
Page: 1
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

FinsGateway

 SerialUnit ProtoDLL SDK SerialUnit ProtoDLL SDK SerialUnit ProtoDLL SDK SerialUnit ProtoDLL SDK
Manual Manual Manual Manual

(Adding to the FinsGateway Serial Communication Protocol)(Adding to the FinsGateway Serial Communication Protocol)(Adding to the FinsGateway Serial Communication Protocol)(Adding to the FinsGateway Serial Communication Protocol)

First Edition
May 1998

OMRON Corporation

Page: 2
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

Contents

1 SerialUnit ProtoDLL SDK...3
2 Copyright ..4
3 FinsGateway SerialUnit Design Concept................................5
4 SerialUnit ProtoDLL Internal Structure6

4.1 Overall Structure ..6
4.2 Export Functions (Public Functions) and Common Data ...8
4.3 Communication Example ...9
4.4 Registry and Other System Settings ..10
4.5 Setting Utilities..11
4.6 Protocol Support Other than FINS ...11

5 Development Environment ..12
6 ProtoDLL Development Precautions13

6.1 Common Resources...13
6.2 Other Protocols ..13
6.3 Troubleshooting and Precautions...13

7 Event Log and UDM..14
7.1 Event Log ...14
7.2 UDM ...14

8 Installation ..15
9 Debugging...16
10 Utility Software ...17

10.1 Serial Communication Explorer Addition ..17

11 Reference..18
11.1 Data Structure Reference ...18
11.2 ProtoDLL Export Function Reference ...26
11.3 SerialUnit Export Function Reference...29

Each product name, technology name, etc. in this document is typically a trademark of the company that
developed it. The ™, ® marks are not used in this document.

Page: 3
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

1 SerialUnit ProtoDLL SDK
The FinsGateway SerialUnit ProtoDLL SDK (hereafter, ProtoDLL SDK) explains how
to develop a protocol conversion DLL (hereafter, ProtoDLL) for the SerialUnit, which is
a FinsGateway serial communication unit.

The ProtoDLL establishes communication between a serial line device and a
FinsGateway application by interpreting the dedicated protocol of the device. The
FinsGateway SerialUnit is already provided with three ProtoDLLs (SYSWAY,
SYSWAY-CV, and CompoWay/F).

Using the ProtoDLL SDK, a developer can provide ProtoDLLs for other protocols as
well. The ProtoDLL SDK provides data and a sample for ProtoDLL development.

Page: 4
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

2 Copyright
Everything described or expressed in this FinsGateway Network Service Provider
SDK (including documentation, API, electronic file, etc.) is copyrighted and owned by
OMRON Corporation.

This FinsGateway Network Service Provider SDK is provided by OMRON Corporation
to the user under special conditions. Therefore, the user is not allowed to divulge any
of this information in any way, shape, or form, beyond the extent of this agreement, for
any reason.

Any of the information concerning the SDK may be changed by OMRON Corporation
without notice.

Any software developed using this SDK is not permitted to be marketed in competition
with any product of OMRON Corporation.

Page: 5
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

3 FinsGateway SerialUnit Design Concept
The FinsGateway SerialUnit (hereafter, SerialUnit) is designed to communicate with a
device using computer serial communication.

Serial communication is a commonly used communication process for control devices,
which follows the standards of RS-232C. This widely used serial communication
varies in communication procedure on the communication line (called protocol, here),
depending on the device. The variations of this protocol cause a great workload for
the design and development of communication applications.

FinsGateway was specifically designed to hide the differences in networks, so it treats
serial communication the same as SYSMAC LINK, etc. The following challenges were
encountered in accomplishing this:

• Varied protocols

• No network model

The SerialUnit was designed to allow for these differences in serial communication
protocols by providing a DLL (Dynamic Link Library) for each protocol. The DLL
simplifies the necessary adjustments, so the communication application does not
need to consider the differences in protocol.

The SerialUnit characteristics are as follows:

• A structure that absorbs the differences in ProtoDLL protocols

• Supports many ProtoDLL protocols as add-ons

• Provides a network model

• Multiple protocols supported on the same line, by allowing independent protocol
definition for each node

Page: 6
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

4 SerialUnit ProtoDLL Internal Structure
To understand the internal structure, it is necessary to understand how the SerialUnit
handles serial communication as a FINS network. The information required to
understand this is presented in the FinsGateway SerialUnit manual.

4.1 Overall Structure
The SerialUnit is configured of the following elements:

• SerialUnit (SeriUnit.exe), which operates as a FinsGateway communication unit

• Multiple ProtoDLLs to support each protocol

• Registry to perform the SerialUnit and ProtoDLL operation settings

• SerialSetup.dll for fsnavim.exe, which is the Setting Utility to perform the registry
settings

• Srlexplore.exe, which is a utility to search for communication conditions

For an application to communicate with a serial target device, the application uses the
FinsGateway FINS message API to send messages. With FinsGateway, the message
is sent to the SerialUnit. The SerialUnit converts the message to the actual
communication protocol, and communicates with the target device.

The SerialUnit protocol processing is performed with an addable DLL known as
ProtoDLL. Therefore, adding a specific protocol to the ProtoDLL adds to the protocols
supported by the SerialUnit. This also adds to the protocols supported by the
application.

fsnavim.exe

Application

FinsGateway API

SerialUnit

COM port

Device

ProtoDLL

ProtoDLL
Registry data

SerialSetup.dll

Setting Utility

RS-232C serial communication

FINS message

Serial unit dedicated
protocol

Page: 7
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

While the SerialUnit uses the ProtoDLL to perform the protocol conversion, the
communication unit is fundamentally one application message. When the SerialUnit
receives an application message, it selects the corresponding ProtoDLL and transfers
the processing to that ProtoDLL. When the ProtoDLL completes the processing of that
message, it sends the FINS response to the application, and returns execution to the
SerialUnit.

The SerialUnit is created by the SerialUnit system service for each line being used.
Therefore, the SerialUnit for the line using COM1, and the SerialUnit for the line using
COM2 operate as independent communication units. Between these multiple
SerialUnits, there is only a thread boundary. In other words, when developing a
ProtoDLL, if the ProtoDLL needs to use any global resources exclusively, it is
necessary to protect those resources for the threads throughout the ProtoDLL.

SerialUnit system service

Application

FinsGateway API

SerialUnit A

COM port A

Device

FINS message

SerialUnit B

COM port B

Device

Page: 8
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

4.2 Export Functions (Public Functions) and Common Data
The SerialUnit and ProtoDLL operate in cooperation with each other. The SerialUnit
calls the ProtoDLL when necessary, and the ProtoDLL uses the SerialUnit processing
whenever appropriate. This cooperation is based on the SerialUnit exporting functions
to the ProtoDLL, and the ProtoDLL exporting functions to the SerialUnit. Some of the
exported functions also use common data between the SerialUnit and the ProtoDLL.

To develop a new ProtoDLL, it is necessary to know the functions that the SerialUnit
exports. It is also necessary to know the roles of the export functions to include in the
ProtoDLL, and the proper stages for those functions to be executed.

SerialUnit ProtoDLL

writeCom

readCom

sendFinsgw

Export functions

newDll

handleMessage

deleteDll

Export functions

……

Common
data

Called from the
SerialUnit

Called from the
ProtoDLL

Page: 9
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

4.3 Communication Example
1. When the application sends one FINS message, the message is forwarded to the
SerialUnit for that target address.

2. The SerialUnit determines the ProtoDLL, based on the target node address and the
node protocol registered in the registry. The SerialUnit then executes the ProtoDLL
export function, handleMessage.

3. From here, all the processing is handled inside the ProtoDLL handleMessage
function. Inside handleMessage, the data is converted to the actual protocol required,
and sent through the COM port to the target device. To send the data to the COM port,
The SerialUnit export function, writeCom is used.

4. The SerialUnit called by writeCom sends the data it received from the ProtoDLL to
the COM port.

Application

SerialUnit

Device

ProtoDLL

FINS command

Serial, dedicated protocol

handleMessage
Protocol conversion
Send to COM

writeCom

readCom

……

Export functions

4

1

2

3

5. Next, the ProtoDLL handleMessage performs the response processing. The
handleMessage executes the SerialUnit export function, readCom. The readCom
function reads the data received from the COM port.

Based on the protocol, handleMessage continues to receive the device data through
the COM port until it has a complete packet. When the data is complete, it is
converted to a FINS response. This FINS response is the response to the FINS
command sent by the application at the beginning of this process.

6. After the response is converted, handleMessage sends the FINS response to the
application. Sending the response is performed by the SerialUnit export function,
sendFinsgw.

7. The SerialUnit function sendFinsgw sends the FINS response to the application
based on the message specified by the ProtoDLL.

Page: 10
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

When the processing for one message is complete, the ProtoDLL handleMessage
returns to the SerialUnit. The ProtoDLL processing is then finished. This completes
the processing for a FINS message from the application:

Application

SerialUnit

Device

ProtoDLL

FINS command

Serial, dedicated protocol

handleMessage
Receive from COM
Convert to FINS
Send response

sendFinsgw

readCom

……

Export functions

5

7

6

5

4.4 Registry and Other System Settings
The SerialUnit operation settings use the registry. These registry values are normally
set with the Setting Utility, fsnavim.exe SerialSetup.dll.

The registry key that specifies the SerialUnit operation is stored in the following
location:

HKEY_LOCAL_MACHINE¥SOFTWARE¥OMRON¥FinsGateway¥NetworkProvid
er¥Serial

These keys have the following sub-keys:
Key Name Meaning
Unit ¥SerialLineUnit Sets the operation of the SerialUnit, itself
Proto Sets the protocol operation
Proto¥protocol name Sets the specified protocol operation
Lines Sets the line operation
Lines¥line name (i.e., COM1) Sets the specified line operation
Lines¥line name¥Parameters Sets the specified line parameters (communication

conditions, etc.)
Lines¥line name¥Nodes Sets the nodes of the specified line
Lines¥line name¥Nodes¥node number Sets the specified node operation

Page: 11
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

The following values are set to the registry entries of these keys. Only the main entries
are shown here:

Unit ¥SerialLineUnit Entry Name Meaning
Lines Enumerates the SerialUnit line names. The lines

shown here are the registry keys specified in
Lines¥linename.

Proto¥ProtocolName Entry Name Meaning
ProtoDLL Specifies the full path of the ProtoDLL file.

Environment variables can be used.

Lines¥LineName¥Nodes¥NodeNumber
Entry Name

Meaning

Proto Specifies the protocol used by this node. This value
is the Proto¥protocolname in the registry.

ProtoSpecData Stores protocol-specific data. Normally, it shows the
actual protocol target address.

ProtoSpecSize Indicates the size of the ProtoSpecData data, as a
number of bytes.

4.5 Setting Utilities
The following two SerialUnit Setting Utilities are provided:

• SerialSetup.dll: this is the DLL called by fsnavim.exe, and is used to perform all
the SerialUnit settings. This DLL cannot be changed from the ProtoDLL SDK.

• Serial Communication Explorer: this is the utility to check the communication
conditions for communicating with the serial communication devices. This
command can be changed from the ProtoDLL SDK.

4.6 Protocol Support Other than FINS
The SerialUnit and ProtoDLL have the capacity to support protocols other than the
application FINS messages. For example, the SYSWAY protocol can be used as is by
the application. However, the procedure for supporting protocols from the application
other than FINS is not noted in the ProtoDLL SDK. It is not within the scope of the
ProtoDLL SDK.

Page: 12
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

5 Development Environment
The following are required for ProtoDLL development:

• Development environment for DLL development

• FinsGateway SerialUnit

• FinsGateway SDK

The ProtoDLLs already provided to the SerialUnit (SYSWAY, SYSWAY-CV,
CompoWay/F) were developed using Microsoft Visual C++. The programming
language used is C-language, the library is the standard C library and Win32. The
reason for not using C++, etc., or MFC, etc. is to maintain as much stability as
possible.

The ProtoDLL is executed in the SerialUnit system service context. Consider the
following points of system service design when designing the ProtoDLL:

• There is no user interface. Therefore, The ProtoDLL does not provide the user
with error data or other information in the form of a dialog box.

• The means of providing error data are limited. The capacity for providing the user
with data through a window is limited, so error data and other information is
normally provided through the event log or UDM (Universal Data Monitor).
Windows NT provides an event log. FinsGateway provides the UDM and the
Windows95 event log.

• Common services are provided for multiple processes. In other words, it is not a
good idea to design a service for a specific application. It is necessary to design
the service thinking that varying applications will make asynchronous requests.

• A reliable design is the highest priority. The user is not normally aware of the
operation of a service. A service built into the system generally keeps running
after it is started, until the system shuts down.

For OLE/COM programming, the following point has proven to be important:

• COM instances are created for each user. A COM object design that assumes
there is only ever one instance in the system can therefore encounter
unexpected errors. This occurs when the system service and the logged on user
are different.

Page: 13
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

6 ProtoDLL Development Precautions
There are several points that must be considered in the development of the ProtoDLL.
There are multiple ProtoDLLs for one SerialUnit operation, and they use common
resources to operate. It is therefore necessary to design each ProtoDLL so that it does
not adversely affect any other ProtoDLL operation.

6.1 Common Resources
In the SerialUnit operation, there are common resources between the SerialUnitand
the ProtoDLL. For example, one of the most important resources is the COM port. If
one ProtoDLL changes the COM port settings, or closes the COM port, the previous
settings must be restored before the ProtoDLL handleMessage is closed. The
SerialUnitdoes not perform the COM port settings with each ProtoDLL
handleMessage execution, so the changes made by one ProtoDLL to the COM port
affect all the ProtoDLLs.

There is also data that is used in common between the SerialUnit and the ProtoDLLs
that must not be changed by the ProtoDLLs. Refer to the Reference for details.

6.2 Other Protocols
One ProtoDLL handleMessage completely controls the SerialUnit operation. Until the
handleMessage is closed, the SerialUnit performs no operations on its own, but simply
provides the functions to be called by the handleMessage. Therefore, until the
handleMessage processing is complete, other ProtoDLLs do not operate. As a result,
from the perspective of the application, the SerialUnit only supports one protocol.

The SerialUnit protocol addition model executes one handleMessage for each
application message, so SerialUnit operation supporting only one protocol differs from
past models. It is best to consider whether the system really requires a ProtoDLL that
controls the SerialUnit in this manner.

6.3 Troubleshooting and Precautions
The ProtoDLL developer must take sufficient precaution for handling potential errors.
SerialUnit communication involves quite a large number of elements. When an error
occurs, it can therefore be quite challenging to troubleshoot the system. For this
reason, it is best to design means of troubleshooting into the ProtoDLL from the
beginning.

The event log and UDM are two of the best tools for troubleshooting, and debugging.
Using these effectively should be included in the original design of the ProtoDLL. The
following operations must be considered carefully:

• Messages sent from the application

• Messages sent to/from the COM port

• Calls for the SerialUnit export function

• Calls from the SerialUnit for the ProtoDLL export function

• Protocol conversion (send/receive)

• Target device communication procedure

Page: 14
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

7 Event Log and UDM
An event log corresponding to Win32 is used to report errors detected by the NSP.
The NSP status is monitored by the UDM (Universal Data Monitor). The event log has
a system-wide, common record area which stores the logs reported from the various
sources. This is generally used for recording the OS-level error states. The UDM has
record area divided into selectable categories. Each record area stores the logs
reported by the source specified for that area. This is generally used for tracing the
operation of the specified source. As an example of using the event log and the UDM,
the SerialUnit notifies the event log of operation failures. The data being sent through
the SerialUnit is being traced by the UDM.

Using the event log and UDM to report is not a necessity of the NSP. Implementation
of this function is optional. However, for system service debugging, or troubleshooting,
implementation of this log function is recommended.

7.1 Event Log
Errors that occur during NSP operation need to be notified to the user. However, since
the NSP operates as a system service, notifying the user of errors with a window is
not always appropriate. For the NSP to notify the user, the Win32 event log is used.

For an event log model and operation details, refer to the Win32 Event Logging
OverView. The event log characteristics in brief are as follows:

• Dividing the events broadly, they can be classified as System, Security, and
Application.

• The event types are Errors, Warnings, and Information.

• The exact event message expressions are included in the files including the
resources compiled by the Message Compiler (MC).

7.2 UDM
The UDM was designed as a general data monitor, and is exclusive to FinsGateway.
Using the UDM is helpful for recording changes in the NSP status, debugging, and
tracing execution during system operation. The UDM characteristics in brief are as
follows:

• There is a log file for each category.

• When logging, the LDH (Log Data Handler) filter DLL can be specified.

• The detailed log display can be done with the specified LDH conversion DLL.

• Log start/stop can be specified from an application (normally a viewer
application).

Page: 15
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

8 Installation
The ProtoDLL developed can be used from any folder. The SerialUnit searches for the
DLL file in the registry fixed entry value, and loads it. The registry location to specify
the DLL file is as follows:

HKEY_LOCAL_MACHINE¥SOFTWARE¥OMRON¥FinsGateway¥NetworkProvid
er¥Serial¥Proto¥ProtocolName

The accurate DLL file name is specified in ProtoDLL, as the character string value
under this registry entry (REG_STRING or REG_EXPAND_STRING value). An
environment variable can also be used.

For example, if a SYSWAY ProtoDLL file is “%FinsServer%¥bin¥SyswayFA.dll”, it
would be specified as follows in the registry configuration:

Page: 16
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

9 Debugging
Debugging the ProtoDLL uses the SerialUnit as a host application. The SerialUnit
program file is “%FinsServer%¥bin¥SeriUnit.exe”.

In normal systems, SeriUnit.exe operates as a system service. However, for
debugging, it is best to run SeriUnit.exe alone. If SeriUnit.exe is implemented not to
operate as a service, but to be executed by double-clicking with the mouse, or
specifying the command name, it can be operated as a console application and
debugging is much simpler.

Therefore, for debugging the ProtoDLL, set SeriUnit.exe as a debug execution
program in the ProtoDLL development environment (Microsoft Visual Studio, etc.).

When SeriUnit.exe is started, an MS-DOS prompt or command prompt will be
displayed. When it is started in this manner, operations as a service become invalid,
and starting/stopping from the service manager is impossible.

Press Ctrl+C on the keyboard to stop SeriUnit.exe.

The following precautions apply to debugging:

• When force-stopping SeriUnit.exe in Windows95 (other than by using Ctrl+C), the
process to unload the DLL used by SeriUnit.exe is not properly called. As a result,
the FinsGateway unit remains in the used state, and SeriUnit.exe cannot be
started the next time. In this case, close all the applications using FinsGateway.

• The startup of SeriUnit.exe implemented as a service for Windows NT takes
about 5 seconds. The ProtoDLL is loaded after this time.

• When starting SeriUnit.exe as a console application, do not use the service
manager to start or stop the SeriUnit.exe.

Page: 17
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

10 Utility Software
The FinsGateway SerialUnit includes utility software. The points described in this
chapter must be considered for this program.

10.1 Serial Communication Explorer Addition
The Serial Communication Explorer is a utility to check and display the communication
conditions for the serial communication devices. Serial communication requires that
the cable connections, communication conditions (transfer speed, character size, etc.),
etc. match between the two devices. It is therefore necessary to confirm the
communication conditions in the system. The Serial Communication Explorer stores
the combination of the command and the response for each device when it checks the
communication conditions.

The devices supported by the Serial Communication Explorer cannot be added
dynamically, but the code can be changed, and a command and response can be
added to check for a specific device.

The following are suggestions for adding new devices:

• New devices are implemented inheriting the virtual class, CvirtualDevice. The
CvirtualDevice virtual class has true virtual functions already defined, so the
inherited actual device class needs to over-ride these virtual functions.

• After implementing a class to represent the new device, create the one and only
instance in the program. Create the instance by including the following in the file,
Devices.cpp.

#include “StdAfx.h”
#include “devices.h”

CDeviceSysmac sysmac;
CDeviceThermoE5CK e5ck;
CDeviceCompoWay compoway;
//Add the new device class instance here.
CdeviceUnknow unknownDevice;

• In order to make the new device instance accessible by the GetDeviceArray
function of the CvirtualDevice virtual class, place the instance address in a global
array in the Devices.cpp file. This is done as follows:

static CVirtualDevice* gDevices[] =
{
 &sysmac,
 &e5ck,
 &compoway,
 //Add the new device class instance here.
 &unknownDevice,
 NULL
};

This completes the addition of a new device. Build the Serial Communication Explorer
to confirm that the added device is included in the list of selectable devices.

Page: 18
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

11 Reference
The following is a list of the necessary data, functions for developing a ProtoDLL. For
details on the event log data, refer to the online fsport-related reference.

11.1 Data Structure Reference

Data Structure Function
tProtoDllInfo Shows the data structure that stores the ProtoDLL data
tProtoDllProperty Indicates the ProtoDLL properties
tComEnvPublic Communicates the SerialUnit communication

environment to the ProtoDLL
SerialSharedData Stores the send/receive data
NODEINFO Stores the node data of the target device

11.1.1 Data Structure of tProtoDllInfo
The data structure, tProtoDllInfo is a data structure that shows ProtoDLL data.

typedef struct _tagProtoDllInfo {
 HANDLE handle; //DLL handle
 CHAR definedName[MAX_PATH]; //DLL defined Name (example: “HighLink”)
 CHAR fileName[MAX_PATH]; //DLL Filename (example: “c:¥HighLink.dll”)

pProtoDllProperty protoProperty;
 BOOL (*comNew) () ;
 BOOL (*comDelete) () ;
 BOOL (*comWriteFail) () ;
 BOOL (*comReadFail) () ;
 BOOL (*comFINS command) () ;
 BOOL (*comFINS response) () ;
 BOOL (*comMakeFrame) () ;
 BOOL (*comCheckFrame) () ;
 BOOL (*comGetWriteMessage) () ;
 pProtoDllProperty (*comQueryProperty) () ;
 BOOL (*comQueryDirection) () ;
 BOOL (*comCompleteDirection) () ;
 tDllExportProcs dllProcs;
 tExeExportProcs exeProcs;
} tProtoDllInfo, *pProtoDllInfo;

Members
handle

ProtoDLL module handle. This value cannot be changed in the ProtoDLL.

definedName
ProtoDLL definition name. This value cannot be changed in the ProtoDLL.

fileName
ProtoDLL file name. This value cannot be changed in the ProtoDLL.

protoProperty
This is the data structure that shows the ProtoDLL properties. The ProtoDLL must
have the values set in this data structure for newDll processing.

Page: 19
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

comNew
This is a function of an older version of ProtoDLL. Do not use it.

comDelete
This is a function of an older version of ProtoDLL. Do not use it.

comWriteFail
This is a function of an older version of ProtoDLL. Do not use it.

comReadFail
This is a function of an older version of ProtoDLL. Do not use it.

comFINScommand
This is a function of an older version of ProtoDLL. Do not use it.

comFINSresponse
This is a function of an older version of ProtoDLL. Do not use it.

comMakeFrame
This is a function of an older version of ProtoDLL. Do not use it.

comCheckFrame
This is a function of an older version of ProtoDLL. Do not use it.

comGetWriteMessage
This is a function of an older version of ProtoDLL. Do not use it.

comQueryProperty
This is a function of an older version of ProtoDLL. Do not use it.

comQueryDirection
This is a function of an older version of ProtoDLL. Do not use it.

comCompleteDirection
This is a function of an older version of the ProtoDLL. Do not use it.

dllProcs
This is the data structure that shows the functions that the ProtoDLL exports to the
SerialUnit. The ProtoDLL must have the values set in this data structure for newDll.

exeProcs
This is the data structure that shows the functions that the SerialUnit exports to the
ProtoDLL. The ProtoDLL needs to call the functions shown in these data structure
values when executing the SerialUnit processing.

Remarks
tProtoDllInfo is a data structure that shows ProtoDLL data.

Within this member, the protoProperty and dllProcs require that the ProtoDLL set the
values for the ProtoDLL function, newDll.

Page: 20
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

For the ProtoDLL the member, exeProcs is especially important. The function
addresses that the SerialUnit exports to the ProtoDLL are all set in this member.
Therefore, the ProtoDLL uses the function address values from this member to call
the SerialUnit functions.

See Also
tProtoDllProperty, newDll

11.1.2 Data Structure of tProtoDllProperty
The data structure, tProtoDllProperty is the ProtoDLL property data structure.

typedef struct {
 LARGE_INTEGER protoTypeMask; //supported protocol type
 const DWORD comSendLenMax; // send command maximum length
 const DWORD comReceiveLenMax; // receive response maximum length
 const BYTE ProtoName[PROTONAMELEN]; // protocol name
 const BYTE suportControllerNames[MAXCNTL][PROTONAMELEN];
 // support controller name
} tProtoDllProperty, *pProtoDllProperty;

Members
protoTypeMask

Shows the protocol types supported by the ProtoDLL. The protocol support shown
here is the protocol used by the application, not the actual communication protocol.
Normally, the ProtoDLL supports only the FINS protocol. To support a protocol for the
application other than the FINS protocol, this member in the ProtoDLL takes a fixed
numeric value for that protocol. The fixed protocol number is determined by the
SerialUnit developer (Omron), the ProtoDLL developer cannot determine the value.

comSendLenMax
Shows the protocol maximum command length. The present SerialUnit does not use
this value.

comReceiveLenMax
Shows the protocol maximum response length. The present SerialUnit does not use
this value.

ProtoName
Shows the protocol name. This must be the same as the registry Serial¥Proto key
name.

suportControllerNames
Shows the controller names supported by the protocol. The present SerialUnit does
not use this value.

Remarks
tProtoDllProperty is the ProtoDLL property data structure.

The ProtoDLL must have the tProtoDllProperty value of the tProtoDllInfo data
structure set for newDll processing.

Page: 21
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

The member protoTypeMask value setting is performed with the following code:
#include <Largeint.h>

static tProtoDllProperty gProtoDllProperty;
//setup ProtoType in supporting
{
LARGE_INTEGER largeInt = ConvertUlongToLargeInteger (1) ;
gProtoDllProperty.protoTypeMask = LargeIntegerShiftLeft (largeInt, C_PROTOCOL_FINS) ;
}

See Also
tProtoDllInfo, newDll

11.1.3 Data Structure of tComEnvPublic
The data structure, tComEnvPublic is the construct that stores the SerialUnit
communication environment data.

typedef struct TagComEnvPublic {
 char LogicName[NAMELEN]; // COM port logical name
 char ComName[NAMELEN]; // COM device name
 HANDLE SerialHandle; // serial driver handle value
 HNET FinsGWHandle; // FinsGateway network handle value
 FINSENV FinsEnv; // FINS communication environment management construct
} tComEnvPublic, *pComEnvPublic;

Members
LogicName

Stores the character string that shows the SerialUnit logical line name. The character
string is terminated with NULL.

ComName
Stores the character string that shows the physical device name of the COM port used
by the SerialUnit (i.e., COM1, etc.). The character string is terminated with NULL.

SerialHandle
This is the COM port access file handle. It is normally the handle obtained by Win32
CreateFile. Howeever, when operating on a telephony device, it becomes a useful
handle for TAPI. In this case, the processing used for a handle obtained using
CreateFile may be invalid.

FinsGWHandle
This is the FinsGateway FINS message communication handle. The SerialUnit and
ProtoDLL can use this handle to communicate with the application.

Page: 22
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

FinsEnv
Data structure to indicate the SerialUnit FinsGateway communication unit settings.
This data structure is as follows:

typedef struct FinsEnvironment {
 DWORD NodeAddr; // unit FINSnode address
 DWORD UnitAddr; // unit FINSunit address
 DWORD FinsDataLength; // communication data length for FinsGateway
} FINSENV, *FINSENVP;

Remarks
This data structure instance is created for each SerialUnit communication unit.
Therefore, if the SerialUnits are using two COM ports, the SerialUnits will create two
tComEnvPublic instances. These multiple tComEnvPublic instances do not interfere
with each other.

However, a single tComEnvPublic instance is not thread-safe. In other words, do not
create multiple threads throughout the ProtoDLL, and simultaneously operate a
tComEnvPublic instance. Instead, use exclusive control in the ProtoDLL for that
situation.

Be careful also of the fact that the tComEnvPublic instances are a shared resource
between multiple ProtoDLLs. For example, if one ProtoDLL closes the COM port, and
ends its processing, other ProtoDLLs can no longer communicate through the COM
port, either.

See Also
openComDefault, closeCom

Page: 23
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

11.1.4 Data Structure of SerialSharedData
The SerialSharedData data structure is the area that stores the data shared by the
SerialUnit and ProtoDLL.

typedef struct _tagSerialSharedData {
 FINSHEAD finsHead; // FINS header management construct

 BYTE *FINS command; // FINS command buffer start address
 DWORD FINS commandLen; // FINS command length (bytes)
 DWORD FINS commandLenMax; // FINS commandmaximum length (bytes)

 BYTE *FINS response; // FINS response buffer start address
 DWORD FINS responseLen; // FINS response length (bytes)
 DWORD FINS responseLenMax; // FINS response maximum length (bytes)

 BYTE *comSendData; // COM send data buffer start address
 DWORD comSendDataPos; // COM send data stored position
 DWORD comSendLenMax; // COM send data maximum length

 BYTE *comReceiveData; // COM receive data buffer start address
 DWORD comReceiveDataPos; // COM receive data stored position
 DWORD comReceiveLenMax; // COM receive data maximum length

 BYTE *comWorkData; // COM WORK data buffer start address
 DWORD comWorkDataPos; // COM WORK data stored position
 DWORD comWorkLenMax; // COM WORK data maximum length

 BYTE *CurrentControllerName; // target model name
 DWORD CurrentRetryTimes; // current number of retires
 DWORD CurrentTimeout; // current packet timeout time (msec)

} SerialSharedData, *pSerialSharedData;

Members
finsHead

Stores the FINSHEAD data used for communication with FinsGateway. This data
initially contains the FINSHEAD from when the SerialUnit receives data from the
application. The application data (application FINS address, etc.) that sent a
command can be obtained from this data.

FINScommand
Stores the FINS command sent by the application. This is the data from the FINS
command MRC. The command length is shown in the FINScommandLen member.

FINScommandLen
Stored the length of the FINS command sent by the application. This shows the data
length of the FINScommand member.

FINScommandLenMax
Stores the maximum number of bytes of the FINScommand member. The ProtoDLL
must not change this value.

FINSresponse
Stores the FINS response to send to the application. This is the data from the FINS
response MRC. The command length is shown in the FINSresponseLen member.

Page: 24
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

FINS responseLen
Shows the length (number of bytes) of the FINS response to send to the application.

FINS responseLenMax
Shows the number of bytes of the area storing the FINSresponse member. The
ProtoDLL must not change this value.

comSendData
Stores the data to send to the COM port. The data length is shown in the
comSendDataPos member.

comSendDataPos
Shows the number of bytes of data to send to the COM port.

comSendLenMax
Shows the number of bytes of the comSendData member. The ProtoDLL must not
change this value.

comReceiveData
Stores the data received from the COM port. The number of data is shown in the
comReceiveDataPos member.

comReceiveDataPos
Shows the number of bytes of data received from the COM port.

comReceiveLenMax
Shows the maximum size (number of bytes) of the comReceiveData member. The
ProtoDLL must not change this value.

comWorkData
Temporarily stores the data received from the COM port. The number of data is shown
in the comWorkDataPos member.

comWorkDataPos
Shows the number of bytes of data stored in the comWorkData member.

comWorkLenMax
Shows the maximum size (number of bytes) of the comWorkData member. The
ProtoDLL must not change this value.

CurrentControllerName
Stores the target node controller name of the message being processed as a
character string.

CurrentRetryTimes
Stores the number of retries for sending.

CurrentTimeout
Stores the timeout time of the message being processed.

Page: 25
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

Remarks
SerialSharedData follows to data flow ddescribed below, and is used to share each
type of data between the SerialUnit and the ProtoDLL:

1. The application sends the SerialUnit a FINS command.

2. The SerialUnit stores the command it receives in the finsHead member
and the FINScommand member, and passes the processing on to the
appropriate ProtoDLL.

3. The ProtoDLL uses the FINS command to create the data to send to the
actual COM port and stores it in the comSendData member.

4. The ProtoDLL receives the data from the target device. The receive data
is stored temporarily in the comWorkData member, and after the
necessary packet processing it is stored in the comReceiveData member.

5. The ProtoDLL uses the response data it received to create the FINS
response, stores it in the FINSresponse member, and sends it to the
application as a response.

The data stored in the SerialSharedData member is valid for one cycle of the
processing described above. In other words, after the ProtoDLL completes the
processing of the application message and passes excution to the SerialUnit, the
SerialSharedData value is irrelevant.

This data structure instance is created for each SerialUnit communication unit.
Therefore, if there are two SerialUnits using two COM ports, the SerialUnits will create
two SerialSharedData instances. These multiple SerialSharedData instances do not
interfere with each other.

However, a single SerialSharedData instance is not thread-safe. In other words, do
not create multiple threads throughout the ProtoDLL, and simultaneously operate a
SerialSharedData instance. Instead, use exclusive control in the ProtoDLL for that
situation.

See Also
openComDefault, closeCom

11.1.5 Data Structure of NODEINFO
The NODEINFO data structure stores the node-related data that shows the
communication target.

typedef struct NodeInformation {
 DWORD FinsNode; // FINS node address
 char Proto[NAMELEN]; // protocol type
 char Controller[NAMELEN]; // model name
 DWORD SpecSize; // protocol specification data size
 BYTE SpecData[SPECMAX]; // protocol specification data
 pProtoDllInfo dllInfo; // ProtoDLL Information
 VOID* SpecPtr1; //ProtoDLL Specific Pointer
} NODEINFO, *NODEINFOP;

Members
FinsNode

This is the FINS node address. It cannot be changed by the ProtoDLL.

Page: 26
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

Proto
This is a character string that shows the node protocol type. It cannot be changed by
the ProtoDLL.

Controller
This is a character string that shows the node controller model name. It cannot be
changed by the ProtoDLL.

SpecSize
This shows the size of the data (number of bytes) in the SpecData member. It cannot
be changed by the ProtoDLL.

SpecData
This shows the protocol-depenedent data allocated to each node. For most protocols,
this data is the protocol-based unit number. It cannot be changed by the ProtoDLL.

dllInfo
This shows the ProtoDLL data corresponding to the node. It cannot be changed by the
ProtoDLL.

SpecPtr1
This is a pointer that can attach data to a node. Its purpose is left open. However, the
ProtoDLL does not normally nbeed to use this member.

Remarks
NODEINFO stores data about the communication target node. This data stores the
data written in the registry by the Setting Utility SerialSetup.dll.

In the SerialUnit communication model, a serial line device is allocated to a FINS
network node. A protocol is set for each node. The SpecData member obtains and
stores the setting data from the registry required by the ProtoDLL for each node.

The FINS network node address and the serial line address do not necessarily always
match. For example, in SYSMAC WAY, the SYSMAC WAY unit number and the FINS
node address do not always match. In this case, it is valid to store the serial line
address for actual communication in the SpecData member. By doing this, a serial line
address can be attached to a node, and the ProtoDLL can change the communication
target device on the line for each node.

See Also
openComDefault, closeCom

11.2 ProtoDLL Export Function Reference
Function Name Function
newDll ProtoDLL initial processing
handleMessage Application message processing
deleteDll ProtoDLL close processing

Page: 27
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

11.2.1 newDll
newDll performs the ProtoDLL initial processing.

BOOL WINAPI newDll (
 pProtoDllInfo pdi,
 HKEY subKey
)

Parameters
pdi

This shows the data structure that stores the ProtoDLL data.

subKey
This is the already open handle of the registry key for the ProtoDLL. The registry key
is Serial¥Proto¥protocolname. The ProtoDLL can use this handle to operate the
registry entry. Do not close this handle with the ProtoDLL.

Return Value
Must return TRUE when the processing is successful. If FALSE is returned, the
SerialUnit will not use this ProtoDLL.

Remarks
NewDll is executed immediately after the SerialUnit loads the ProtoDLL. The
ProtoDLL performs the following initial processing, and then must provide the
SerialUnit the necessary data.

• Sets the addresses of the ProtoDLL export functions to pdi->dllProcs. The
SerialUnit executes the functions set to dllProcs, after newDll.

• Sets the ProtoDLL properties to pdi->protoProperty. The SerialUnit uses the
protoProperty data to select the appropriate ProtoDLL when there is more than
one.

The symbol name that newDll exports must be newDll. The symbol newDll must also
be publicized in the module definition file (.DEF).

See Also
tProtoDllInfo

11.2.2 handleMessage
handleMessage processess the messages from the application.

BOOL WINAPI
handleMessage (
 pProtoDllInfo pdi,
 HCOMENV hComEnv,
 pSerialSharedData pShd,
 NODEINFOP nodep
)

Parameters
pdi

Indicates the data structure that stores the ProtoDLL data.

Page: 28
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

hComEnv
SerialUnit communication environment data handle

pShd
Specifies the SerialUnit and ProtoDLL communication data structure instance/pointer.

nodep
Provides the communication target FINSnode data.

Return Value
Returns TRUE when successful.

Remarks
handleMessage is the function that the ProtoDLL performs to process messages from
the application. This is one of the most important processes for the ProtoDLL. The
SerialUnit and the ProtoDLL process the messages from the application as follows:

1) The application sends a message. If the message is to a serial line device, it
is received by the SerialUnit.

2) When the SerialUnit receives a message from the application, it obtains the
protocol registered in the registry for that node address, and looks for the
appropriate ProtoDLL.

3) After locating the appropriate ProtoDLL, the SerialUnit calls the
handleMessage function of the ProtoDLL, and transfers the message
processing to the ProtoDLL.

4) The ProtoDLL handleMessage interprets the message, and converts it to the
protocol needed to be sent on the serial line.

5) The ProtoDLL uses the SerialUnit export function comWrite, and sends the
converted data to the COM port.

6) The ProtoDLL uses the SerialUnit export function comRead to the read the
target device response data from the COM port.

7) The ProtoDLL interprets the response data, and converts it to a FINS
response to send to the application.

8) The ProtoDLL uses the SerialUnit export function sendFinsgw to send the
message to the application.

9) When one full cycle of application message processing is complete, the
ProtoDLL returns from the handleMessage function, and returns processing to
the SerialUnit.

The SerialUnit does not play any main role until the ProtoDLL handleMessage is
returned. Therefore, the ProtoDLL functions are able to perform a lot of protocol
processing. However, it is necessary to rememebr that during a long handleMessage
process, other protocols cannot use the SerialUnit, either.

Page: 29
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

See Also
11.2.3 deleteDll

deleteDll performs the ProtoDLL exit processing.
VOID WINAPI deleteDll (
pProtoDllInfo pdi
)

Parameters
pdi

Indicates the data structure that stores the ProtoDLL data.

Return Value
No return value.

Remarks
deleteDll performs the ProtoDLL exit processing.

This function is called by the SerialUnit just before the ProtoDll is unloaded.

See Also
tProtoDllInfo

11.3 SerialUnit Export Function Reference
The following is the list of SerialUnit I/F for the ProtoDLL:

Function Name Function
getComEnv Obtains the SerialUnit I/F data structure ComEnv
openCom Opens the COM port (not implemented)
openComDefault Opens the COM port with the default values
closeCom Closes the COM port
writeCom Sends data to the COM port
readCom Receives data from the COM port
getComDcb Obtains the COM port DCB
setComDcb Sets the COM port DCB
checkSerialEvent Waits for an event from the COM port
startComXfr Performs the COM port communication initial processing
sendFinsgw Sends to FinsGateway
receiveFinsgw Receives from FinsGateway
sendFinsErrorResponse Sends an error response to FinsGateway
makeErrFinsFrame Generates a FINS error response
putFINS logFromWin32 Reports the FINS communication unit error log

Page: 30
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

11.3.1 getComEnv
getComEnv obtains the data from the SerialUnit communication environment handle.

pComEnvPublic WINAPI ExeProcs_getComEnv (
HCOMENV hComEnv //HANDLE of ComEnv (COM port Environment)
) ;

Parameters
hComEnv

SerialUnit communication environment data handle. This handle is passed on as a
parameter for the ProtoDLL message handler function, handleMessage.

Return Value
This is the pointer to the tComEnvPublic data structure taken from the handle. The
data structure shared by the ProtoDLL and the SerialUnit is stored in tComEnvPublic.

Remarks
The SerialUnit uses the tComEnvPublic data structure to tell the ProtoDLL the
communication environment. This data structure is passed to the SerialUnit in the
handle parameter of the ProtoDLL message handle function handleMessage. The
ProtoDLL takes the pointer to the actual data structure from this handle using the
getComEnv function, and accesses the data structure.

See Also
handleMessage, tComEnvPublic

11.3.2 openCom
At present, openCom only has a function entry, and performs no actual operation.

BOOL WINAPI ExeProcs_openCom (
)

Parameters
None.

Return Value
Always TRUE.

Remarks
openCom is not the function name, and does not perform any processing at present. It
always returns TRUE.

To open the COM port, use one of the following procedures:

1) Open the COM port using the openComDefault function. This opens the COM port
with the SerialUnit default settings, and attaches the port to the SerialUnit.

2) Open the COM port using the Win32 function. This opens the COM port for the
exclusive use of the ProtoDLL.

See Also
openComDefault, closeCom

Page: 31
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

11.3.3 openComDefault
openComDefault opens the COM port allocated to the SerialUnit in its default state,
and attaches it to the SerialUnit.

BOOL WINAPI ExeProcs_openComDefault (
HCOMENV hComEnv // COM port management construct pointer
)

Parameters
hComEnv

Specifies the SerialUnit communication environment data handle.

Return Value
If the operation was successful, it returns TRUE; if it fails, it returns FALSE.

Remarks
openComDefault opens the COM port. When the SerialUnit first calls the ProtoDLL,
the COM port is already open. Therefore, the ProtoDLL odes not normally need to
open or close the COM port.

However, the ProtoDLL design may be such that it is advatageous to open or close
the COM port from the ProtoDLL. If the ProtoDLL is opening/closing the COM port, the
ProtoDLL needs to use openComDefault to open the COM port in the previous state it
was being used by the SerialUnit after each message processing, and before starting
the next message processing. The next message may not need to be processed by
the same ProtoDLL, and one ProtoDLL is not to affect the operation of any other
ProtoDLL.

If the ProtoDLL is not going to close the COM port or change any of the COM port
settings, openComDefault is not needed.

Using openComDefault to open the COM port to the default state means using the
communication conditions of the SerialSetup.dll.

See Also
closeCom

11.3.4 closeCom
closeCom closes the COM port allocated to the SerialUnit.

VOID WINAPI ExeProcs_closeCom (
HCOMENV hComEnv // COM port management construct pointer
) ;

Parameters
hComEnv

Specifies the SerialUnit communication environment data handle.

Return Value
No return value.

Remarks
closeCom closes the COM port. When the SerialUnit first calls the ProtoDLL, the COM
port is already open. Therefore, the ProtoDLL odes not normally need to open or close
the COM port.

Page: 32
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

However, the ProtoDLL design may be such that it is advatageous to open or close
the COM port from the ProtoDLL. If the ProtoDLL is opening/closing the COM port, the
ProtoDLLneeds to use closeCom to close the COM port.

closeCom does not only close the COM port, but also maintains consistency with the
other management data. Therefore, the ProtoDLL must use closeCom to close the
COM port.

If the ProtoDLL is closes the COM port with closeCom, the same ProtoDLL needs to
use openComDefault to open the COM port in the previous state it was being used by
the SerialUnit after each message processing, and before starting the next message
processing.

If the ProtoDLL is not going to close the COM port or change any of the COM port
settings, closeCom is not needed.

See Also
openComDefault

11.3.5 writeCom
writeCom sends data to the COM port.

DWORD WINAPI ExeProcs_writeCom (//return: Win32 ErrorCode (see GetLastError)
 HCOMENV hComEnv, // COM port management construct pointer
 pSerialSharedData pShd, // packet management data
 LPDWORD numOfBytesWritten
) ;

Parameters
hComEnv

Specifies the data structure handle showing the SerialUnit communication
environment.

pShd
Specifies the SerialUnit and ProtoDLL communication data structure instance pointer.

numOfBytesWritten
The number of data bytes written to the COM port is stored and returned.

Return Value
A Win32 error code is returned. For details about this value, refer to Win32
GetLastErrorfunction.

Remarks
writeCom sends data to the COM port.

The data to send is pShd->comSendData. The size of the data to send is the value in
pShd->comSendDataPos. Before the ProtoDLL calls writeCom, it must set these
pShd member values.

The number of data bytes actually sent to the COM port is stored in the
numOfBytesWritten parameter.

The data sent by this function is automatically logged in the UDM.

Page: 33
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

See Also
11.3.6 readCom

readCom receives data from the COM port.
BOOL WINAPI ExeProcs_readCom (
 HCOMENV hComEnv, // COM port management construct pointer
 pSerialSharedData pShd // packet management data
) ;

Parameters
hComEnv

Specifies the data structure handle to indicate the SerialUnit communication
environment.

pShd
Specifies the SerialUnit and ProtoDLL communication data structure instance pointer.

Return Value
The Win32 ReadFile result is returned.

Remarks
readCom receives data from the COM port. Normally, it receives data after detecting
an event from the COM port using checkSerialEvent.

readCom first clears pShd->comWorkData. After that, it uses Win32 ReadFile
toreceive data from the COM port, stores that data in pShd->comWorkData, and
stores the number of bytes received in pShd->comWorkDataPos.

The COM port will not necessarily always be able to receive the total expected
number of packets at once. Most responses are received in multiple packets.

The ProtoDLL must execute readCom as many times as necessary, and build the
packets for that protocol. In other words, the ProtoDLL response receive processing is
to copy the data received in pShd->comWorkData to pShd->comReceiveData.

The data received by this function is automatically logged in the UDM.

See Also
checkSerialEvent

11.3.7 getComDcb
getComDcb obtains the data structure DCB, which indicates the COM port settings.

BOOL WINAPI ExeProcs_getComDcb (
HCOMENV hComEnv,
LPDCB dcb
) ;

Parameters
hComEnv

Specifies the data structure handle showing the SerialUnit communication
environment.

LPDCB
Stores the obtained DCB.

Page: 34
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

Return Value
The Win32 SetCommState result is returned.

Remarks
getComDcb obtains the data structure DCB stipulated by Win32, that shows the COM
port settings of the COM port opened by the SerialUnit.

See Also
setComDcb

11.3.8 setComDcb
setComDcb sets the data structure DCB, which indicates the COM port settings.

BOOL WINAPI ExeProcs_setComDcb (
HCOMENV hComEnv,
LPDCB dcb
) ;

Parameters
hComEnv

Specifies the data structure handle showing the SerialUnit communication
environment.

LPDCB
Stores the DCB to set.

Return Value
The Win32 SetCommState result is returned.

Remarks
setComDcb sets the data structure DCB stipulated by Win32, that shows the COM
port settings of the COM port opened by the SerialUnit.

This setting enables changing all the COM port settings from the ProtoDLL.

See Also
getComDcb

11.3.9 checkSerialEvent
checkSerialEvent waits for a COM port I/O event.

BOOL WINAPI ExeProcs_checkSerialEvent (
 HCOMENV hComEnv, // COM port management construct pointer
 pSerialSharedData pShd, // packet management data
 DWORD fdwEvtMask, // mask to distinguish the event to make valid

 (see SetCommMask (win32))
 DWORD *pEvent // serial communication event area
) ;

Parameters
hComEnv

Specifies the data structure handle showing the SerialUnit communication
environment.

Page: 35
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

pShd
Specifies the SerialUnit and ProtoDLL communication data structure instance pointer.

fdwEvtMask
Specifies the type of event to detect. This is the same as the Win32 SetCommMask
mask value.

pEvent
Specifies the area to store the generated event. The value to store is the same as the
Win32 WaitCommEvent.

Return Value
If an event is generated, TRUE is returned. If no event is generated within the time set
for the timeout, FALSE is returned.

Remarks
checkSerialEvent waits for an event from the COM port. While waiting for an event,
this function blocks thread processing. If an event is generated, or the time specified
in pShd->CurrentTimeouttime elapses without an event being generated, this function
ends.

Receiving from the SerialUnit COM port uses asynchronously overlapped IO. The
ProtoDLL COM port receive processing is as follows:

1. Uses checkSerialEvent to confirm whether there is data to be received from the
COM port.

2. Uses readCom to receive the data when an event is generated to indicate that data
is being received.

3. Repeats the first two steps until the target device response data is complete.

See Also
readCom, SetCommMask (Win32), WaitCommEvent (Win32)

11.3.10 startComXfr
startComXfr initializes COM port communication.

BOOL WINAPI ExeProcs_startComXfr (
 HCOMENV hComEnv, // COM port management construct pointer
 pSerialSharedData pShd, // packet management data
 DWORD fdwAction //PurgeComm execution (see PurgeComm (win32))
) ;

Parameters
hComEnv

Specifies the data structure handle showing the SerialUnit communication
environment.

pShd
Specifies the SerialUnit and ProtoDLL communication data structure instance pointer.

fdwAction
Specifies the action to give to Win32 PurgeComm.

Page: 36
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

Return Value
Always returns TRUE in the current implementation.

Remarks
startComXfr initializes COM port communication. This function is automatically
executed before passing the message processing from the SerialUnit to the ProtoDLL.

If the ProtoDLL need to perform the COM port communication initialization for some
reason, this function can be called. startComXfr performs the following processing:

• Clears the I/O buffer of the COM port using Win32 PurgeComm.

• Clears the SerialSharedData data structure comSendData and comReceiveData.

• Sets the SerialSharedData data structure CurrentRetryTimes to 0.

• Sets the SerialSharedData data structure CurrentTimeout to the timeout value set
in the registry.

See Also
PurgeComm (Win32)

11.3.11 sendFinsgw
sendFinsgw sends FinsGateway FINS messages.

int WINAPI ExeProcs_sendFinsgw (//return: send data length (see.Fins_sendData)
 HCOMENV hComEnv, // COM port management construct pointer
 pSerialSharedData pShd // packet management data
) ;

Parameters
hComEnv

Specifies the data structure handle showing the SerialUnit communication
environment.

pShd
Specifies the SerialUnit and ProtoDLL communication data structure instance pointer.

Return Value
Returns the number of data bytes. This is the same as the Fins_sendData return
value.

Remarks
sendFinsgw sends FINS messages through FinsGateway.

This function sends the data stored in the pShd->FINSresponse to the target specified
in pShd->finsHead.

Normally, pShd->finsHead contains the FINSHEAD data that the SerialUnit received
from the application. However, this first data is FINS command data, and cannot be
used to send the response to the application with sendFinsgw (because the target
network is the SerialUnit). To return a FINS response to the application, the
pShd->finsHead must be modified for a response. To convert it for a response,
FinsHead_composeResponse is generally used.

Data sent by this function is logged in the UDM.

Page: 37
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

See Also
11.3.12 receiveFinsgw

receiveFinsgw receives FinsGateway FINS messages.
int WINAPI ExeProcs_receiveFinsgw (//return: receive data length (see: Fins_receiveData)
 HCOMENV hComEnv, // COM port management construct pointer
 pSerialSharedData pShd, // packet management data
 DWORD dwTimeLimit //timeout time
) ;

Parameters
hComEnv

Specifies the data structure handle showing the SerialUnit communication
environment.

pShd
Specifies the SerialUnit and ProtoDLL communication data structure instance pointer.

dwTimeLimit
Specifies the FINS message receive timeout value in milliseconds.

Return Value
Returns the number of data bytes. This is the same as the Fins_receiveData return
value.

Remarks
receiveFinsgw receives FINS messages through FinsGateway.

This function waits for a FINS message to be received from FinsGateway, and stores
the data in the pShd->finsHead and pShd->FINS commands when it is received.

Normally, a ProtoDLL only receives one FINS message from an application, and that
message is received automatically through the SerialUnit. The ProtoDLL does
normally need to receive another FINS message from the application.

Data received by this function is logged in the UDM.

See Also
11.3.13 sendFinsErrorResponse

sendFinsErrorResponse sends FINS error responses to the application.
int WINAPI ExeProcs_sendFinsErrorResponse (//return:
 HCOMENV hComEnv, // COM port management construct pointer
 pSerialSharedData pShd, // packet management data
 BYTE bMres, // main response code
 BYTE bSres // subresponse code
) ;

Parameters
hComEnv

Specifies the data structure handle showing the SerialUnit communication
environment.

Page: 38
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

pShd
Specifies the SerialUnit and ProtoDLL communication data structure instance pointer.

bMres
Error response main response code.

bSres
Error response subresponse code.

Return Value
Returns the number of data bytes. This is the same as the Fins_receiveData return
value.

Remarks
sendFinsErrorResponse is a utility function that generates the FINS error response
message from the FINS error response code sends it to the application.

This function executes makeErrFinsFrame internally, generates a FINS error response,
and sends the response to the application.

See Also
makeErrFinsFrame

11.3.14 makeErrFinsFrame
makeErrFinsFrame generates a FINS error response.

BOOL WINAPI
ExeProcs_makeErrFinsFrame (
 HCOMENV hComEnv, // COM port management construct pointer
 pSerialSharedData pShd, // packet management data
 BYTE bMres, // main response code
 BYTE bSres // subresponse code
) ;

Parameters
hComEnv

Specifies the data structure handle showing the SerialUnit communication
environment.

pShd
Specifies the SerialUnit and ProtoDLL communication data structure instance pointer.

bMres
Error response main response code.

bSres
Error response subresponse code.

Return Value
If a FINS error response is created, TRUE is reutrned. If the command was specified
as response not needed, or broadcast, no response is created, and FALSE is
returned.

Page: 39
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

Remarks
MakeErrFinsFrame uses the FINS error response code to make a FINS error
response message. The response is generated as follows:

1. Creates FINSHEAD from pShd->finsHead.

2. Creates FINS error response message for pShd->FINSresponse.

This function operates on the premise that there is a FINSHEAD from an application
stored in pShd->finsHead. Therefore, if the ProtoDLL is to modify pShd->finsHead
directly, this function may not operate properly.

See Also
sendFinsErrorResponse

11.3.15 putFINSlogFromWin32
putFINSlogFromWin32 records the communication unit error log.

BOOL WINAPI ExeProcs_putFINS logFromWin32 (
 HCOMENV hComEnv, // COM port management construct pointer
 pSerialSharedData pShd, // packet management data
 DWORD win32Code
) ;

Parameters
hComEnv

Specifies the data structure handle showing the SerialUnit communication
environment.

pShd
Specifies the SerialUnit and ProtoDLL communication data structure instance pointer.

win32Code
Specifies an error cause or FINS log code.

Return Value
Returns TRUE when successful.

Remarks
putFINSlogFromWin32 records the communication unit error log. This log is the FINS
communication unit log, and is not the event log or UDM. The data logged here is read
by reading the FINS command log.

This log is normally called when there is a COM port communication error, or an
invalid packet discard. These functions are implemented as follows:

• If win32Code is 0, not logged

• If win32Code is a Win32 value (CE_FRAME, CE_RXPARITY, CE_OVERRUN,
CE_IOE), logged in the FINS log defined in FINSlog.h

• If win32Code is a value other than shown above, the win32Code value is judged
as an error code, and an Invalid Packet Discard error is generated.

Page: 40
FinsGateway SerialUnit ProtoDLL SDK Manual

© Copyright OMRON Corporation 1998 All Rights Reserved

Notes

Performing FINS communication on top of serial communication is a good concept, but the actual design
includes many challenges. We had to consider the many and varied protocols that are used for serial
cables. We had to be able to handle all the existing protocols, and even include provisions for those that
may yet be developed without the necessity of modifying the SerialUnit. Even though this receivees little
attention, it was a very difficult challenge to overcome. Before settling on the present SerialUnit addition
method, it went through a major specification rewrite. The previous addition method is not included in this
SDK, but has been retained for compatibility purposes. This SDK manual still carries the remains of that
previous method, such as member variables that are not used, and may be an obstacle to the
understanding of the reader.
Implementation progressed, and the first time that FINS message communication was successfully
completed with a PLC on SYSMAC WAY was a moment of joy for the designer. An application that had
been operated on SYSMAC LINK, etc. could now be used without modification for communication with
serial devices. The SerialUnit is for application developers, so we proceeded with this complex design
hoping it would be to their benefit.
We are very grateful to Mr. K.H., who resolved many of our requirements. He implemented most of the
SerialUnit and ProtoDLLs, and also demonstrated much understanding of the priority of technological
value over deadlines, and workloads.
Miss K.Y., who made the temperature controller ProtoDLL, gave us the opportunity to communicate with
devices other than PLCs, using a protocol other than FINS. The simple monitoring software that she and
Mr. M.O. developed also gave us many hints and suggestions. We learned many areas of improvement for
FinsGateway, which requires many, complicated settings to establish communication, so that the
user-application does not need to consider the actual communication protocols. Mr. T.F., who mainly was in
charge of the SerialSetup.dll, developed a simple user interface to allow the user to edit the extremely
complicated registry. Mr. T.F. and Mr. K.H. also implemented the first Serial Communication Explorer. We
are very grateful to them for agreeing so pleasantly to let us include this useful utility in FinsGateway. We
have receive a lot of feedback directly from the sales support people. There was great value in the
feedback received regarding the pre-release product.
Mr. Y.N., the author of the SDK, was in the position of approving the SerialUnit design and implementation.
If the present SerialUnit is lacking in any way whatsoever, that is fully my responsibility.

