X410A.5	-
X410A.6	Masse
X410A.7	-

	Во	rnier	X4	10A
ENCODER LineDriver			1 2 3 4 5 6 7	A Ā B B

Borne	Fonction
X410B.1	-
X410B.2	-
X410B.3	-
X410B.4	-
X410B.5	CAN-Low Systembus
X410B.6	CAN-High Systembus
X410B.7	Masse

Modules d'expansion

Module capteur de vitesse / EM-ENC-04

Le module capteur de vitesse EM-ENC-04 agrandit le bornier standard du variateur et fournit une interface pour capteur de vitesse Line Driver.

Ce module est en mesure de gérer des capteurs de vitesse incrémentiels TTL, HTL ou push-pull conformément à la norme EIA RS422 (line driver). Le module EM-ENC-04 est équipé de 6 bornes pour la connexion des signaux A, \bar{A} , B, \bar{B} de direction ainsi que des signaux Z et \bar{Z} de zéro émis par le capteur de vitesse.

Le même module dispose également d'une entrée analogique \pm 10 V et \pm 20 mA et d'une sortie en tension \pm 10 V en plus d'une sortie numérique à relais.

En outre, deux tensions de sortie sont disponibles (\pm 5 V et \pm 24 V) pour l'alimentation du capteur de vitesse.

Position du module EM-ENC-04 sur le variateur

Structure et fonctions du bornier :

2 Ā B B B 5 Z 6 7 +5V out

Bornier X410A

Borne	Fonction
X410A.1	Canal A entrée capteur de vitesse
X410A.2	Canal Ā entrée capteur de vitesse
X410A.3	Canal B entrée capteur de vitesse
X410A.4	Canal B entrée capteur de vitesse
X410A.5	Canal Z entrée capteur de vitesse
X410A.6	Canal Z entrée capteur de vitesse
X410A.7	Sortie alimentation +5 V (200 mA)

_		_	1	+20V out
			2	GND
=	±10Vref —	<u>,</u>	3	EM-S10UTA
\perp		-	4	EM-S1INA
Ψ)]		5	EM-S10UTD.1
			6	EM-S10UTD.2
L			7	GND

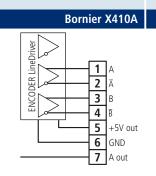
Borne	Fonction
X410B.1	Sortie alimentation +20 V DC (180 mA)
X410B.2	Masse alimentation
X410B.3	Sortie analogique ± 10 V
X410B.4	Entrée analogique ± 10 V
X410B.5	Cortic relais FM C10UTD multiforation 11 241/ 1 A /abmigue)
X410B.6	Sortie relais EM-S10UTD multifonction, $U_{max} = 24 \text{ V}$, 1 A (ohmique)
X410B.7	Masse

Module capteur de vitesse / EM-ENC-05

Le module capteur de vitesse EM-ENC-05 agrandit le bornier standard du variateur et fournit une interface pour capteur de vitesse Line Driver avec canal Z.

Ce module est en mesure de gérer des capteurs de vitesse incrémentiels TTL, HTL ou push-pull conformément à la norme EIA RS422 (line driver). Le module EM-ENC-05 est équipé de 6 bornes pour la connexion des signaux A, Ā, B, B de direction ainsi que des signaux Z et \overline{Z} de zéro émis par le capteur de vitesse.

Le même module dispose également d'une entrée analogique \pm 10 V et \pm 20 mA et d'une sortie en tension ± 10 V en plus d'une sortie numérique à relais. En outre, le bus de communication SYSTEMBUS est intégré.



Position du module EM-ENC-05 sur le

Structure et fonctions du bornier :

Borne	Fonction	
X410A.1	Canal A entrée capteur de vitesse	
X410A.2	Canal Ā entrée capteur de vitesse	
X410A.3	X410A.3 Canal B entrée capteur de vitesse	
X410A.4	OA.4 Canal B entrée capteur de vitesse	
X410A.5	410A.5 Sortie alimentation +5 V (200 mA)	
X410A.6	Masse de l'alimentation à 5 V	
X410A.7	Sortie répétition canal A capteur de vitesse	

Borne	Fonction
X410B.1 Canal A entrée capteur de vitesse	
X410B.2	Canal B entrée capteur de vitesse
X410B.3	Canal B entrée capteur de vitesse
X410B.4 Entrée analogique +/-10 V EM-S1INA	
X410B.5	CAN-Low Systembus
X410B.6	CAN-High Systembus
X410B.7	Masse

	1	Ā out
	2	B out
10Vref	3	₿ out
←	4	EM-S1INA
	5	CAN-Low
	6	CAN-High
	7	GND

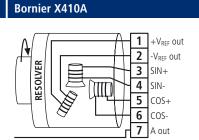
Modules d'expansion

Module Resolver / EM- RES-01

Le module transducteur de position angulaire EM-RES-01 augmente les fonctionnalités du variateur standard et fournit une entrée supplémentaire pour un resolver (capteur de vitesse absolu de type électromécanique).

Le resolver fournit la valeur relative à la position instantanée du vilebrequin même à l'arrêt et sa rotation actuelle par rapport à l'angle de tour.

EM-RES-01 dispose de 6 bornes pour la connexion de deux signaux de trace sinus et cosinus générés par le transducteur et pour la tension d'alimentation du resolver.


Le module EM-RES-01 fournit également un signal de sortie qui émule un capteur de vitesse incrémentiel numérique à travers la génération des signaux à onde carrée A, \overline{A} , B et \overline{B} , qui peuvent être utilisés pour la synchronisation de l'arbre moteur des variateurs slave éventuellement raccordés.

L'entrée analogique EM-S1INA multifonction (± 10 V ou ± 20 mA) augmente les fonctionnalités standards des variateurs Active Cube.

Position du module EM-RES-01 sur le variateur

Structure et fonctions du bornier :

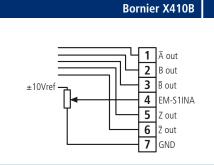
Borne	Fonction
X410A.1 Alimentation resolver (+) \sim 6 VCA X410A.2 (-) ($I_{max} = 60 \text{ mA}$)	
X410A.3 X410A.4	Entrée signal sinus resolver
X410A.5 X410A.6	Entrée signal cosinus resolver
X410A.7	Canal A émulation capteur de vitesse

Ξ		ᆗ	1	Ā out
		┨┕	2	B out
±10Vref —	4		3	B̄ out
	←		4	EM-S1INA
]	ſ		5	CAN-Low
			6	CAN-High

Borne	Fonction
X410B.1	Canal Ā émulation capteur de vitesse
X410B.2	Canal B émulation capteur de vitesse
X410B.3	Canal B émulation capteur de vitesse
X410B.4	Entrée analogique ± 10 V ou ± 20 mA
X410B.5	CAN-Low Systembus
X410B.6	CAN-High Systembus
X410B.7	Masse

Module Resolver / EM- RES-02

Le module transducteur de position angulaire EM-RES-02 accroît les fonctionnalités du variateur standard et fournit une entrée supplémentaire pour un resolver. Ce module a toutes les caractéristiques du module précédent EM-RES-01 à l'exception de l'émulation du signal de zéro de l'encoder qui, dans ce cas est remplacé par le port Systembus.


Position du module EM-RES-02 sur le variateur

Structure et fonctions du bornier :

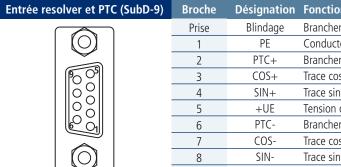
Borne	Fonction	
X410A.1 Alimentation resolver (+) \sim 6 V CA X410A.2 (-) ($I_{max} = 60 \text{mA}$)		
X410A.3 X410A.4	Entrée signal sinus resolver	
X410A.5 X410A.6	Entrée signal cosinus resolver	
X410A.7	Canal A émulation capteur de vitesse	

Bori	nier	X410A
RESOLVER	1 2 3 4 5 6	+V _{REF} out -V _{REF} out SIN+ SIN- COS+ COS- A out

Borne	Fonction	
X410B.1 Canal Ā émulation capteur de vitesse		
X410B.2	Canal B émulation capteur de vitesse	
X410B.3	X410B.3 Canal B̄ émulation capteur de vitesse	
X410B.4 Entrée analogique ± 10 V ou ± 20 mA		
X410B.5	Canal Z émulation capteur de vitesse	
X410B.6 Canal Z̄ émulation capteur de vitesse		
X410B.7	Masse	

Modules d'expansion

Module Resolver / EM- RES-03



Le module resolver EM-RES-03 augmente les fonctionnalités standards des servovariateurs Active Cube en fournissant une entrée supplémentaire pour le resolver. Il est conçu spécifiquement pour l'acquisition du feedback des resolver des servomoteurs synchrones BTD/BCR. Le module EM-RES-03 est doté d'un connecteur DB9 qui permet le raccordement facile et rapide aux servo-moteurs synchrones Bonfiglioli au moyen des câbles de commande et de puissance BTD/BCR.

Composant essentiel du pack servo de Bonfiglioli, le module EM-RES-03 peut être utilisé uniquement sur Active Cube.

Position du module EM-RES-03 sur le variateur

Diocile	Designation	Tolletion
Prise	Blindage	Branchement avec PE
1	PE	Conducteur de terre de protection
2	PTC+	Branchement thermistance PTC
3	COS+	Trace cosinus
4	SIN+	Trace sinus
5	+UE	Tension d'excitation
6	PTC-	Branchement thermistance PTC
7	COS-	Trace cosinus
8	SIN-	Trace sinus
9	-UE	Tension d'excitation

Structure et fonctions du bornier :

Bornier X410A 1 +24 V / 180 mA **2** GND 24 V **3** EM-S10UTD EM-S20UTD N.C. EM-S1INA GND 10 V

Borne	Fonction
X410B.1	Sortie 24 V CC (max. 180 mA)
X410B.2	Masse 24 V
X410B.3	Sortie numérique EM-S10UTD
X410B.4	Sortie numérique EM-S2OUTD
X410B.5	Non raccordé
X410B.6	Entrée analogique EM-S1INA
X410B.7	Masse 10 V

Bornier X410B		
		,
	1	N.C.
	2	EM-S1IND
·IK≒□□	3	EM-S2IND
	4	EM-S3IND
	5	CAN-Low
1 1	6	CAN-High
	7	GND
_		

Borne	Fonction
X410B.1	Non raccordé
X410B.2	Entrée numérique EM-S1IND
X410B.3	Entrée numérique EM-S2IND
X410B.4	Entrée numérique EM-S3IND
X410B.5	Systembus, CAN-Low
X410B.6	Systembus, CAN-High
X410B.7	Masse

Logiciel d'engineering

VPlus est un outil du logiciel d'engineering fonctionnant dans un environnement Windows qui guide les concepteurs d'automatisation industrielle à travers les phases de définition de la configuration optimale des actionnements Active Cube.

La communication entre VPlus et l'actionnement est basée sur la communication en série standard par le biais de l'interface KP232 ou CM-485.

VPlus permet de mettre en œuvre de nombreuses fonctions d'Active Cube :

Contrôle

Des outils de visualisation avancés permettent d'avoir des informations correctes sur le fonctionnement de l'actionnement et les variables de processus.

Les fenêtres des « valeurs courantes » recueillent toutes les variables concernées sur un écran et en affichent les valeurs en temps réel (les variables peuvent être sélectionnées par l'utilisateur).

Les « tableaux de bord » de VPlus affichent les valeurs en temps réel des variables sélectionnées avec un outil efficace d'affichage.

Diagnostic

VPlus comprend un écran efficace avec fonction oscilloscope intégré, en mesure de fournir des traces en temps réel des principaux paramètres du dispositif et des variables du processus sélectionnées. Cette caractéristique distinctive est très utile tant pendant le fonctionnement normal qu'en cas d'événements exceptionnels pour recueillir des informations complètes et détaillées sur le comportement de l'actionnement, en facilitant l'analyse et la recherche de pannes. La mise en service est également facilitée avec l'écran à fonction oscilloscope.

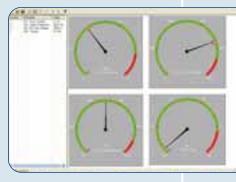
Recherche et réglage des paramètres

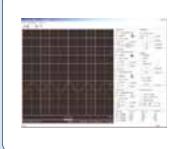
La détection du paramètre souhaité est facilitée par l'interface intuitive et par l'organisation avec « structure arborescente » des paramètres du logiciel VPlus.

L'attribution aux paramètres des valeurs correctes est garantie par des listes déroulantes qui permettent de sélectionner uniquement une série limitée de valeurs autorisées.

Personnalisation du logiciel

Il est possible de personnaliser le logiciel de l'actionnement en accédant aux niveaux paramétriques internes et en utilisant la programmation logique par le biais du PLC afin de créer de nouvelles routines de commande.


Gestion des fonctions technologiques


Il est possible d'accéder et d'activer des fonctions technologiques de haut niveau de l'actionnement ainsi que des fonctions applicatives spécifiques.

Par exemple le logiciel VPlus comprend une section consacrée au paramétrage et au branchement de « Motion Blocks » pour des servo-applications et une section pour la gestion des fonctions PLC logiques.

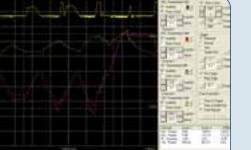
Des fonctions applicatives personnalisées sont également disponibles, comme le contrôle du relâchement du frein dynamique, le contrôle des moteurs du mandrin, la gestion de pompes multiples et d'autres encore.

Logiciel d'engineering

Paramétrage moteur

Une grande série de fonctionnalités est disponible pour obtenir une « reconnaissance » du moteur plus rapide et efficace.

Une fenêtre consacrée aux valeurs nominales de la charge des moteurs à induction est disponible et il est possible de sélectionner librement et d'ajouter de nouveaux paramètres pour reconfigurer la fenêtre prédéfinie.


La procédure précise d'auto-tuning d'Active Cube, utilisée pour optimiser la commande du moteur, peut être lancée par le biais du logiciel, en changeant simplement un flag. Les valeurs paramétriques pour la commande des servomoteurs synchrones Bonfiglioli sont disponibles dans l'actionnement : la vitesse nominale, le couple de décrochage, les courbes de charge, l'angle de phase resolver, etc., pour toutes les classes de puissance des servomoteurs Bonfiglioli, sont mémorisés dans le dispositif standard.

La sélection et le chargement des valeurs correctes pour le servomoteur sont effectués directement par l'actionnement après la sélection de la désignation du moteur à travers une interface guidée facile : la procédure n'exige que quelques secondes et aucun autotuning ultérieur n'est nécessaire pour assurer le bon fonctionnement du moteur.

Mise en service

Le logiciel VPlus est un outil très puissant pour les phases de mise en service et de démarrage de la machine, quand Active Cube est utilisé comme « system drive » aussi bien que comme « servo drive ».

Les corrections habituelles de dernière minute et la recherche nécessaire de pannes du système sont facilitées par l'extrême flexibilité et par la série d'outils pratiques que les techniciens peuvent trouver dans VPlus pour soutenir leurs activités sur site.

Performances graphiques de l'oscilloscope ACTIVE CUBE

La fonctionnalité et la commodité de l'oscilloscope virtuel sont identiques à celles des oscilloscopes conventionnels modernes et puissants avec l'avantage supplémentaire de pouvoir visualiser tous les paramètres contrôlés par le microprocesseur du variateur, qu'ils soient de nature physique (courant, tension, fréquence, etc.) ou de nature virtuelle (variables de contrôle internes, signaux des minuteries, signaux du comparateur, signaux numériques internes, etc.).

Principales caractéristiques de la Fonction Oscilloscope :

4 canaux

Affichage des valeurs absolues

Curseurs de mesure d'ampleur et de temps

Base des temps de 20 ms/div à 50 s/div

Différents types d'enclenchements

Mémoire graphique jusqu'à 1 Moctet

Mémoire de réglage traces jusqu'à 60 mn

Fréquences d'échantillonnage de 2 ms à 32 ms (en fonction du PC)

Différents formats de mémorisation des traces

Configurations minimum du variateur :

Active Cube avec version micrologiciel 4.1.X ou plus Interface KP232 version 0204 ou plus récente

Caractéristiques fonctionnelles

Active Cube

Niveaux de contrôle Active Cube

Active Cube offre sans aucun doute le plus vaste potentiel d'applications de tous les actionnements Bonfiglioli, grâce à la série particulièrement riche de fonctions combinée à une structure hardware flexible et avec une augmentation significative de la gamme de puissance. On peut définir 3 niveaux fonctionnels « virtuels » relatifs à différentes « zones » de contrôle :

Niveau de contrôle de l'application

Le niveau de contrôle de l'application,

comprend des fonctions spéciales, qui peuvent aider à satisfaire des conditions requises spécifiques de contrôle de l'application, habituellement réalisées par des dispositifs de contrôle logiques externes.

Niveau de contrôle de la machine

Le niveau de contrôle de la machine,

comprend des blocs logiciels génériques pour réaliser le contrôle de la machine, souvent avec l'action synergique de différents actionnements.

Niveau de contrôle du moteur

Le niveau de contrôle du moteur,

comprend des modèles mathématiques du moteur et de toutes les routines logicielles qui mettent en application le contrôle du moteur.

Niveau de contrôle du moteur

Au niveau du contrôle du moteur, Active Cube est conçu pour s'adapter à presque toutes les technologies de moteurs utilisés dans les machines industrielles : avec les dispositifs Active Cube standards, on peut utiliser des servomoteurs synchrones, des moteurs rotatifs ou linéaires, ainsi que des moteurs asynchrones traditionnels à induction.

Les nombreuses modalités de contrôle disponibles offrent la possibilité de choisir le juste mélange de précision, de facilité d'utilisation, de stabilité des prestations pour satisfaire les conditions requises de n'importe quelle application industrielle, du contrôle des ventilateurs et pompes jusqu'à des systèmes sophistiqués de positionnement ou de synchronisation.

Contrôle sans capteur simple des moteurs à induction (modalité 110)

Précision : •

Facilité d'utilisation : ••••

Contrôle (vectoriel) à orientation de champ à boucle fermée des moteurs à induction (modalité 210)

Précision: ••••

Facilité d'utilisation : ••

Niveau de contrôle du moteur

Contrôle (vectoriel) sans capteur à orientation de champ des moteurs à induction (modalité 410)

Précision : •••

Facilité d'utilisation : •••

Contrôle (vectoriel) à orientation de champ à boucle fermée des servomoteurs synchrones (modalité 515)

Précision : ••••

Facilité d'utilisation : ••••

Caractéristiques fonctionnelles

Niveau de contrôle de la machine

Au sein de chaque modalité de contrôle du moteur, une gamme de fonctions de contrôle de la « machine » appartenant au niveau de contrôle de la machine est disponible. Ces fonctions ont pour but de fournir aux utilisateurs et aux concepteurs d'Active Cube une série de routines et de fonctions prêtes, en mesure de s'adapter, avec peu de corrections, aux exigences d'automatisation de nombreuses machines et secteurs divers : fonction PID, synchronisation maître/esclave, arbre/engrenage électronique, commutation couple/vitesse et fonctions de contrôle de la position n'en sont que quelques exemples.

				Fonction d	e contrôle		
Modes de contrôle	•	PID (x11)	Master/slave et engre- nage électronique (x15)	Commutation couple/vitesse (x30)	Contrôle index (x16)	Contrôle frein et dé- tection de la charge (x60)	Contrôle position (x40)
Sans capteur simple des moteurs à induction	110	Х	Х		Х	Х	
À orientation de champ à boucle fermée des moteurs à induction	210		Х	Х	Х	Х	Х
À orientation de champ sans capteur des moteurs à induction	410	Х	Х	Х		Х	Х
À orientation de champ à boucle fermée des servomoteurs synchrones	510		Х	Х	X	Х	Х

Niveau de contrôle de l'application

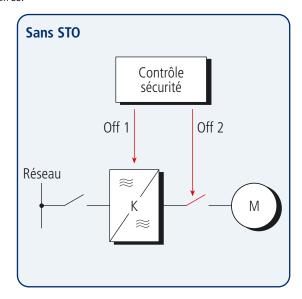
Le troisième niveau, le « niveau de contrôle (spécifique) de l'application », comprend des caractéristiques particulières et des routines conçues pour répondre aux conditions requises d'applications industrielles inhabituelles.

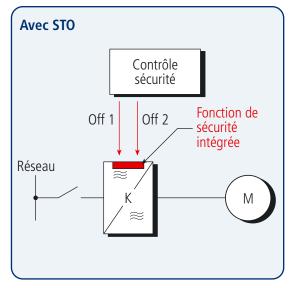
Ces fonctions confèrent à l'Active Cube l'exceptionnelle capacité de satisfaire les exigences peu communes de ces applications : aucun besoin de versions personnalisées de l'actionnement, puisque les fonctions logicielles sont mémorisées dans les dispositifs Active Cube standards et peuvent être activées directement par le client.

Quelques exemples sont : contrôle de moteurs, mandrin jusqu'à 1 000 Hz (usinage mécanique), contrôle de frein étendu avec détection de charge (levage), fonction de « translation » synchronisée (enrouleuses), gestion des « motion blocks ».

Pour d'autres détails sur ces fonctions, consulter la documentation du produit ou le DSC de zone.

Caractéristiques et fonctions d'automatisation

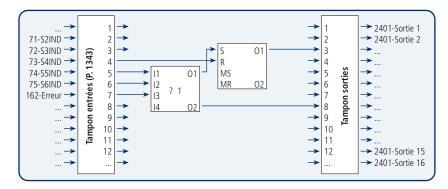

Fonction « Safe torque off » (STO)


La fonction de sécurité « Safe Torque Off » (STO) avec niveau d'intégrité de la sécurité SIL 2 (voir les normes DIN EN 61508 et DIN IEC 61800-5-2) est mise en œuvre dans la gamme standard de variateurs Active Cube.

Cette fonction aide le système d'automatisation à obtenir un « arrêt de sécurité » de catégorie 3 conformément à la norme DIN EN 954-1.

Grâce à la fonction STO, il est possible d'interrompre en toute sécurité l'alimentation d'énergie du variateur au moteur. L'alimentation du variateur est désactivée par le biais de deux parcours de désactivation en mode courant en l'absence de signal, en effectuant donc un contrôle de la désactivation redondante.

Le variateur effectue des tests de contrôle continus pour détecter de possibles anomalies de contrôle. La fonction « Safe Torque Off » augmente considérablement le niveau de sécurité du système d'automatisation sans que des composants supplémentaires ne soient nécessaires.



Caractéristiques et fonctions d'automatisation

Fonctions logiques

Active Cube standard est doté de fonctions logiques « type PLC » intégrées pour exploiter au mieux les capacités d'automatisation de l'actionnement. Les fonctions logiques de contrôle intégrées sont basées sur un logiciel runtime en mesure d'effectuer une « opération par blocs » toutes les msec.

La conception sophistiquée des routines de contrôle rentre dans les paramètres avec de nouvelles fonctions logiques. Les développeurs logiciels seront en mesure de régler les contrôles des actionnements en les adaptant aux conditions requises d'automatisation, en combinant simplement les 16 entrées avec les 32 blocs de fonctions disponibles et en obtenant des résultats dans les 16 consignes de sortie. Les fonctions suivantes sont mises en œuvre :

Tampon d'entrées pour un maximum de 16 signaux

P.e pour

- Entrées numériques
- Erreurs
- Avertissements
- RxPDO booléens du bus de système

Tampon de sorties pour un maximum de 16 signaux P.e pour

- Démarrage dans le sens horaire/anti-horaire
- Changement d'ensemble de données
- Sorties numériques
- TxPDO booléens du bus de système

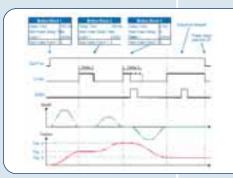
32 fonctions configurables comme

- Fonctions logiques :
 - ET
 - OU
 - XOU
- Flip-flop:
 - Flip-flop RS
 - Toggle flip-flop
 - Flip-flop D
- Fonctions minuterie:
 - Retard pour front ascendant/descendant
 - Mono-flop
 - Oscillateur
- Fonctions supplémentaires :
 - Multiplexer pour signaux numériques
- Jump conditionnels

Le réglage des fonctions logiques est plus facile que jamais grâce à la section de configuration spécialisée de VPlus.

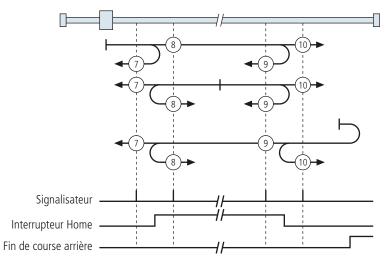
Les paramètres nécessaires pour les fonctions logiques sont regroupés en une seule vue/fenêtre afin d'améliorer et de faciliter la programmation.

Pour des informations détaillées sur les fonctions de programmation avancées, s'adresser au Drive Service Centre Bonfiglioli le plus proche, avec des experts disponibles pour le support technique aux clients.


Motion block

« L'unité logicielle élémentaire » pour le contrôle du mouvement dans Active Cube est le « Motion Block ».

Un « Motion Block » définit totalement une phase de positionnement de point-à-point, en comprenant :


- position de destination,
- vitesse,
- accélération,
- décélération,
- rampes,
- retards.

Les fonctions de contrôle du mouvement intégrées permettent de combiner jusqu'à 32 blocs de mouvement en une séguence conditionnelle, pour programmer même les profils de mouvement point-à-point les plus sophistiqués.

Homing

Dans Active Cube, une série complète de fonctions de homing est disponible, conformément à la norme CANOpen DSP 4.02. On peut utiliser 36 différentes modalités de homing pour répondre aux conditions requises de mouvement d'une vaste gamme de machines. La recherche du Homing peut être lancée à l'aide d'une entrée numérique (par ex, fin de course matériel) ou d'un mot de commande (en cas d'utilisation du bus de champ) ou dans le cadre d'une procédure automatique avant la première séquence de positionnement.

Fonctions de mouvement

Fonction table rotative

Pendant le contrôle d'une table rotative, la position de destination est calculée et atteinte en un seul tour. La fonction de la table rotative permet à l'actionnement de déterminer le parcours le plus court pour atteindre la position angulaire souhaitée, en tenant compte des tours de l'arbre nécessaires pour effectuer une rotation complète de la table. Il est également possible de détecter le meilleur sens de rotation, horaire ou anti-horaire, afin de minimiser la durée et la distance de la course.

Fonctions Jog et apprentissage

En « modalité jog », l'actionnement peut être librement déplacé à une vitesse fixe dans les deux directions à l'aide de la série « manuelle » d'entrées numériques attribuées. Pendant la modalité jog, on peut approcher et sauvegarder de nombreuses positions de destination par le biais de la fonction d'apprentissage : une fois la position souhaitée atteinte, la fonction d'apprentissage permet de saisir la position actuelle dans le registre de course actif comme position de destination.


Introduction

Lors de l'utilisation d'Active Cube dans les servo-applications, on peut obtenir le meilleur de l'actionnement en le combinant aux servomoteurs Bonfiglioli.

Active Cube et les servomoteurs Bonfiglioli ont en effet été conçus pour utiliser au mieux les synergies réciproques en formant ainsi un « pack » Servo en mesure d'offrir des avantages significatifs aux utilisateurs en termes de performances avancées et de réduction du temps de paramétrage.

Le servosystème Bonfiglioli tire profit de différentes solutions spécifiques, qui prévoient 2 séries de produits :

- Active Cube dispose d'un profil préchargé des paramètres des servomoteurs Bonfiglioli.
- Le raccordement de l'actionnement au moteur est facilité par la disponibilité des câbles et des connecteurs précâblés en usine.
- Les fonctions « Motion » sont rapidement disponibles.

Pack Servo

Gamme des servomoteurs Bonfiglioli



L'offre de servomoteurs Bonfiglioli comprend 2 séries de servomoteurs synchrones à aimants permanents, BTD (Densité de couple Bonfiglioli) et BCR (Gamme Bonfiglioli Classique), qui présentent différents intervalles de vitesse et de couple obtenus à l'aide de technologies de construction différentes.

Les séries BTD et BCR sont divisées en nombreuses tailles de châssis, chacune regroupant des dispositifs ayant les mêmes dimensions de brides et des longueurs de moteur différentes, en mesure de fournir des valeurs de couple différents avec la même grandeur de châssis.

Les dispositifs BCR sont conçus pour fournir un vaste intervalle de couple nominal jusqu'à 115 Nm et un couple de pic jusqu'à 400 %.

Les dispositifs BTD satisfont l'exigence d'un couple élevé dans des moteurs de petites dimensions. La technologie de construction innovante, ainsi que la qualité élevée des aimants utilisés, permet aux servomoteurs BTD d'atteindre une « densité de couple » de 15,3 Nm/dm³.

Tableaux de combinaison

Pour une combinaison correcte d'Active Cube en « modalité servo », avec les deux classes de puissance des servomoteurs BTD/BCR, nous fournissons les tableaux de référence croisés ci-dessous.

Pour choisir le meilleur pack servo pour ses propres exigences, calculer le couple max requis de l'application et le comparer aux valeurs à l'intérieur du tableau : le meilleur choix correspond à la combinaison servo-actionnement – servomoteur qui fournit au moins le couple maximum nécessaire avec une marge de sécurité de 10 %.

Pour un dimensionnement plus détaillé et en cas de profil de couple ou de conditions opérationnelles inhabituelles, s'adresser au Drive Service Centre local.

ACU 230V ⇐⇒ BTD 230V

							Serv	omoteui	BTD						
		4500 1	trs/mn						30)00 trs/n	nn				
Actionnement ACTIVE CUBE	BTD2-0026	BTD2-0053	BTD2-0074	BTD2-0095	BTD3-0095	BTD3-0190	BTD3-0325	BTD3-0420	BTD4-0410	BTD4-0630	BTD4-0860	BTD5-1160	BTD5-1490	BTD5-1870	BTD5-2730
ACU201-05 M _N	0,25	0,47	0,69	0,86	0,92	1,63		2,63							
M _{MAX}	1,00	1,89	2,01	2,04	2,40	3,05		3,94							
ACU201-07 M _N			0,69	0,86		1,63	3,02	3,24	2,73						
M _{MAX}			2,67	2,71		4,07	4,53	5,25	4,10						
ACU201-09 M _N				0,86		1,63	3,02	3,24	3,42						
M _{MAX}				3,30		4,95	5,52	6,39	4,99						
ACU201-11 M _N							3,02	3,24	3,42	4,83	5,38				
M _{MAX}							7,94	9,19	7,18	7,25	8,06				
ACU201-13 M _N							3,02	3,24	3,42	4,83	6,37				
M _{MAX}							9,50	12,30	9,77	9,87	10,98				
ACU201-15 M _N									3,42	4,83	6,37	8,38	9,27		
M _{MAX}									11,10	11,25	12,52	10,93	12,08		
ACU201-18 M _N										4,83	6,37	8,85	11,56		
M _{MAX}										18,15	20,19	17,63	19,50		
ACU201-19 M _N											6,37	8,85	11,56	14,75	18,54
M _{MAX}											23,27	20,32	22,46	20,31	25,53
ACU201-21 M _N												8,85	11,56	15,01	21,40
ACUZUT-ZT M _{MAX}												29,84	32,99	29,83	37,50
ACU201-22 M _N												8,85	11,56	15,01	21,40
ACU201-22 M _{MAX}												32,00	38,18	34,52	43,39

Note:

0.00

Pour les classes de puissance et la description des servomoteurs, consulter le catalogue correspondant.

							Servo	Servomoteur BTD	ВТО						
		4500	4500 trs/mn						30	3000 trs/mn	ue				
Actionnement ACTIVE CUBE	9Z00-ZQ18	BTD2-0053	₽TD2-0074	BTD2-0095	B1D3-0095	0610-EQT8	BTD3-0325	BTD3-0420	BTD4-0410	BTD4-0630	BTD4-0860	BTD5-1160	BTD5-1490	0781-20T8	BTD5-2730
M _N	0,42	0,48	69'0	98′0	0,92	1,67	2,44	2,52							
M _{MAX}	1,00	1,96	2,08	1,96	1,94	3,09	3,66	3,78							
M _N 70-101104				98'0	0,92	1,67	3,11	3,22	2,89						
				2,61	2,40	4,12	4,88	5,04	4,34						
M _N						1,67	3,11	3,22	3,38	4,23					
M _{MAX}						5,20	6,50	6,72	5,79	6,34					
M _N							3,11	3,22	3,38	4,75					
M _{MAX}							7,72	7,98	6,87	7,53					
ACI1401-12 M _N							3,11	3,22	3,38	4,75	5,64				
M _{MAX}							8,53	8,82	7,60	8,32	8,47				
M _N M _N							3,11	3,22	3,38	4,75	6,45				
M _{MAX}							9,50	12,18	10,49	11,49	11,69				
M _N										4,75	6,45	8,70			
M _{MAX}										15,45	15,72	13,05			
ACI1401-18										4,75	6,45	8,81	10,73	10,26	
M _{MAX}										17,83	18,14	15,06	16,09	15,39	
M _N												8,81	11,44	14,94	20,12
Миах												23,42	25,03	23,95	30,17
M _N												8,81	11,44	14,94	21,41
Миах												29,33	31,35	29,99	37,79
M _N 222												8,81	11,44	14,94	21,41
MMAX												32,00	36,12	34,55	43,54
M _N													11,44	14,94	21,41
Миах													41,00	42,76	53,88
MN ACI1401-25														14,94	21,41
M _{MAX}														50,74	63,94

Pour les classes de puissance et la description des servomoteurs, consulter le catalogue correspondant.

0,00 ⇔ Couple continu 0,00 ⇔ Couple max

Pack Servo

											Serve	Servomoteur BCR	r BCR										
			7	4500 trs/mn	s/mn										30	3000 trs/mn	u.						
Actionnement ACTIVE CUBE	BCK2-0020	BCK2-0040	BCR2-0060	BCK2-0080	BCB3-0065	BCR3-0130	BCK3-0250	BCK3-0300	BCR4-0100	BCB4-0260	BCB4-0230	BCB4-0750	BCB2-0020	BCB2-1320 BCB2-1020	BCR5-1700	BCK5-2200	BCK6-1350	BCB6-1900	BCB6-2200	BCK6-2900	BCK7-2700	BCK7-3200	BCK7-4000
M _N ac facility	0,20	0,38	0,58	0,75	0,62	1,08	1,88	1,88	86'0	2,52													
M _{MAX}	0,80	1,60	2,20	2,31	2,12	2,44	2,81	2,81	2,46	3,77													
M _N TO-FOCILO				0,72		1,08	2,13	2,25	86'0	2,52													
				3,08		3,25	3,75	3,75	3,28	5,03													
M _N						1,08	2,13	2,25		2,52	4,40	4	4,63										
MMAX						3,95	4,56	4,56		6,12	5,95	9	9,76										
M _N							2,13	2,25		2,52	4,81 5,	5,77 5,	5,83										
MMAX							95'9	95'9		8,81	8,56 8,	8,65 9,	00'6										
M _N C1-10CIDA								2,25		7	4,81 6,	6,68 5,	5,83 7,4	7,44									
M _{MAX}								8,94		_	11,66 11	11,79 12	12,26 11,21	,21									
M _N M _N										7	4,81 6,	6,68 5,	5,83 9,01	01 9,70		11,55	11,56	92					
M _{MAX}										_	13,29 13	13,43 13,	72,21	,77 12,65	_	2,06	15,07	7(
M _N											9	6,68 5,	5,83 9,01	01 11,25	_	14,78 15,47	13,50	50 14,87	37				
M _{MAX}											21	21,68 19,	8	20,61 20,41	41 24,30	30 22,60	50 24,32	32 21,73	73				
M _N											9	89'9	1,0	9,01 11,25		14,78 17,36	36 13,50	50 17,60	50 18,91	91 20,38	38 21,06	6 21,46	5 20,00
M _{MAX}											77	24,97	23,	23,74 23,	51 27,99	99 26,04	04 28,02	25,03)3 26,04	04 28,07	77 29,01	1 29,56	5 27,55
M _N 10-100100													9,	9,01 11,25	25 14,78	78 17,36	36 13,50	50 17,60	50 19,68	68 24,83	33 22,69	9 25,27	7 28,91
M _{MAX}													32,	,00 34,53	53 41,11	11 38,24	24 41,15	15 36,76	76 38,24	24 41,23	23 42,61	1 43,41	40,45
M _N														11,	11,25 14,	14,78 17,36	36 13,50	50 17,60	50 19,68	68 24,83	33 22,69	9 25,27	7 28,91
M _{MAX}														36'68	96 47,58	58 44,26	26 41,00	00 42,54	54 44,26	26 47,72	72 49,31	1 50,24	1 46,82

Pour les classes de puissance et la description des servomoteurs, consulter le catalogue correspondant.

← Couple continu | ← Couple max

00,00

ACU 230V ← BCR 230V

2
0
0
400
α
BCR
Ω
11
V
\leq
0
0
400V
=
Ų
ACU

													,		200												
													Servo	ыопе	Servomoteur BCR												
				4500 trs/mn	trs/mn										•••	3000 trs/mn	rs/mn								200	2000 trs/mn	นน
Actionnement ACTIVE CUBE	BCK2-0020	BCK2-0040	BCK2-0060	BCKZ-0080	BCK3-0062	BCK3-0130	BCK3-0520	BCK3-0300	BCB4-0100	BCB4-0560	BCK4-0530	BCK4-0750	BCB2-0990	BCB2-1020	BCK2-1300 BCK2-1320	BCK2-5500	BCK6-1350	BCK6-1900	ВСВ6-2200	ВСК6-2900	BCK7-2700	BCK7-3200	BCR7-4000	BCK8-0400	ВСК8-0680	BCK8-0930	BCK8-1150
ACU401-05		0,38	0,58	0,76	0,62	1,13	1,73	2,08	66'0	2,44				\vdash		Н				Ц							
M _{MAX}	08'0	1,70	2,22	2,37	2,22	2,45	2,60	3,12	2,55	3,66																	
ACU401-07 MN				0,76		1,13	2,12	2,31	66'0	2,51																	
- 1				3,10		2,27	3,40	4,15	3,40	4,88																	
ACI1401-09 M _N						1,13	2,12	2,31		2,51						_											
M _{MAX}						4,36	4,62	5,54		05'9																	
M _N							2,12	2,31			4,91	٠, ۵	5,57														
MMAX							5,48	6,58		7,72	7,37	~	8,36														
M C 100							2,12	2,31		2,51	4,91	92'9	2,87														
ACU401-12 MMAX							90′9	7,27			8,14	9,84	9,24														
M C1 101 10							2,12				4,91	_	5,87 8,	8,34													
ACO401-13 MMAX							8,37				11,25	13,59	12,76 12	12,51													
M _N 1E M _N											4,91	_		90'6			12,84	4									
M _{MAX}											15,12 1	18,28	17,16 16	16,83			19,26	9									
M _N OF FOLLOW											4,91		5,87	90'6	10,85 13,42	15,47		0 12,39	9 13,56	2	15,19						
ACO401-10 MMAX											17,45 2	21,09	19,80	19,42 16,	16,27 20,13	13 23,20	20 22,23		9 20,34	<	22,78						
M _N													6		_		02'81 30							_			
M _{MAX}													3(30,21 25,	25,31 31,32					4 35,41	1 35,44	35,37		38,53			
M _N														=					_								
MMAX														<u>m</u>	31,70 39,22	22 45,20	20 57,00	_		3 44,34	4 44,38			48,26			
M _N CC.101120														11)5	17,62						_			
ACO401-22 MMAX														36	36,52 45,18		80	41,72	2 45,66	51,09	9 51,13			25,60	81,12		
M _N SC FORION														=	_)5	17,62	_						28,90	70,24	
M _{MAX}														41	41,00 51,00	00 64,45	15	51,63	$\overline{}$						100,39	105,36	
M _N																		17,62								71,08 87,41	87,41
MMAX																		22,00	0 66,00	0 75,03	3 75,09	74,95	72,06	81,65		119,13 125,03 121,56	121,56
M _N 7C 101100																						22,26			28,90	58,90 71,08 88,50	88,50
MMAX																						96'00		•	110,09 160,63 168,58 163,90	168,58	163,90
M _N 00 100 100																							28,99	32,66	28,90	71,08 88,50	88,50
M _{MAX}																							109,31	120,00	120,00 180,71 189,65 184,38	189,65	184,38
M _N																										71,08 88,50	88,50
																										252,87 245,84	245,84
ACI1401-33																_											88,50
M _{MAX}																											307,30
Note:										Pour	es cla	sses d	e puis	sance	Pour les classes de puissance et la description des servomoteurs, consulter le catalogue correspondant.	descri	ption (des se	ervom	oteur	s, cons	ulter	le cat	alogue	e corre	espon	dant.

Pour les variateurs de la série Active Cube, il existe une vaste gamme d'accessoires mécaniques qui permettent un montage extrêmement facile dans tous les types d'applications.

Dans le montage standard, l'installation peut se faire directement sur la plaque de montage ou à travers une exécution passante. Il existe en outre une variante de montage à l'épreuve des vibrations et une variante pour le montage sur une barre DIN standard. Le support en option avec des étriers blindés complète la série des variantes de montage, afin que la solution adaptée pour chaque exigence possible soit toujours disponible. Les installations sont pratiquement identiques pour toutes les tailles, de sorte que les exemples montrés ci-après peuvent être considérés comme des solutions représentatives idéales pour tous ceux qui souhaitent une solution de montage mécanique simple à encombrement réduit.

Typologies des kits de montage

L'actionnement est fourni avec le kit de montage standard pour la fixation sur le panneau d'un tableau électrique. Trois différents kits de montage sont disponibles en option sur demande.

MPSV

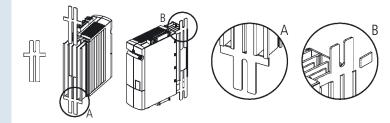
Montage passant pour des classes de protection plus élevées ou des caractéristiques de refroidissement augmentées

MNVIB

Montage antivibratoire pour des utilisations sur des machines caractérisées par des vibrations mécaniques élevées

MDIN

Montage sur barre DIN pour un montage/accouplement rapide et modulaire

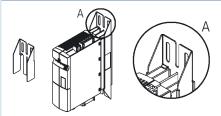

58

Active Cube

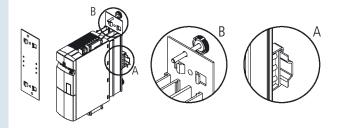
Montage

Taille 1

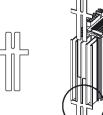
Montage standard

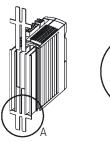


Variateur BONFIGLIOLI	Montage	Description
	MPSV1	Montage passant
ACU 201-05 ACU 201-09 ACU 401-05 ACU 401-11	MNVIB1	Montage antivibratoire
ACO 401 03 ACO 401 11	MDIN1	Montage sur barre DIN


MPSV1

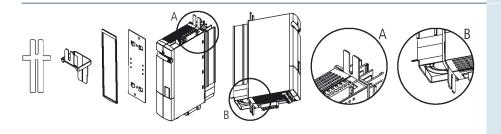
MNVIB1



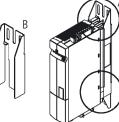

MDIN1

Montage

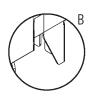
Active Cube



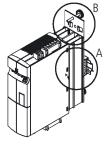
Montage standard

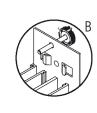

Taille 2

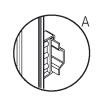
Variateur BONFIGLIOLI	Montage	Description
A 5 11 20 4 44 A 5 11 20 4 4 5	MPSV2	Montage passant
ACU 201-11 ACU 201-15 ACU 401-12 ACU 401-18	MNVIB2	Montage antivibratoire
ACO 401 12 ACO 401 10	MDIN2	Montage sur barre DIN



MPSV2



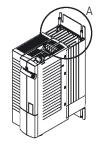




MNVIB2

MDIN₂

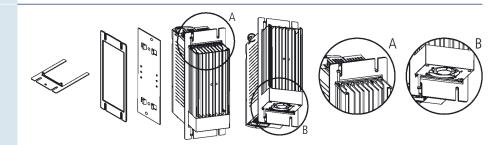
60


Active Cube

Montage

Taille 3

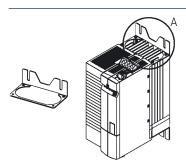
Montage standard

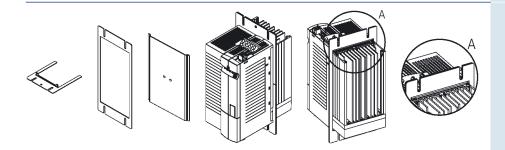


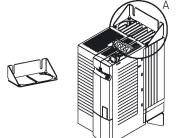

Variateur BONFIGLIOLI	Montage	Description
ACU 201-18 ACU 201-19	MPSV3	Montage passant
ACU 401-19 ACU 401-22	MNVIB3	Montage antivibratoire

MPSV3

MNVIB3



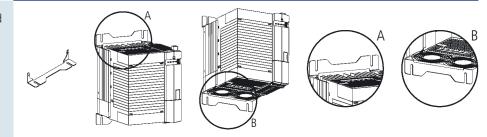



Montage standard

Taille 4

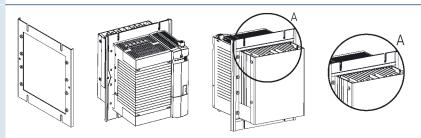
Variateur BONFIGLIOLI	Montage	Description	
ACU 201-21 ACU 201-22	MPSV4	Montage passant	
ACU 401-23 ACU 401-25	MNVIB4	Montage antivibratoire	

MPSV4

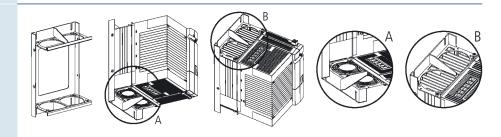

62

Active Cube

Montage

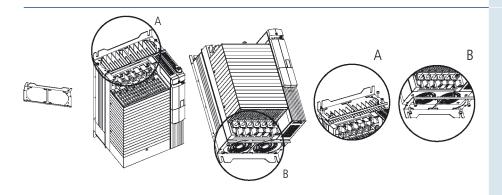

Taille 5

Montage standard

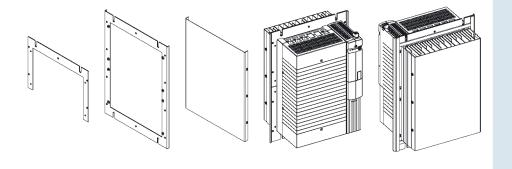


Variateur BONFIGLIOLI	Montage	Description
ACII 401 27 ACII 401 21	MPSV5	Montage passant
ACU 401-27 ACU 401-31	MNVIB5	Montage antivibratoire

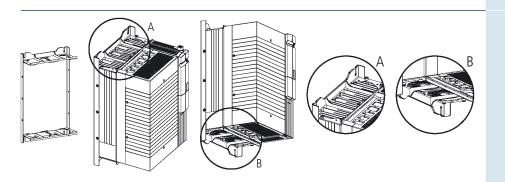
MPSV5



MNVIB5

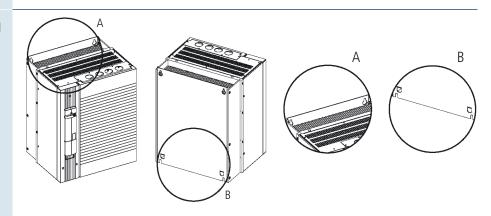

Montage

Active Cube



Taille 6 Montage standard

Variateur BONFIGLIOLI	Montage	Description
ACII 401 22 ACII 401 20	MPSV6	Montage passant
ACU 401-33 ACU 401-39	MNVIB6	Montage antivibratoire


MPSV6

Montage

Taille 7

Montage standard

Variateur BONFIGLIOLI	Montage	Description
ACU 401-43ACU 401-49	MPSV7	Montage passant

MPSV7

Filtre d'entrée

Ligne d'alimentation Inductance de ligne

La fonction d'un filtre d'entrée

Par le terme filtre d'entrée, l'on entend un dispositif de filtration à installer en amont du variateur et en aval du télérupteur d'alimentation.

Le convertisseur CA/CC d'entrée du variateur cause une distorsion harmonique sur le courant absorbé et conduit les interférences générées par les composants en commutation vers le réseau. Les courants harmoniques provoquent des distorsions sur la tension de ligne qui causent des phénomènes d'interférences électromagnétiques.

Des inductances de ligne sont utilisées pour réduire ces distorsions harmoniques, tandis que les perturbations sont compensées par des filtres EMI (atténuation des tensions d'interférence EMI) ainsi que les interférences décrites ci-dessous.

Note : l'utilisation de filtres en entrée réduit la tension à l'entrée du variateur. Si nécessaire, ces filtres sont installés en amont du variateur, dans l'ordre indiqué ci-dessous :

- 1. Alimentation de réseau
- 2. Inductance de ligne
- 3. Filtre EMI
- 4. Variateurs

Inductance de ligne

- Les inductances de ligne ne sont pas strictement nécessaires : leur utilisation dépend des besoins de l'installateur de réduire la distorsion harmonique au point de courtcircuit (PCC) et rendre le filtre EMI plus efficace. Une inductance de ligne doit être normalement utilisée si la puissance de court-circuit du réseau est inférieure à 1 %.
- Une inductance de ligne est conseillée pour les variateurs ACU 201 et ACU 401 si un courant continu élevé en entrée est nécessaire à l'application pour augmenter la durée de vie des condenseurs électrolytiques.
- Une inductance de ligne est toujours nécessaire dans le fonctionnement monophasé et biphasé des variateurs ACU201.

Filtre EMI

- Un filtre EMI peut être utilisé pour obtenir une protection contre les interférences de type Classe A (groupes 1, 2) ou de Classe B.
- Le filtre EMI est disponible même en version à faible courant de dispersion pour des applications spéciales.
- Le filtre EMI fait partie de l'équipement standard dans les tailles jusqu'à 4,0 kW, il est disponible sur demande pour les tailles supérieures en version interne (jusqu'à 7,5 kW) ou externe (plus de 7,5 kW).

Accessoires

Filtre d'entrée

Combinaison variateur ACTIVE CUBE – Inductance de ligne/filtre EMI

	Conformité à la Classe A Groupe 2		Conformité a Grou		Conformité	à la Classe B
Longueur de câble moteur	< 10 m	< max*	< 10 m	< max*	< 10 m	< max*
ACU 1 (filtre interne Standard)	Standard	Inductance externe	Inductance externe	Filtre externe	Inductance externe	Filtre externe
ACU 2 (filtre interne Standard)	Standard	Inductance externe	Inductance externe	Filtre externe	Inductance externe	Filtre externe
ACU 3	Filtre interne ou Inductance externe	Filtre interne ou Inductance externe	Filtre interne + Inductance externe	Filtre interne + Inductance externe	Filtre interne + Inductance externe	Filtre externe
ACU 4	Inductance externe	Filtre externe	Filtre externe	Filtre externe	Filtre externe	Filtre externe + Inductance externe
ACU 5	Inductance externe	Inductance externe	Filtre externe	Filtre externe	Filtre externe	Filtre externe + Inductance externe
ACU 6	Inductance externe	Inductance externe	Filtre externe	Filtre externe	Filtre externe	Filtre externe
ACU 7	Inductance externe	Inductance externe	Filtre externe	Filtre externe	_	_

^{*} Voir le mode d'emploi

Inductance de ligne

La méthode la plus simple pour réduire les composants harmoniques élevés et, par conséquent, la puissance réactive consiste à connecter à série une inductance sur le côté réseau du variateur. Selon le système, la consommation de puissance réactive peut chuter de 20 % environ sans inductance de ligne.

L'inductance de ligne augmente l'inductance vers le réseau. L'inductance de la ligne d'alimentation peut être suffisante si la puissance de court-circuit est 20 à 40 fois plus importante par rapport à la puissance à la sortie nominale du variateur.

Le variateur permet d'effectuer le raccordement aux réseaux d'alimentation publiques ou industriels dans le respect des données techniques. Si la sortie transformateur du réseau d'alimentation est ≤ 500 kVA, l'inductance de réseau en option est nécessaire seulement si elle est spécifiée dans les données techniques du variateur. Les autres variateurs servent au raccordement sans inductance de réseau avec une impédance relative ≥ 1 %. Pour connecter plusieurs variateurs, il faut faire référence à la somme des sorties nominales.

Puisque la pratique a démontré que la puissance nominale de court-circuit sur le point de connexion du variateur est souvent inconnue, la société BONFIGLIOLI conseille donc d'utiliser des inductances de réseau avec c.d.t. de 4 %.

La tension de court-circuit correspondant à une c.d.t. de 4 % représente le pourcentage de la tension nominale à laquelle, en cas de court-circuit, il passe un courant égal à la valeur du courant nominal.

Les courants harmoniques sont conformes à la norme européenne EN 60 555. Au Canada et aux États-Unis, il faut se conformer à la Norme IEEE 519, en plus des normes nationales génériques.

Données techniques

Tensions nominales

230V +/- 10% 400V +/- 10%

Fréquences

50/60 Hz uk (a IN / 50 Hz) 4%

Classe matériau isolant

T40/F

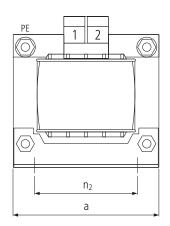
Température ambiante

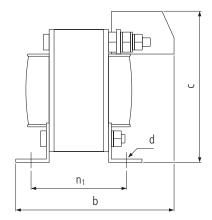
40° C maximum

Classe de protection

IP00 / VBG4

Type de connexion


Bornes protégées par le contact


Note : l'inductance de ligne doit être installée entre le point de raccordement au réseau et le filtre EMI. L'inductance de ligne et le variateur doivent être montés sur un socle en métal ordinaire et connectés au panneau de montage en métal avec la mise à la masse en utilisant une tresse de cuivre à large surface de contact.

Accessoires

Inductance de ligne

Dimensions

Données techniques

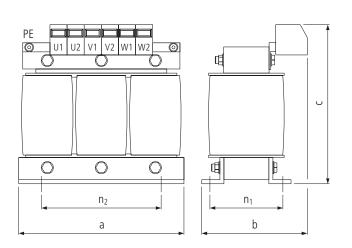
Combinaison variateur BONFIGLIOLI — Inductance de ligne $1x230 \ V$ ~

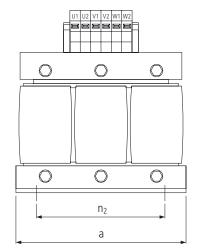
Variateur	Inductance	Courant nominal	Puissance dissipée
BONFIGLIOLI	BONFIGLIOLI	[A]	[W]
ACU 201-05	LCVS006	6	8.0
ACU 201-07	LCVS008	8	8.0
ACU 201-09	LCVS010	10	10.0
ACU 201-11	LCVS015	15	12.0
ACU 201-13	LCVS018	18	15.0

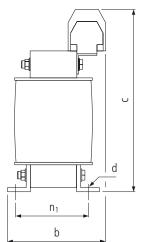
Données techniques de montage

	D	Dimensions		Montage			Poids	Borne	e de raccorde	ment
Inductance BONFIGLIOLI	a	b	С	n ₂	n ₁	d				
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]	[mm]	[Nm]	PE
LCVS006	60	62	75	44	38	3.6	0.5	0.75-2.5	1.0-1.2	2.5 mm ²
LCVS008	60	67	75	44	43	3.6	0.6	0.75-2.5	1.0-1.2	2.5 mm ²
LCVS010	66	80	70	50	51	4.8	0.8	0.75-2.5	1.0-1.2	M4
LCVS015	78	78	80	56	49	4.8	1.1	0.75-4.0	1.5-1.8	M4
LCVS018	85	85	95	64	50	4.8	1.8	0.75-4.0	1.5-1.8	M4

Accessoires


Active Cube 69


Inductance de ligne


Dimensions

LCVT004 ... LCVT025

Combinaison variateur BONFIGLIOLI – Inductance de ligne 1x230 V~

Données techniques

Variateur	Inductance	Courant nominal	Inductance	Puissance dissipée
BONFIGLIOLI	BONFIGLIOLI	[A]	[mH]	[W]
ACU 201-05	LCVT004	4	7,32	20
ACU 201-07	LCVT004	4	7,32	20
ACU 201-09	LCVT006	6	4,88	25
ACU 201-11	LCVT008	8	3,66	30
ACU 201-13	LCVT010	10	2,93	30
ACU 201-15	LCVT015	15	1,95	45
ACU 201-18	LCVT018	18	1,63	70
ACU 201-19	LCVT025	25	1,17	70
ACU 201-21	LCVT034	34	0,86	85
ACU 201-22	LCV1034	54	0,80	00

70 l

Active Cube

Accessoires

Inductance de ligne

Données techniques

Combinaison variateur BONFIGLIOLI — Inductance de ligne ${\bf 3x400~V}{\sim}$

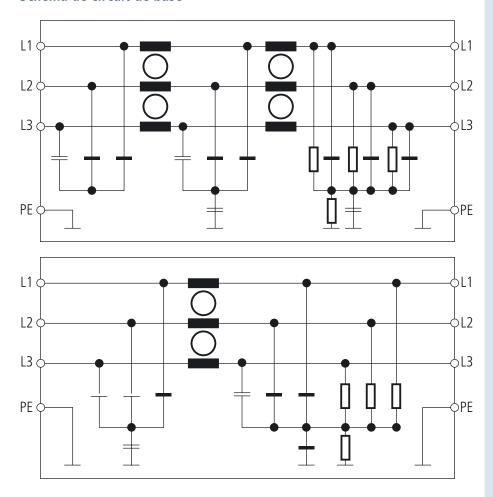
Variateur BONFIGLIOLI	Inductance BONFIGLIOLI	Courant nominal [A]	Inductance [mH]	Puissance dissipée [W]
ACU 401-05	LCVT004	4	7,32	20
ACU 401-07	LCVT004	4	7,32	20
ACU 401-09	LCVT004	4	7,32	20
ACU 401-11	LCVT004	4	7,32	20
ACU 401-12	LCVT004	4	7,32	20
ACU 401-13	LCVT006	6	4,88	25
ACU 401-15	LCVT008	8	3,66	30
ACU 401-18	LCVT010	10	2,93	30
ACU 401-19	LCVT015	15	1,95	45
ACU 401-21	LCVT018	18	1,63	70
ACU 401-22	LCVT025	25	1,17	70
ACU 401-23	LCVT025	25	0,86	85
ACU 401-25	LCVT034	34	0,86	85
ACU 401-27	LCVT050	50	0,59	100
ACU 401-29	LCVT060	60	0,49	100
ACU 401-31	LCVT060	60	0,49	100
ACU 401-33	LCVT075	75	0,37	110
ACU 401-35	LCVT090	90	0,33	120
ACU 401-37	LCVT115	115	0,25	140
ACU 401-39	LCVT135	135	0,22	180
ACU 401-43	LCVT160	160	0,18	180
ACU 401-45	LCVT180	180	0,16	185
ACU 401-47	LCVT210	210	0,14	200
ACU 401-49	LCVT250	250	0,12	210

Données techniques de montage

	D	imensior	ıs		Montage		Poids	Born	e de raccorde	ment
Inductance BONFIGLIOLI	а	b	С	n ₂	n ₁	d				
DOM: IGEIGE	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]	[mm]	[Nm]	PE
LCVT004	80	65	95	55	37	4	0,8	0,75-2,5	1,0-1,2	4 mm ²
LCVT006	100	65	115	60	39	4	1,0	0,75-2,5	1,0-1,2	4 mm ²
LCVT008	100	75	115	60	48	4	1,5	0,75-2,5	1,0-1,2	4 mm ²
LCVT010	100	75	115	60	48	4	1,5	0,75-2,5	1,0-1,2	4 mm ²
LCVT015	125	85	135	100	55	5	3,0	0,75-4,0	1,5-1,8	4 mm ²
LCVT018	155	90	135	130	57	8	4,0	0,75-4,0	1,5-1,8	4 mm ²
LCVT025	155	100	160	130	57	8	4,0	0,75-10	4,0-4,5	4 mm ²
LCVT034	155	100	190	130	57	8	4,5	2,5-16	2,0-4,0	M5
LCVT050	155	115	190	130	72	8	4,5	2,5-16	2,0-4,0	M5
LCVT060	190	110	220	170	58	8	9,0	2,5-35	2,5-5,0	M5
LCVT075	190	120	250	170	68	8	12	25-50	3,0-6,0	M6
LCVT090	190	130	250	170	78	8	12	25-50	3,0-6,0	M6
LCVT115	210	140	270	180	82	8	14	25-50	3,0-6,0	M6
LCVT135	240	160	300	190	100	11	20	16-70	6,0-7,0	M8
LCVT160	240	160	310	190	100	11	20	50-95	6,0-12,0	M8
LCVT180	240	175	320	190	106	11	22	50-95	6,0-12,0	M8
LCVT210	240	200	335	190	121	11	26	95-150	10,0-20,0	M8
LCVT250	240	210	350	190	126	11	28	95-150	10,0-20,0	M8

Filtres EMI

Du fait de leurs caractéristiques intrinsèques, tous les variateurs génèrent souvent des tensions de haute fréquence indésirables, normalement connues sous le nom de « perturbations ». Les filtres de réseau sont installés pour réduire ces perturbations.


A l'intérieur de l'Union Européenne, la norme de référence EN 61800-3 définit les seuils de perturbation électromagnétique pour les différentes classes d'appareillages.

Les variateurs de la série Active jusqu'à la taille 9,2 kW peuvent être exigés avec un filtre EMI intégré, conformément aux conditions requises de la norme pour environnements de « classe A – groupe 2 » Pour des tailles supérieures et dans les cas où une correspondance aux conditions requises les plus restrictives de la classe B est requise, il existe deux séries de filtres anti-perturbation externes qui se différencient par leur forme de construction et leur gamme de puissance.

Les filtres de la première série sont dits « arrière ou footprint », ils sont disponibles en dimensions de 7 à 40 A (pour variateur Active jusqu'à la taille 4) et permettent le montage de l'actionnement « intégré » dans ledit filtre. Les filtres de la seconde série sont « à livre ». Ils couvrent toutes les tailles d'Active jusqu'à 130 A et sont conçus pour le montage près de l'actionnement sur le même panneau.

Sur demande, il existe des filtres de réseau avec des courants de dispersion très réduits pour des applications spécifiques.

Schéma de circuit de base

Accessoires

Filtres EMI arrière ou « footprint »

Tension de réseau

3 x 480 V~ maximum +10 %

Courant nominal

8A ... 40A

Fréquence

50/60 Hz

Température de fonctionnement et de dépôt

-25° C ... +100° C (catégorie climat CEI 25/100/21)

Température ambiante

40° C maximum

Classe de protection

IP00

Type de connexion

Bornes protégées par le contact

Connexion avec toron sur le côté charge (seulement jusqu'au modèle ACT 401-18) Quincaillerie métallique comprise dans la fourniture

Note: ces filtres de réseau sont installés entre l'inductance de ligne et le variateur. Le variateur monté sur le filtre EMI doit être connecté au socle en métal à l'aide d'une connexion de terre courte avec une large section. Capacité de surcharge égale à 1,5 fois le courant nominal pendant 1 minute toutes les 30 minutes.

Variateur B	Variateur BONFIGLIOLI Taille Type		nominal	dispersion	dissipée	
Taille			[A]	[mA]	[W]	
	ACU 201-05					
	ACU 201-07					
	ACU 201-09					
1	ACU 401-05					
	ACU 401-07	FTV007B				
	ACU 401-09		ET\/007P	8	5	10
	ACU 401-11		0	3	10	
	ACU 201-11					
	ACU 401-12					
2	ACU 401-13					
	ACU 401-15					
	ACU 401-18					
3	ACU 401-19	FTV018B	18	1.2	10	
3	ACU 401-21	FIVUIOD	18	1,2	10	
1	ACU 401-23	FTV040B	40	1.2	10	
4	4 ACU 401-25	11VU4UD	40	1,2	10	

Données techniques

Tension de réseau

3 x 480 VCA

Courant nominal

7 A ... 130 A

Fréquence

Jusqu'à 60 Hz

Température de fonctionnement et de dépôt

-25° C ... +80° C (catégorie climat CEI 25/80/21)

Classe de protection

IP20

Longueur maximale des câbles moteur :

ACU 401-05 jusqu'à ACU 401-15 : 25 m classe B ACU 401-18 jusqu'à ACU 401-25 : 50 m classe B

ACU 401-27 jusqu'à ACU 401-39 : 10 m classe B, 100 m classe A groupe 1 ACU 401-43 jusqu'à ACU 401-49 : 10 m classe B, 100 m classe A groupe 1

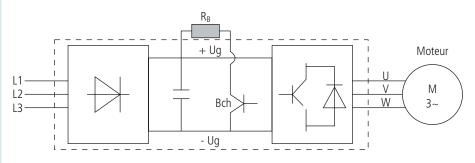
Variateur B	Variateur BONFIGLIOLI		Courant nominal	Courant de dispersion	Puissance dissipée			
Taille	Туре	BONFIGLIOLI	[A]	[mA]	[W]			
,	ACU 201-05 ACU 201-07 ACU 201-09							
1	ACU 401-05 ACU 401-07 ACU 401-09 ACU 401-11	FTV007A	7		3,8			
2	ACU 201-11 ACU 401-12 ACU 401-13 ACU 401-15							
3	ACU 201-13 ACU 201-15 ACU 401-18 ACU 401-19 ACU 401-21	FTV016A	16	33	6,1			
,	ACU 201-18 ACU 201-19 ACU 401-22	FTV030A	30		11,8			
4	ACU 201-21 ACU 401-23 ACU 401-25 ACU 201-22	11703071			11,0			
5	ACU 401-27 ACU 401-29	FTV055A	55		25,9			
	ACU 401-31	FTV075A	75		32,2			
6	ACU 401-33 ACU 401-35	FTV100A	100		34,5			
U	ACU 401-37 ACU 401-39	FTV130A	130		43,1			
	ACU 401-43	FTV150	150		88			
7	ACU 401-45	FTV180	180	13	150			
	ACU 401-47 ACU 401-49	FTV210 FTV250	210 250		180			

Filtres EMI « à livre »

Note: capacité de surcharge égale à 4 fois le courant nominal à l'insertion; 1,5 fois le courant nominal pendant 1 minute, 1 fois toutes les heures.

Accessoires

Résistances de freinage

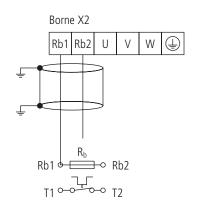

Quand la vitesse d'un moteur CA contrôlé par variateur est réduite, le moteur fonctionne en régime régénérateur et rend de l'énergie au variateur. Par conséquent, la tension dans le circuit intermédiaire du variateur augmente. Quand un seuil spécifique est dépassé, l'énergie doit s'écouler vers un système de freinage extérieur pour éviter des pannes de l'actionnement. Les résistances de freinage sont conçues pour absorber cette énergie et la dissiper en chaleur. L'utilisation des résistances de freinage permet aux actionnements de satisfaire les conditions requises de cycles de travail particulièrement difficiles, caractérisés par exemple par de fréquents freinages, longs et par impulsions.

Bonfiglioli Vectron propose une vaste gamme de résistances de freinage sûres et compactes avec un degré de protection IP20 : la « série BR »

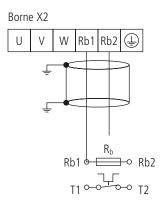
La série BR est prévue pour le montage en panneau et est en outre dotée d'une protection thermique intégrée.

Les modèles BR ont été scrupuleusement testés avec les variateurs Bonfiglioli, ils peuvent donc être utilisés avec tous les modèles Active, Synplus et VCB.

Schéma de raccordement


R_B = résistance de freinage externe

Bch = chopper de freinage intégré dans le variateur ACTIVE standard


Bornes de raccordement

ILes bornes des résistances de freinage Rb1 et Rb2 des variateurs Active se trouvent dans le bornier de puissance à la sortie X2. L'accès aux bornes dans les tailles 1 et 2 est facilité grâce à l'utilisation de borniers de puissance déconnectables. Consulter le manuel fourni avec le variateur pour d'autres détails sur les matériels et les méthodes de branchement.

Variateur de fréquence (de 0,55 à 4,0 kW)

Variateur de fréquence (de 5,5 à 65 kW)

Résistances de freinage

Tableau de combinaison avec les actionnements Active

Ce tableau montre les combinaisons conseillées pour chaque modèle d'Active et spécifie les cycles correspondants de fonctionnement selon la puissance nominale de l'actionnement. Contacter le Drive Centre Bonfiglioli le plus proche en cas d'applications avec des conditions de freinage particulièrement difficiles ou pour personnaliser un produit.

Série ACTIVE			Résistance de	Résistance		Cycle de fonctionnement
		kW	freinage Bonfiglioli	Ohm	nominale continue	à la puissance nominale de l'actionnement
	ACU 201-05	0,55	BR 160/100	100	160	29%
	ACU 201-07	0,75	BR 160/100	100	160	21%
	ACU 201-09	1,1	BR 160/100	100	160	15%
	ACU 201-11	1,5	BR 432/37	37	432	29%
	ACU 201-12	2,2	BR 432/37	37	432	20%
	ACU 201-15	3	BR 432/37	37	432	14%
	ACU 201-18	4	BR 667/24	24	667	17%
	ACU 201-19	5,5	BR 667/24	24	667	12%
	ACU 201-21	7,5	BR 1333/12	12	1333	18%
	ACU 201-22	9,2	BR 1333/12	12	1333	14%
	ACU 401-05	0,55	BR 213/300	300	213	39%
	ACU 401-07	0,75	BR 213/300	300	213	28%
	ACU 401-09	1,1	BR 213/300	300	213	19%
	ACU 401-11	1,5	BR 213/300	300	213	14%
	ACU 401-12	1,85	BR 471/136	136	471	25%
	ACU 401-13	2,2	BR 471/136	136	471	21%
	ACU 401-15	3	BR 471/136	136	471	16%
	ACU 401-18	4	BR 696/92	92	696	17%
	ACU 401-19	5,5	BR 1330/48	48	1330	24%
	ACU 401-21	7,5	BR 1330/48	48	1330	18%
	ACU 401-22	9,2	BR 1330/48	48	1330	14%
	ACU 401-23	11	BR 2000/32	32	2000	18%
	ACU 401-25	15	BR 2000/32	32	2000	13%
	ACU 401-27	18,5	BR 4000/16	16	4000	22%
	ACU 401-29	22	BR 4000/16	16	4000	18%
	ACU 401-31	30	BR 4000/16	16	4000	13%
	ACU 401-33	37	BR 8000/7	7,5	8000	22%
	ACU 401-35	45	BR 8000/7	7,5	8000	18%
	ACU 401-37	55	BR 8000/7	7,5	8000	15%
	ACU 401-39	65	BR 8000/7	7,5	8000	12%
	ACU 401-43	75	BR8000/7	7,5	8000	11%
	ACU 401-45	90	BR8000/7	7,5	8000	9%
	ACU 401-47	110	2xBR8000/7	3,75	16000	15%
	ACU 401-49	132	2xBR8000/7	3,75	16000	12%

pour d'autres informations, consulter le catalogue des résistances de freinage Bonfiglioli.

Dans le Monde

Bonfiglioli est un partenaire mondial pour la transmission de puissance et le contrôle du mouvement

Avec des projets de développement qui prévoient une ultérieure expansion du réseau commercial, Bonfiglioli vise à améliorer sa compétitivité que ce soit au niveau du support technique ou du service après-vente. Sur tous les marchés, l'objectif est d'augmenter la satisfaction de la Clientèle au travers d'une offre technologique d'avant-garde et des délais de plus en plus courts. Des filiales Bonfiglioli ont été créées dans 11 pays.

Dans d'autres la distribution a été confiée à des importateurs assurant la production des produits dans leur zone de compétence.

Le réseau national italien compte 30 bureaux de vente et de représentation et 100 revendeurs avec leurs propres magasins supportant localement leurs clients. Dans le monde entier, le knowhow et le support technique Bonfiglioli garantissent un service efficace et rapide à la clientèle.

Dans le Monde

Bonfiglioli dans le Monde & BEST Partner

AUSTRALIA

BONFIGLIOLI TRANSMISSION (Aust) Pty Ltd. 101, Plumpton Road, Glendenning NSW 2761, Australia Locked Bag 1000 Plumpton NSW 2761 Tel. (+ 61) 2 8811 8000 - Fax (+ 61) 2 9675 6605 www.bonfiglioli.com.au - sales@bonfiglioli.com.au

AUSTRIA BEST

MOLL MOTOR GmbH Industriestrasse 8 - 2000 Stockerau Tel. (+43) 2266 63421+DW - Fax (+43) 6342 180 www.mollmotor.at - office@mollmotor.at

BELGIUM SEST ESCO TRANSMISSION N.V./S.A. Culliganlaan 3 - 1831 Machelem Diegem Tel. (+32) 2 7176460 - Fax (+32) 2 7176461 www.esco-transmissions.be - info@esco-transmissions.be

BRASIL BEST

ATI BRASII Rua Omlio Monteiro Soares, 260 - Vila Fanny - 81030-000 Tel. (+41) 334 2091 - Fax (+41) 332 8669 www.atibrasil.com.br - vendas@atibrasil.com.br

CANADA

BONFIGLIOLI CANADA INC. 2-7941 Jane Street - Concord, Ontario L4K 4L6 Tel. (+1) 905 7384466 - Fax (+1) 905 7389833 www.bonfigliolicanada.com - sales@bonfigliolicanada.co

BONFIGLIOLI DRIVES (SHANGHAI) CO. LTD. No. 8 Building, 98 Tian Ying Road Qingpu District, Shanghai, PRC 201712 Tel. (+86) 21 69225500 - Fax (+86) 21 69225511 www.bonfiglioli.cn - bds@bonfiglioli.com.cn

BONFIGLIOLI TRANSMISSIONS S.A. 14 Rue Eugène Pottier BP 19 Zone Industrielle de Moimont II - 95670 Marly la Ville Tel. (+33) 1 34474510 - Fax (+33) 1 34688800 www.bonfiglioli.fr - btf@bonfiglioli.fr

GERMANY

BONFIGLIOLI DEUTSCHLAND Gmbh Sperberweg 12 - 41468 Neuss Tel. (+49) 02131 2988-0 - Fax (+49) 02131 2988-100 www.bonfiglioli.de - info@bonfiglioli.de

GREAT BRITAIN

BONEIGLIOLLUK Ltd Industrial Equipment - Unit 3 Colemeadow Road North Moons Moat - Redditch. Worcestershire B98 9PB Tel. (+44) 1527 65022 - Fax (+44) 1527 61995 www.bonfiglioli.com - uksales@bonfiglioli-uk.com

5 Grosvenor Grange, Woolston, Warrington Cheshire WA1 4SF Tel. (+44) 1925 852667 - Fax (+44) 1925 852668 www.bonfiglioli-uk.com - salesmobile@bonfiglioli-uk.com

GREECE SBEST

B.E.S.T. HELLAS S.A. O.T. 48A T.O. 230 C.P. 570 22, Industrial Area - Thessaloniki Tel. (+30) 2310 796456 - Fax (+30) 2310 795903 www.bonfiglioli.gr - info@bonfiglioli.gr

HOLLAND BEST

ELSTO AANDRIJFTECHNIEK Loosterweg, 7 - 2215 TL Voorhout Tel. (+31) 252 219 123 - Fax (+31) 252 231 660 www.elsto.nl - info@elsto.nl

HUNGARY SEST

AGISYS AGITATORS & TRANSMISSIONS Ltd 2045 Törökbálint, Tö u.2. Hungary Tel. (+36) 23 50 11 50 - Fax (+36) 23 50 11 59 www.agisys.hu - info@agisys.hu

0101101010011

BONFIGLIOLI TRANSMISSIONS PVT Ltd PLOT AC7-AC11 Sidco Industrial Estate Thirumudiyakkam - Chennai 600 044 Tel. +91(0) 44 24781035 / 24781036 / 24781037 Fax +91(0) 44 24780091 / 24781904 www.bonfiglioli.co.in - bonfig@vsnl.com

BONFIGLIOLI ITALIA S.p.A. Via Sandro Pertini lotto 7b - 20080 Carpiano (Milano) Tel. (+39) 02 985081 - Fax (+39) 02 985085817 www.bonfiglioli.it - customerservice.italia@bonfiglioli.it

NEW ZEALAND SEST

SAECO BEARINGS TRANSMISSION 36 Hastie Avenue, Mangere Po Box 22256, Otahuhu - Auckland Tel. (+64) 9 634 7540 - Fax (+64) 9 634 7552 mark@saeco.co.nz

POLAND PBEST

POLPACK Sp. z o.o. - Ul. Chrobrego 135/137 - 87100 Torun Tel. (+48) 56 6559235 - 6559236 - Fax (+48) 56 6559238 www.polpack.com.pl - polpack@polpack.com.pl

PORTUGAL SEST

BT BONFITEC Equipamentos Industriais, Lda. Largo do Colegio de Ermesinde, 70 - Formiga 4445-382 Ermesinde Tel. (+351) 229759634/5/6 - Fax (+351) 229752211 www.bonfitec.pt - bonfitec@bonfitec.pt

RUSSIA BEST

57, Maly prospekt, V.O. - 199048, St. Petersburg Tel. (+7) 812 3319333 - Fax (+7) 812 3271454 www.fam-drive.ru - info@fam-drive.ru

TECNOTRANS BONFIGLIOUS A Pol. Ind. Zona Franca sector C, calle F, n°6 08040 Barcelona Tel. (+34) 93 4478400 - Fax (+34) 93 3360402 www.tecnotrans.com - tecnotrans@tecnotrans.com

SOUTH AFRICA

BONFIGLIOLI POWER TRANSMISSION Pty Ltd. 55 Galaxy Avenue, Linbro Business Park - Sandtor Tel. (+27) 11 608 2030 OR - Fax (+27) 11 608 2631 www.bonfiglioli.co.za - bonfigsales@bonfiglioli.co.za

BONFIGLIOLI SKANDINAVIEN AB Koppargatan 8 - 234 35 Lomma, Swede Tel. (+46) 40418230 - Fax (+46) 40414508 www.bonfiglioli.se - info@bonfiglioli.se

THAILAND SEST

K PT MACHINERY (1993) CO ITD 259/83 Soi Phiboonves, Sukhumvit 71 Rd. Phrakanong-nur, Wattana, Bangkok 10110 Tel. (+66) 2 3913030/7111998 - Fax (+66) 2 7112852/3811308/3814905 www.kpt-group.com - sales@kpt-group.com

BONFIGLIOLI TURKIYE Atatürk Organíze Sanayi Bölgesi, 10015 Sk. No: 17, Çiğli - Izmir Tel. +90 (0) 232 328 22 77 (pbx) - Fax +90 (0) 232 328 04 14 www.bonfiglioli.com.tr - info@bonfiglioli.com.tr

BONFIGLIOLI USA, INC. 3541 Hargrave Drive Hebron, Kentucky 41048 Tel. (+1) 859 334 3333 - Fax (+1) 859 334 8888 www.bonfiglioliusa.com industrialsales@bonfiglioliusa.com - mobilesales@bonfiglioliusa.com

VENEZUELA *®best*

MAICA SOLUCIONES TECNICAS C.A.
Calle 3B - Edif. Comindu - Planta Baja - Local B La Urbina - Caracas 1070 Tel. (+58) 212 2413570 / 2425268 / 2418263 Fax (+58) 212 2424552 - Tlx 24780 Maica V maica1@cantv.net

HEADQUARTERS

BONFIGLIOLI RIDUTTORI S.p.A. Via Giovanni XXIII, 7/A 40012 Lippo di Calderara di Reno Bologna (ITALY) Tel. (+39) 051 6473111 Fax (+39) 051 6473126 bonfiglioli@bonfiglioli.com

SPARE PARTS BONFIGLIOLI

Via Castagnini, 2-4 Z.I. Bargellino - 40012 Calderara di Reno - Bologna (ITALY) Tel. (+39) 051 727844 Fax (+39) 051 727066 www.brtbonfiglioliricambi.it brt@bonfiglioli.com

www.bonfiglioli.com

