

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

PNSPO!
!

!
!

!

FinsGatewayFinsGatewayFinsGatewayFinsGateway
EEEEventMemoryventMemoryventMemoryventMemory

Programmer’s Manual
!

!

!

!

!

Version 2 8/17/1998

OMRON Corporation

EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

Contents

1 INTRODUCTION..1

2 SETUP...3

2.1 Operating Environment..3

3 EVENTMEMORY...4

3.1 EventMemory Structure...4
3.2 Interface and Data Structure...7

4 PROGRAMMING.. 11

4.1 Using the EventMemory... 11
4.2 Reading or Writing the EventMemory Data.. 11
4.3 Sending or Receiving Events of the EventMemory.. 11
4.4 Setting or Clearing Event conditions.. 11
4.5 Receiving Events by Message-driven Type.. 12
4.6 Terminating the EventMemory... 12

5 ACCESS METHODS.. 13

5.1 Standard Access Methods... 13
5.2 Creating an Independent Access Method .. 13

6 ERROR SYSTEMS... 23

6.1 Error Codes ... 23

7 API REFERENCE ... 25

7.1 Summary... 25
7.2 Em_requestVersion Function .. 27
7.3 Em_getVersion Function.. 28
7.4 Em_openMemory Function.. 29
7.5 Em_readMemory Function .. 30
7.6 Em_writeMemory Function .. 31
7.7 Em_readMemoryEx Function.. 31
7.8 Em_writeMemoryEx Function.. 32
7.9 Em_closeMemory Function ... 34
7.10 Em_openEvent Function ... 35
7.11 Em_sendEvent Function.. 36
7.12 Em_receiveEvent Function.. 37
7.13 Em_closeEvent Function... 38
7.14 Em_setCondition Function... 39
7.15 Em_setWideCondition Function.. 40
7.16 Em_clearCondition Function ... 41
7.17 Em_judgeCondition Function .. 42
7.18 Em_ setMessageOnArrival Function.. 43
7.19 Em_ setThreadMessageOnArrival Function.. 44
7.20 Em_ clearMessageOnArrival Function... 45
7.21 Em_getCondition Function .. 46
7.22 Em_getWideCondition Function ... 47
7.23 Em_isWideConditionId Function... 48
7.24 Em_getConditionList Function... 49
7.25 Em_getWideConditionList Function ... 50
7.26 Em_getLostEventLogs Function... 51
7.27 Em_getSystemInfo Function ... 52
7.28 Em_getMemoryInfo Function.. 53

3
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.29 Em_getMemoryPortUsage Function .. 55
7.30 Em_getEventPortUsage Function .. 56
7.31 Em_getEventHandle Function .. 57
7.32 Em_getMutexHandle Function.. 58
7.33 Em_getBaseAddress Function ... 59
7.34 Em_swapBytes Function ... 60
7.35 Em_getLastErrorMessage Function... 61
7.36 Em_flushFile Function.. 62
7.37 Em_getBytesBuffer Function... 63

8 DATA STRUCTURE... 64

8.1 The EventMemory Address ... 64
8.2 Event conditions.. 65
8.3 Acquired Information... 67
8.4 Structure Exclusive to the Access Method ... 68

©Copyright OMRON Corporation 1995,1996-1998 All Rights Reserved.

FINS and FinsGateway are registered trademarks of OMRON Corporation. Microsoft, Windows, Windows NT, and Visual
C++ are registered trademarks of Microsoft Corporation. Pentium and Intel are registered trademarks of Intel Corporation. IBM
is a registered trademark of International Business Machines Corporation. All other trademarks and product names in this
manual are registered trademarks of their respective owners. The ™ and ® marks are omitted in this manual.

EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

Revision History
Revision

code
Date Revised content

1.00 August 1998 Original production
2.00 July 2000 Added FinsGateway Version 3 functions

1
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

1 Introduction

This manual describes the API for using the EventMemory, which can be shared among two or more processes on the
computer where FinsGateway is running. The EventMemory is provided as a component of FinsGateway.

Memory I/O Communication API

The EventMemory offers memory that can be shared among applications. The communication units making up
FinsGateway have functions to communicate through shared memory such as DM or CIO. This is how the
EventMemory API serves as an API for memory communication between applications. An actual example is the data
link of SYSMAC LINK.

Remote Memory

The past EventMemory was a mechanism for memory management that used the OS shared memory. In the
expanded FinsGateway Version 3 EventMemory, the memory areas used are not only the shared memory, but it can
also access the memory of the PLCs and other network devices that can be accessed by FINS communications. This
enables access to the network device memory areas in the same manner as access to the past EventMemory.

Shared Memory of FINS Communication

When CPUs with the server functions of FINS commands/responses share EventMemory, it is used as shared
memory on a personal computer during FINS communication. Shared memory areas such as DM or CIO are available
for variable reading/writing by FINS.

The major features of EventMemory are as follows:

• It provides a platform upon which to perform communication through memory I/O on a personal
computer.

• It provides the functions of an application API such as memory read/write and the function to report
memory data updating as an event.

• It provides inter-process communication by event.

• It assures data integrity by exclusive control of access to shared memory from several applications.

• Without any consideration for FINS communications, the memory areas of network devices can be
accessed as if it were in the local machine memory.

2
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

3
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

2 Setup

2.1 Operating Environment

Files Required for Application Development

DLLs EvtMem32.dll, EmMisc32.dll
Import library EvtMem32.lib
Include files EvtMem.h, EmError.h, EmResrc.h, and FgwAccessMethod.h

EmError.h, EmResrc.h, FgwAccessMethod.h are included from EvtMem.h.

Files Required for Access Method Development

DLL EvtMem32.dll, EmMisc32.dll

Import library EvtMem32.lib

Include file To implement an independent access method,
include private¥EvtMemPrivate.h.

4
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

3 EventMemory

3.1 EventMemory Structure

3.1.1 Shared Memory
To share memory with other applications through the EventMemory, the data can be shared by two or more
applications which open a shared memory port of the same name. The applications can read and write data, and set
and clear event conditions for the shared memory for which a memory port is opened.

A name to be specified for a memory port to be opened is not case-sensitive, so DM, dm, Dm, and dM would all specify
the memory port for the same area of shared memory.

Data in shared memory that has a holding file is not lost when the shared memory is unloaded. When shared memory
of a specified name is first attached, it is loaded. When it is last detached, it is unloaded.

The size of shared memory defaults to 32,768 (= 0x8000) words.

3.1.2 Remote Memory
To use the EventMemory to access a device memory, define a new EventMemory as a remote memory. To define a
new EventMemory, use the FinsGateway Configuration.

Specify the memory name defined as a remote memory. The same as with shared memory, it is necessary to open a
memory port. After this is complete, it is possible to use the memory read/write API to access the device memory as
EventMemory.

5
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

3.1.3 Access Method

EventMemory can access the local computer shared memory or network device memory using the same API.
To provide this functionality, an access method module has been implemented.

The EventMemory API, and device access module are separate, and the access methods are used to
read/write device data. This makes it possible to absorb the data management differences for each device in
the access methods. The various device data can then be handled in the same manner by the EventMemory
API.

An access method is provided for each kind of device. When the EventMemory is open, select the
appropriate access method.

The shared memory access methods use the OS shared memory service functions. The remote memory
access methods use the FinsGateway FINS message service function to access devices.

Application

EventMemory API

EventMemory
DM

Shared memory
access method

Shared memory

EventMemory
Remote PLC

PLC memory

OS interface FINS message communications

Remote memory
access method

3.1.4 Events
The EventMemory allows events to be received by opening event ports for an application. Applications opening an
event port can send events to an event port opened by other applications. If the destination event port is not open, the
send operation fails. Like memory port names, event port names can be specified without making the distinction
between uppercase and lowercase letters.

Event ports are different from memory ports in that two or more ports of the same name cannot be opened.

Two or more events are held in an event port used by applications in a FIFO queue. Events held in an event port are all
lost when the port is closed.

Event arrival can be reported to applications in a Windows message.

3.1.5 Event Conditions
EventMemory allows events to be sent for the updating of shared memory data. When shared memory data is updated,
if the data satisfies specified conditions, an event is automatically sent to a specified event port.

To set event conditions, specify the shared memory area to be allocated and the event conditions. Two or more sets of
conditions can be set for an identical shared memory area.

6
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

Event conditions include normal and wide-area event conditions.

• Normal event conditions
These conditions are set for shared memory areas addressed as bytes, words, and double words and
various conditions can be set as event conditions.
Normal event conditions consist of the following information:

• Operation on memory
Specify an operation that returns a true/false result when executed during shared memory update. For
normal event conditions, the operations shown in Table 3-1 Operations on normal event conditions can
be used. For a true/false operation, up to two constants can be specified for a comparison operation. Set
the necessary comparison constants, depending on the type of operation.

• Determining whether to send an event depending on the transition of the true/false results
Specify whether an event is to be sent or not for all of the four true/false transition patterns (false -> false,
false -> true, true -> true, and true -> false) derived from the operation results from previous memory
updating and those upon current memory updating.

• Previous operation result
When setting event conditions, specify the previous operation results required to determine whether to
send an event. For the acquisition of event conditions, the most recent true/false operation results are
provided.

• Event information to be sent
Specify the destination event port, event ID, and the shared memory area (memory name and address)
whose data is to be sent. An event ID is defined in each application and is used to identify an event.

• Volatility/non-volatility
Volatility: Unloading shared memory causes the specified conditions to be lost.
Non-volatility: The specified conditions are maintained even after shared memory is unloaded.
A nonvolatile condition can be specified only for shared memory having a normal-condition holding file.

Table 3-1 Operations on normal event conditions

Operation Description Comparison
constant 1

Comparison
constant 2

AND At least one of the bits corresponding to those of comparison constant
1 is ON.

■ N/A

ANDEQ Bits corresponding to those of comparison constant 1 are all ON. ■ N/A
AlwaysTRUE Always true. N/A N/A
NOP The value is not zero. N/A N/A
EQ The value is equal to comparison constant 1. ■ N/A
LT The value is less than comparison constant 1. ■ N/A
LE The value is less than or equal to comparison constant 1. ■ N/A
GT The value is greater than comparison constant 1. ■ N/A
GE The value is greater than or equal to comparison constant 1. ■ N/A
GELE The value is greater than or equal to comparison constant 1 and

smaller than or equal to comparison constant 2.
■ ■

GTLT The value is between comparison constants 1 and 2. ■ ■
GELT The value is greater than or equal to comparison constant 1 and less

than comparison constant 2.
■ ■

GTLE The value is greater than comparison constant 1 and less than or equal
to comparison constant 2.

■ ■

PrevAND At least one of the bits corresponding to the previous value is ON. □ N/A
PrevANDEQ The bits corresponding to the previous value are all ON. □ N/A
PrevEQ Equal to the previous value. □ N/A
PrevLT Less than the previous value. □ N/A
PrevLE Less than or equal to the previous value. □ N/A

7
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

PrevGT Greater than the previous value. □ N/A
PrevGE Greater than or equal to previous value. □ N/A

Comparison constants are the values required for various operations, and are specified when making the
condition settings.

■: Required for condition settings

N/A: Not required for condition settings

□: Required only when the previous-operation results are set, depending on the memory value specified in the condition
settings

Note:

Even if volatile conditions are specified, those conditions are not necessarily lost upon termination of an application
under which those conditions were specified.

For example, as long as the CPU is operating, an event-occurrence condition set as DM or CIO remains valid unless
the condition is cleared, even after the application under which it was specified is terminated.

In this case, if an identical condition is set again by another application, it follows that two or more identical conditions
exist and two or more identical events are sent when the event-occurrence condition is satisfied.

3.1.6 Wide-Area Event conditions
These conditions can be set also for shared memory areas beyond those with addresses specified with double words.
As event conditions, the area to which to write data and the occurrence of data updating can be set.

Wide-area event conditions consist of the following information:

• Determining whether to send an event
Specify whether or not to send an event when data is written to the memory area for which conditions are
set or when data in the memory area changes.

• Event information to be sent (likewise normal condition)
Specify the destination event port, event ID, and the shared memory area (memory name and address)
whose data are to be sent. An event ID is defined in each application and is used to identify an event.

• Volatility/non-volatility (likewise normal condition)
Volatility: Unloading shared memory causes the specified conditions to be lost.
Non-volatility: The specified conditions are maintained even after shared memory is unloaded.
A nonvolatile condition can be specified only for shared memory having a wide-area condition holding
file.

3.2 Interface and Data Structure
The interface for the EventMemory is compatible with the memory interface for Omron's programmable controller.

Memory configuration

The EventMemory is a string of word data consisting of 16 bits per word. The data structure of one word is as shown
below:

First byte: Most-significant

byte (bits 15 to 8)

Second byte: Least-

significant byte (bits 7 to 0)

Figure 3-1: Word configuration

8
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

Double-word data consists of two contiguous words, as shown below:

First word: Most-significant

word

Second word: Least-

significant word

Figure 3-2 Double-word configuration

Note:

With personal computers using Intel processors, a one-word data item is referred to as a word value with the first byte
as the least-significant byte and the second byte as the most-significant byte, unlike the EventMemory interface.
Therefore, a data string read from (or written to) the EventMemory, if referred to as word values without modification,
would have different values from those in the EventMemory.

Like the EventMemory interface, a double-word data item is referred to as a value with the first word as the
least-significant word and the second word as the most-significant word. However, as with word values, the order of
most-significant and least-significant bytes in each word is reversed. Therefore, an item of data string read from (or
written to) the EventMemory, if referred to as a double-word value without modification, would have a different value
from that in the EventMemory.

To refer to a data string read from (written to) the EventMemory as word values or double-word values, swap the
most-significant and least-significant bytes in each word before referring to it. This is also true for the values to be
compared with data in shared memory when setting normal event conditions.

Byte strings in the EventMemory have the same arrangement as data read or written.

Addressing

In the EventMemory, to specify the shared memory data area for which read, write, and condition settings are to be
performed, specify the following four items:

• Offset (unit: word)
Specify in words the starting offset of address for which read, write, and condition settings are to be
performed. If the data type is double word in the condition settings, the offset must be an even value.

• Element unit
Specify the element unit (bit, byte, word, or double word) of data for which read, write, and condition
settings are to be made. In wide-area conditions settings, only words can be specified as the element
unit. In the setting of event conditions, absence of data (EM_NO_DATA) can be specified as the
conditions for a shared memory area to which to send data.

• Bit/byte position
If the data type is bit or byte, specify the starting bit or byte position in the first offset in which a read, write,
or condition setting is made.
Bit: Specify 0 to 15 bits.
Byte: Specify the most-significant (EM_BYTE_HIGH) or least-significant (EM_BYTE_LOW) byte.
The bit/byte position specification is valid only in the following cases:
 A read/write setting when the data type is bit or byte
 A condition setting when the data type is byte

• Number of data
Specify the number of data elements for which a read, write, or condition setting is made. For the setting
of normal event conditions, be sure to specify 1 as the number of data.

Examples of Addressing

• Double-word data from offsets 1000 to 1031

9
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

Specify 1000 as the offset, double word as the data type, and 16 as the number of data.

• Word data from offsets 1000 to 1031
Specify 1000 as the offset, word as the data type, and 32 as the number of data.

• Data from the least-significant byte of offset 500 to the most-significant byte of offset 511
Specify 500 as the offset, byte as the data type, EM_BYTE_LOW(=1) as the byte position, and 22 as the
number of data.

• Data from bit 12 of offset 32 to bit 3 of offset 33
Specify 32 as the offset, bit as the data type, 12 as the bit position, and 8 as the number of data.

3.2.1 Sending or Receiving Data with an Event
Events of the EventMemory are an inter-process communication that enables sending and receiving between
applications.

The data configuration of events sent and received through the EventMemory is as shown below.

• Event ID

This is an integer value defined between applications to send and receive events, or between
applications to set event conditions or receive events. An event ID is used to give an event a meaning.

• Event address
When events are automatically reported to applications according to event conditions, an event address
is used to indicate the name and address of the shared memory for which the conditions are set. When
an event is sent directly from an application, an event address can also be used to pass data in shared
memory related to the send event to a receiving application.

• Data
When events are automatically reported to applications according to event conditions, specification can
be made to send the data in a specified contiguous area in shared memory when an event occurs.
Specified data can be included in an event for sending or receiving between applications. Up to 2,016
bytes of data can be sent or received for one event.

Event ID Event-generation address Data

Figure 3-3: Configuration of event data

10
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

11
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

4 Programming

4.1 Using the EventMemory

Specifying the Operating Version

First, specify the operating version of the EventMemory. Specification of the operating version is made to ensure full
compatibility with previous versions of the EventMemory without recompiling for each upgrade.

To specify a version, use the Em_requestVersion function. To specify the operating version of a new release, the
macro EM_STARTUP may be used.

4.2 Reading or Writing the EventMemory Data

Opening a Memory Port for Reading or Writing

First, use the Em_openMemory function to open a memory port for reading or writing. Then, perform reading or writing
for the opened memory using the handle returned from the Em_openMemory function.

• Read data from memory using the Em_readMemory function.

• Write data to memory using the Em_writeMemory function.
Upon termination of an application, be sure to close the opened memory port using the Em_closeMemory function.

4.3 Sending or Receiving Events of the EventMemory

Opening an Event Port

First, open an event port using the Em_openEvent function so that events can be sent or received. Then, send and
receive events using the handle returned from the Em_openEvent function.

• Receive events using the Em_receiveEvent function.

• Send events using the Em_sendEvent function.
Upon termination of an application, be sure to close the opened event port using the Em_closeEvent function.

4.4 Setting or Clearing Event conditions

Opening a Memory Port to Set Event conditions

First, open a memory port to set event conditions using the Em_openMemory function. Then, use the Em_setCondition
or Em_setWideCondition function to set event conditions for the opened memory.

• Set normal event conditions using the Em_setCondition function.

• Set wide-area event conditions using the Em_setWideCondition function.

• Clear normal or wide-area event conditions using the Em_clearCondition function.
Upon termination of an application, be sure to close the opened memory port using the Em_closeMemory function.

To receive events sent according to event conditions, open the event port of the event destination specified in the event
conditions.

12
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

4.5 Receiving Events by Message-driven Type

Opening an Event Port to Set Messages to be Posted

First, open an event port for receiving events. Then, make the settings for posting messages in the window/thread of
the application when an event arrives at the event port.

This setting enables applications to receive an event using the Em_receiveEvent function without being blocked after
receiving a message posted in the window/thread when an event arrives at the opened event port.

4.6 Terminating the EventMemory

Closing an Open Port

Close all open memory and event ports, then terminate the application. Note that if an event port is not closed, a new
event port of the same name cannot be opened.

Normally, if an application is terminated without the memory and event ports being closed, the EventMemory detects
that the process is detached, and closes the open ports. However, note that detachment of the process may not be
detected, such as when an application is terminated using the debugger.

13
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

5 Access Methods

The EventMemory can use the same API to access the local computer shared memory or a network device memory.
To provide this functionality, an access method module has been implemented. The access methods are implemented
as DLLs. The EventMemory dynamically loads the access method DLL. It is possible to create an independent access
method, and integrate it into the EventMemory.

EventMemory

Shared memory
access method

PLC access
method

XXX access
method

5.1 Standard Access Methods
FinsGateway Version 3 has both the shared memory and remote memory access methods as standard.

5.1.1 Shared Memory Access Method
The AmShmem shared memory access method provides access to the local machine shared memory. At the same
time as writing data to the EventMemory, it also has the additional functionality to record the time and other
user-specified data to be retained in the shared memory. The additional data can be read during data read, or the area
where it was written can be specified directly, and read. When ever data is written to the EventMemory, the previous
data and additional data, can be retained in a data history. To use the history, it is necessary to use
Em_readMemoryEx() and Em_writeMemoryEx().

5.1.2 Remote Memory Access Method
The AmFinsRemote remote memory access method provides access to the memory of all devices that can
communicate by FINS messages. When executing a memory read, the FINS message (0x0101: Data read command)
is used to read the device data. When executing a memory write, the FINS message (0x0102: Data write command) is
used to write data to the device.

5.2 Creating an Independent Access Method

5.2.1 Access Method Implementation
Create the access method as another DLL. Implement the one and only export function, init(), and the process
functions that support the EventMemory API. The relationship with the EventMemory API is as shown below:

EventMemory API Access Method Functionality

Em_openMemory() Details the required processing at open.

Em_closeMemory() Details the required processing at close.

Em_readMemory() Details the data read processing.

Em_writeMemory() Details the data write processing.

Em_readMemoryEx() Details the data read processing that is exclusive to the access method.
Implement if required.

Em_writeMemoryEx() Details the data write processing that is exclusive to the access method.
Implement if required.

14
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

The functions implemented into the above access method can be freely named. Not everything necessarily has to be
implemented. For example, when accessing a read-only device, write processing functions are not needed.

The following is an example of the function processing for an access method designed to access a file on the
hard disk:
Function Access Method Functionality

AmFile_open() Opens the file.

AmFile_close() Closes the file.

AmFile_read() Reads file data.

AmFile_write() Writes file data.

NULL Em_readMemoryEx() is not supported yet.

NULL Em_writeMemoryEx() is not supported yet.

5.2.2 Implementing the init Function

Implement the one and only export function, init().The EventMemory calls the init function before using the
access method:
DllExport BOOL WINAPI init(
 PFgwEmMemoryAccessMethodRec* methodRec
)
{
 static tFgwEmMemoryAccessMethodRec localMethodRec;

 memset(&localMethodRec, 0x00,
sizeof(localMethodRec));
 _tcscpy(localMethodRec.name, _T(“AmFile”));
 localMethodRec.accessMethods.open = AmFile_open;
 localMethodRec.accessMethods.close =
AmFile_close;
 localMethodRec.accessMethods.read = AmFile_read;
 localMethodRec.accessMethods.write =
AmFile_write;
 localMethodRec.accessMethods.readEx = NULL;
 localMethodRec.accessMethods.writeEx = NULL;
 localMethodRec.accessMethods.judge = NULL;
 *methodRec = &localMethodRec;

 return TRUE;
}

The PfgwEmMemoryAccessMethodRec pointer is passed as a parameter. Declare the actual status of the
TfgwEmMemoryAccessMethodRec structure inside the access method as static variable, and substitute that pointer for
methodRec.

The init function sets the access method name to the accessMethods structure, name member, as a character string.
Next, it sets the pointer for each process function. For the unsupported functions, it sets NULL. This enables the
EventMemory to know the address for the process function for each API.

5.2.3 Implementing the open Process Function

If the application has Em_openMemory() implemented, the EventMemory calls the access method open
function:

15
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

// OPEN METHOD
BOOL AmFile_open(
 pFgwEmMemoryHandle hmem,
 LPCTSTR memoryName
)
{
 pSpecData specData;

 specData = (pSpecData)malloc(sizeof(tSpecData));
 if (specData == NULL) {
 return FALSE;
 }

 // file open
 if (!getFileName(memoryName, specData)) {
 goto lError;
 }
 specData->file = fopen(specData->fileName, "r+b");
 if (specData->file == NULL)
 {
 goto lError;
 }

 hmem->accessMethodHandleData = specData;
 return TRUE;

lError:
 if (specData != NULL) {
 free(specData);
 }
 hmem->accessMethodHandleData = NULL;
 return FALSE;
}

The pSpecData structure is a structure to retain the data exclusive to the access method. The access method
developer defines it. Substitute the allocated pSpecData structure pointer for the tFgwEmMemoryHandle structure,
accessMethodHandleData member variable.

In the above example, it opens the file, and retains the pointer of the opened file:
typedef struct {
 TCHAR fileName[MAX_PATH];
 FILE* file;
} tSpecData, *pSpecData;

5.2.4 Implementing the close Process Function

If the application has Em_closeMemory() implemented, the EventMemory calls the access method close
function:

16
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

// CLOSE METHOD
BOOL AmFile_close(
 pFgwEmMemoryHandle hmem
)
{
 pSpecData specData = hmem->accessMethodHandleData;

 if (specData == NULL) {
 return TRUE;
 }

 if (specData->file != NULL) {
 fclose(specData->file);
 }
 free(specData);
 hmem->accessMethodHandleData = NULL;

 return TRUE;
}

In the above example, the file descriptor is obtained from the structure set by the open function to hold the data
exclusive to the access method, and the file is closed.

The specData memory area secured by the open function is released, and NULL is substituted for
accessMethodHandleData.

5.2.5 Implementing the read Process Function

If the application has Em_readMemory() implemented, EventMemory calls the access method read function:
// READ METHOD
BOOL AmFile_read(
 pFgwEmMemoryHandle hmem,
 pEM_ADDRESS psAddr,
 PVOID lpBuffer,
 DWORD dwNumberOfBytesBuf
)
{
 long nFileOffset;
 size_t nNumberOfBytesToRead;
 size_t nNumberOfBytesRead;
 pSpecData specData = hmem->accessMethodHandleData;

 if (psAddr->byTypeOfFactor == EM_BYTE_TYPE) {
 nNumberOfBytesToRead =
psAddr->dwNumberOfFactors;
 nFileOffset = psAddr->dwWordOffset +
 psAddr->byLocateOnWord;
 } else {
 return FALSE;
 }
 if (nNumberOfBytesToRead == 0) {
 return FALSE;
 }

 // move to offset
 if (fseek(specData->file, nFileOffset, SEEK_SET))
 {
 return FALSE;
 }

 // read from file

17
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

 memset(lpBuffer, 0x00, dwNumberOfBytesBuf);
 nNumberOfBytesRead = fread(lpBuffer, 1,
nNumberOfBytesToRead,
 specData->file);
 return TRUE;
}

The structure indicating the read data address, the pointer to the buffer storing the read data, and the buffer size are passed
as parameters.

In the above example, the only data type supported is BYTE. It seeks the file offset and read data size, and reads the file
data into the buffer indicated by lpBuffer.

5.2.6 Implementing the write Process Function

If the application has Em_writeMemory() implemented, EventMemory calls the access method write function:
// WRITE METHOD
BOOL File_write(
 pFgwEmMemoryHandle hmem,
 pEM_ADDRESS psAddr,
 PVOID pvData,
 DWORD dwNumberOfBytesData)
{
 long nFileOffset;
 size_t nNumberOfBytesToWrite;
 size_t nNumberOfBytesWrite;
 pSpecData specData = hmem->accessMethodHandleData;

 if (psAddr->byTypeOfFactor == EM_BYTE_TYPE)
 {
 nNumberOfBytesToWrite =
psAddr->dwNumberOfFactors;
 nFileOffset = psAddr->dwWordOffset +
 psAddr->byLocateOnWord;
 } else {
 return FALSE;
 }
 if (nNumberOfBytesToWrite > dwNumberOfBytesData) {
 return FALSE;
 }

 // move to offset
 if (fseek(specData->file, nFileOffset, SEEK_SET))
 {
 return FALSE;
 }

 // write to file
 nNumberOfBytesWrite = fwrite(pvData, 1,
nNumberOfBytesToWrite,
 specData->file);
 if (nNumberOfBytesWrite < nNumberOfBytesToWrite) {
 return FALSE;
 }
 fflush(specData->file);
 return TRUE;

18
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

}

The structure indicating the write data address, the pointer to the buffer storing the write data, and the buffer size are
passed as parameters.

In the above example, the only data type supported is BYTE. It seeks the file offset and write data size, and writes the
pvData data into the file.

5.2.7 Implementing the readEx Process Function

If the application has Em_readMemoryEx() implemented, EventMemory calls the access method readEx
function. The readEx function is used when supporting read processing exclusive to the access method:
// CLOSE METHOD
BOOL File_readEx(
 pFgwEmMemoryHandle hmem,
 pEM_ADDRESS psAddr,
 PVOID pvBuf,
 DWORD dwNumberOfBytesBuf,
 PVOID pvMethodSpec
)
{
 pSpecData specData = hmem->accessMethodHandleData;

 // data read
 if (!File_read(hmem, psAddr, pvBuf,
dwNumberOfBytesBuf)) {
 return FALSE;
 }

 // exclusive processing
 if (pvMethodSpec != NULL) {
 {
 …
 }

 return TRUE;
}

The structure indicating the read data address, the pointer to the buffer storing the read data, the buffer size, and the
data exclusive to the access method are passed as parameters.

To support the readEx function, define a data structure exclusive to the access method. The application sets the
necessary data to this structure, and executes Em_readMemoryEx() with the data structure pointer as pvMethodSpec.
If pvMethodSpec is NULL, the same processing as the normal read function is performed.

5.2.8 Implementing the writeEx Process Function

If the application has Em_writeMemoryEx() implemented, EventMemory calls the access method writeEx
function. The writeEx function is used when supporting write processing exclusive to the access method:

19
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

// CLOSE METHOD
BOOL File_writeEx (
 pFgwEmMemoryHandle hmem,
 pEM_ADDRESS psAddr,
 PVOID pvData,
 DWORD dwNumberOfBytesData,
 PVOID pvMethodSpec
)
{
 pSpecData specData = hmem->accessMethodHandleData;

 // Write the data
 if (!File_write(hmem, psAddr, pvData,
dwNumberOfBytesData)) {
 return FALSE;
 }

 // Peculiar processing
 if (pvMethodSpec != NULL) {
 {
 …
 }

 return TRUE;
}

The structure indicating the write data address, the pointer to the buffer storing the write data, the buffer size, and the
data exclusive to the access method are passed as parameters.

To support the writeEx function, define a data structure exclusive to the access method. The application sets the
necessary data to this structure, and executes Em_writeMemoryEx() with the data structure pointer as pvMethodSpec.
If pvMethodSpec is NULL, the same processing as the normal write function is performed.

5.2.9 Implementing the Event Condition Evaluation

The EventMemory can send events according to event conditions. To create an access method that supports
event conditions, use the following EvtMem32.dll export functions:
EventMemory API Functionality

EmCondition_OnWriteMemoryNormal() Evaluates normal event conditions, and
sends the event.

EmCondition_OnWriteMemoryWide() Evaluates wide event conditions.

EmCondition_sendWideEvents() Sends wide event condition events.

In the access method write process function, evaluate the conditions and send the event at data write:

 // normal conditon
 nNumberOfWordsWrite = nNumberOfBytesToWrite /
sizeof(WORD);
 EmCondition_OnWriteMemoryNormal(hmem,
psAddr->dwWordOffset,
 nNumberOfWordsWrite, pvData);

 // wide condition
 {
 size_t num;
 PWORD pWordBefore = (PWORD)pBeforeData;
 PWORD pWordAfter = (PWORD)pvData;

20
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

 DWORD dwWordOffset = psAddr->dwWordOffset;
 for (num = 0; num < nNumberOfWordsWrite; num++,
 dwWordOffset++) {
 EmCondition_OnWriteMemoryWide(hmem,
dwWordOffset,
 (*pWordBefore != *pWordAfter));
 }
 EmCondition_sendWideEvents(hmem);
 }

EmCondition_OnWriteMemoryNormal

Evaluates normal conditions, and sends the event when the conditions are met:
void WINAPI EmCondition_OnWriteMemoryNormal(
 pFgwEmMemoryHandle hmem,
 DWORD offset,
 DWORD size,
 PVOID pvWriteData);

Parameter Description
hmem Specifies the EventMemory handle.

offset Specifies the data write start word.

size Specifies the number of write words.

pvWriteData Specifies the write data buffer address.

The EmCondition_OnWriteMemoryNormal function evaluates the conditions, if normal conditions are set in offset and
size. If the send conditions are met, it sends the event.

Normal condition evaluation still requires that the offset and size be set in words, even if the actual write data type is not
WORD. To write 10 words of data starting from word 100, set offset to 100 and size to 10.

EmCondition_OnWriteMemoryWide

Evaluates wide conditions. Does not send the event.
void WINAPI EmCondition_OnWriteMemoryWide(
 pFgwEmMemoryHandle hmem,
 DWORD offset,
 BOOL bIsChange);

Parameter Description
hmem Specifies the EventMemory handle.

offset Specifies the data write start word.

bIsChange If the data before writing, and the data after writing are different, this
is TRUE; if they are the same, it is FALSE.

The EmCondition_OnWriteMemoryNormal function evaluates the conditions, if wide conditions are set in offset. The
evaluation result is retained internally.

Wide conditions are evaluated in word units. To write 10 words of data starting from word 100, execute this function for
10 words from word 100.

To send event for wide conditions, execute the EmCondition_sendWideEvents function after evaluating all the data.

21
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

EmCondition_sendWideEvents

Sends events for wide conditions:
void WINAPI EmCondition_ sendWideEvents (
 pFgwEmMemoryHandle hmem);

Parameter Description
hmem Specifies the EventMemory handle.

The EmCondition_ sendWideEvents function sends the event, if the EmCondition_OnWriteMemoryWide function
evaluation result was that the conditions were met.

Before executing this function, the EmCondition_OnWriteMemoryWide function must be executed.

5.2.10 Registering the Access Method
To use the created access method, register an entry for the access method in the registry. The EventMemory looks for
access method entries under a fixed key in the registry, and loads the corresponding DLLs.

The registry keys are below the following:

HKEY_LOCAL_MACHINE¥SOFTWARE¥OMRON¥FinsGateway¥AccessMethod

Create a sub-key under this key for the created access method name, and below that create a character
string value (REG_SZ or REG_EXPAND_SZ) “DllPath”, and specify the DLL file name.

For example, to register an access method called AmFile, the registry configuration would be as follows:

5.2.11 Setting the Registry
The data to determine the EventMemory operations is set to the registry. Normally, the FinsGateway Configuration
utility is used to set this data.

The registry keys are below the following:

HKEY_LOCAL_MACHINE¥SOFTWARE¥OMRON¥FinsGateway¥EventMemory

22
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

Under this key, the memory name sub-keys are listed. The following are examples of values that would be set to these
keys as registry entries. Only the main entries are shown here:

Registry Name Description

AccessMethod Specifies the access method names to use.

WordSizeOfMemory Specifies the memory size in words.

NeedMapMemory Specifying TRUE maps the data area to shared memory.
Normally set FALSE for anything other than AmShmem.

EnableEventCondition Specifying TRUE enables the event condition settings. Set
FALSE when not supporting event conditions.

When adding settings exclusive to the access method, those entries cannot be set with the FinsGateway Configuration
utility. They must be set with the registry editor.

For example, to add the ”FileName” entry under the AmFile access method (the file path), the registry
configuration would be as follows:

23
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

6 Error Systems

6.1 Error Codes

• Basically, the EventMemory reports an error to an application when a called function returns an error.

• An exception is that when sending an event (as the result of testing an event-occurrence condition) fails,
the event is logged. This is because the Em_writeMemory function call to trigger the event send is not
always used by a user application; therefore the error cannot be reported to the user application by
returning an error by the called function.

• When an error occurs with the EventMemory, the applications can locate the cause of the error by calling
the GetLastError function. An error code is a 32-bit value (bit 31 is the most-significant bit), and bit 29 is
reserved by Microsoft as an error code for application definition, and is always set for error codes set by
the EventMemory. The table below lists the error codes. The error codes in the table are actual error
codes whose most-significant two bytes are masked. Actual error codes are the results of a bitwise OR
operation with the error codes in the table and 0x20000000.

Table 6-1: Error codes

Code Definition(EM_ERROR_*) Description
1 INVALID_EVENT_PORT_NAME The length of the character string for the event port name is

invalid.
2 NO_MORE_EVENT_PORT The event port has no free space.
3 INVALID_EVENT_HANDLE The event handle of the EventMemory is invalid.
4 NO_SET_EXECUTE_VERSION The operation version of the EventMemory is not set.
5 OUTBREAK_OF_EXCEPTION An exception error occurred during processing.
6 FAIL_IN_DETACH_BASE_OBJECT A base object could not be opened.
7 OUT_OF_EVENT_RANGE_ON_SEND The number of bytes that cannot be sent is specified in the

event. (During event sending)
8 NO_EVENT_PORT_TO_SEND The event port of destination was not found.
9 FAIL_IN_SEND_BASE_OBJECT A base object could not be sent.
10 ILLEGAL_BASE_OBJECT Invalid data was received as a base object.
11 OUTBREAK_OF_TIMEOUT_FOR_EVENT A timeout occurred in event reception wait state.
12 FAIL_IN_RECEIVE_EVENT Event reception wait failed.
13 EXECUTE_VERSION_ALREADY_LOCKED The operation version is already locked and cannot be

changed.
14 NOT_SUPPORTED_VERSION The version is not supported. The system cannot be

activated.
15 INVALID_MEMORY_PORT_NAME The length of the character string for the memory port name is

invalid.
16 ALREADY_OPENED_MEMORY_PORT The memory port is already open in the process.
17 ILLEGAL_MEMORY_SIZE An invalid value is set for memory size.
18 FAIL_IN_OPEN_FILE A file could not be created or opened.
19 NO_MORE_MEMORY_PORT The memory port has no free space.
20 FAIL_IN_ATTACH_MEMORY Shared memory could not be attached.
21 ALREADY_EXISTED_MEMORY The memory area already exists.
22 INVALID_MEMORY_HANDLE The memory handle for the EventMemory is invalid.
23 FAIL_IN_RELEASE_MEMORY_RECORD Records of the memory port could not be opened.
24 FAIL_IN_DETACH_MEMORY Shared memory could not be detached.
25 INVALID_EM_ADDRESS The structure data used to specify the address of the

EventMemory are invalid.

24
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

26 FIRST_OFFSET_OUT_OF_MEMORY_RANGE The first offset of the specified address exceeds the memory
size.

27 INSUFFICIENT_READ_BUFFER The size of the buffer for reading data is insufficient.
28 FAIL_IN_GET_MUTEX The property rights for Mutex could not be obtained.
29 INSUFFICIENT_WRITE_DATA Write data are insufficient.
30 BIT_NEITHER_ONE_NOR_ZERO A value other than 0 or 1 is set for data of bit type.
31 FAIL_IN_SEND_EVENT_ON_WRITE During data writing, a generated event could not be sent.
32 NOT_WORD_TYPE_OF_FACTOR In the setting of wide-area event conditions, a data type other

than word is specified.
33 NO_MORE_WIDE_CONDITION_POOL Too many wide-area event conditions.
34 INVALID_EM_ADDRESS_FOR_DATA The structure data used to specify the EventMemory address

sent as event data are invalid.
35 OUT_OF_EVENT_RANGE_ON_CONDITION The number of bytes that cannot be sent is specified in the

event. (Error generate during setting of event conditions)
36 NOT_SET_CONDITION_ID Processing was requested for a condition ID not set.
37 FAIL_IN_ATTACH_CONDITION_TO_FREE An event-occurrence condition could not be attached to the

free list.
38 NOT_ONE_NUMBER_OF_FACTOR In the setting for event conditions, 1 was not set as the

number of data.
39 BIT_TYPE_ON_CONDITION In the setting for event conditions, bit is set as the data type.
40 ODD_OFFSET_ON_DWORD_CONDITION In the setting for double-word event conditions, an odd

number is set as the offset.
41 FAIL_IN_ATTACH_CONDITION_TO_MEMORY Event conditions could not be associated with memory.
42 NO_MORE_NORMAL_CONDITION_POOL Too many normal event conditions.
43 LAST_OFFSET_OUT_OF_MEMORY_RANGE The last offset of the specified address exceeds the memory

size.
44 NOT_WINDOW_HANDLE The specified window handle is invalid.
45 ALREADY_SET_TO_POST_THREAD The setting is already made to post messages to a thread.
46 ALREADY_SET_TO_POST_WINDOW The setting is already made to post messages to a window.
47 FAIL_IN_POST_THREAD_MESSAGE A message could not be posted to a thread.
48 FAIL_IN_POST_WINDOW_MESSAGE A message could not be posted to a window.
49 INVALID_CONSTANT1 The value of true/false evaluation comparison constant 1 is

invalid.
50 INVALID_CONSTANT2 The value of true/false evaluation comparison constant 2 is

invalid.
51 PROCESS_EVENT_INFO_OUT_OF_ORDER Event-port management information by process is invalid.
52 FAIL_IN_ALLOC_MEMORY Memory could not be allocated.
53 TOO_LONG_FILE_PATH The file path specified in the registry is too long.
54 NOT_EXIST_CONDITION_FILE A file for setting event conditions does not exist.
55 ALREADY_OPENED_EVENT_PORT The event port is already open.
56 NO_MORE_EVENT_POOL Too many events.
57 INSUFFICIENT_RECEIVE_BUFFER The size of the buffer for receiving data was insufficient.
58 DISABLE_SET_EVENT_COND This memory cannot have event conditions set.
59 NOT_EXIST_ACCESS_METHOD Specified access method does not exist.
60 FAIL_OPEN_METHOD Access method open method execution failure.
61 FAIL_CLOSE_METHOD Access method close method execution failure.
62 FAIL_READ_METHOD Access method read method execution failure.
63 FAIL_WRITE_METHOD Access method write method execution failure.
64 FAIL_READEX_METHOD Access method readEx method execution failure.
65 FAIL_WRITEEX_METHOD Access method writeEx method execution failure.
66 FAIL_JUDGE_METHOD Access method judge method execution failure.

25
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7 API Reference

7.1 Summary
The library contains many functions, as described below.

Version management
Em_requestVersion Specifies the operating version.
Em_getVersion Gets the release version.

Memory read/write
Em_openMemory Opens a memory port.
Em_closeMemory Closes a memory port.
Em_readMemory Reads from memory.
Em_writeMemory Writes to memory.
Em_readMemoryEx Reads from expanded function memory.
Em_writeMemoryEx Writes to expanded function memory.

Event send/receive
Em_openEvent Opens an event port.
Em_sendEvent Sends events.
Em_receiveEvent Receives events.
Em_closeEvent Closes an event port.

Setting and clearing event conditions
Em_setCondition Sets a normal event-occurrence condition.
Em_setWideCondition Sets wide-area event-occurrence condition.
Em_clearCondition Clears normal or wide-area event-occurrence condition.
Em_judgeCondition Evaluates event conditions.

Setting or clearing message-driven event reception
Em_setMessageOnArrival Sets a message to be posted in a window.
Em_setThreadMessageOnArrival Sets a message to be posted in a thread.
Em_clearMessageOnArrival Clears message posting.

Getting internal information
Em_getCondition Gets the setting for a normal event-occurrence condition.
Em_getWideCondition Gets the setting for a wide-area event-occurrence condition.
Em_isWideConditionId Evaluates a condition ID as normal or wide-area.
Em_getConditionList Gets the setting list of normal event conditions.
Em_getWideConditionList Gets the setting list of wide-area event conditions.
Em_getLostEventLogs Gets lost event logs.
Em_getSystemInfo Gets the EventMemory system information.
Em_getMemoryInfo Gets shared memory information.
Em_getMemoryPortUsage Gets memory port usage status.
Em_getEventPortUsage Gets event-port usage status.
Em_getEventHandle Gets a Win32API event object handle.
Em_getMutexHandle Gets a Win32API Mutex object handle.
Em_getBaseAddress Gets the starting address of shared memory mapped in a process.

26
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

Others
Em_swapBytes Byte swap
Em_getLastErrorMessage Gets error messages.
Em_flushFile Flush to a file
Em_getBytesBuffer Gets the number of bytes of a buffer.
Em_clearLostEventLogs Clears the lost event log.

27
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.2 Em_requestVersion Function

Function

Specifies the operating version of the EventMemory.
BOOL Em_requestVersion(//Success: TRUE, Failure: FALSE
 BYTE byMajor, //Major version
 BYTE byMinor, //Minor version
)

Description

This function requests the EventMemory to operate with a specified version. If no operating version is specified by the
Em_requestVersion function, the API of the EventMemory cannot be used. The Em_requestVersion function with the
release version as an argument is defined by the macro EM_STARTUP.

Argument Description
byMajor Major version number.

The major version number upon release is defined as
EM_CURRENT_MAJOR_VERSION in the header file EvtMem.h.

byMinor Minor version number.
The minor version number upon release is defined as
EM_CURRENT_MAJOR_VERSION in the header file EvtMem.h.

Return Value

If the function completes normally, it returns TRUE. Otherwise, it returns FALSE. To get additional error information,
use the GetLastError function. Specifying a version not found in the release history causes an error.

See Also

Em_*

28
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.3 Em_getVersion Function

Function

Gets the release version of the EventMemory.
EM_VERSION Em_getVersion (void)

Description

This function gets release version. The version information retrieved by this function is independent of the operation
version specified in Em_requestVersion.

Argument Description
None

EventMemory Version Information (EM_VERSION Structure)
typedef struct TagEmVersion {
 BYTE byMajor;
 BYTE byMinor;
 BYTE byRevision;
 BYTE byReserved;
} EM_VERSION, *pEM_VERSION;

Structure member Description
byMajor Major version number
byMinor Minor version number
byRevision Revision number
byReserved Reserved area

Return Value

Returns the EM_VERSION structure containing the release version of the EventMemory. This function will not fail.

See Also

29
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.4 Em_openMemory Function

Function

Opens a memory port for the EventMemory.
HANDLE Em_openMemory(//Memory handle, Failure: NULL
 LPCTSTR lpszMemoryName, //Memory name
 PVOID pvBaseAddress, //Map starting address
)

Description

This function opens a memory port with the specified memory name, and returns the handle.

If the memory is opened for the first time, the necessary profile data is obtained and the memory object is created. If a
memory by the same name is already open, the port for the existing memory is returned.

Argument Description
lpszMemoryName Pointer to a NULL-terminated character string to specify the name of the EventMemory.

Up to 15 characters are allowed. No distinction between uppercase and lowercase letters is
made.

pvBaseAddress Specify NULL.

Return Value

The function returns the memory handle of the EventMemory when it terminates normally. It returns NULL if it does not
terminate normally. To get additional error information, use the GetLastError function. If the shared memory of a
memory port to be opened already exists before the function is called, the GetLastError function returns
EM_ERROR_ALREADY_EXISTED_MEMORY, and the Em_openMemory function returns a handle valid for
accessing the existing shared memory. If the specified shared memory area does not exist, GetLastError returns 0.

If a memory port already opened in a process is opened, the GetLastError function returns
EM_ERROR_ALREADY_OPENED_MEMORY_PORT, and the Em_openMemory function returns the handle of the
memory port already opened.

See Also

Em_closeMemory, Em_readMemory, Em_writeMemory, Em_readMemoryEx, Em_writeMemoryEx, Em_setCondition,
Em_setWideCondition, Em_clearCondition, Em_getCondition, Em_getWideCondition, Em_isWideConditionId,
Em_getConditionList, Em_getWideConditionList, Em_judgeCondition, Em_getBaseAddress, Em_getMutexHandle,
Em_getMemoryInfo

30
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.5 Em_readMemory Function

Function

Reads the EventMemory data.
BOOL Em_readMemory (//Success: TRUE, Failure: FALSE
 HANDLE hMemory, //Memory handle
 pEM_ADDRESS psAddress, //Read address an specification
 PVOID pvBuffer, //Pointer to read from a buffer
 DWORD dwNumberOfBytesBuffer,
 //Read buffer size (bytes)
)

Description

Reads the EventMemory data.

Argument Description
hMemory Memory Handle of the EventMemory
psAddress Pointer to the EM_ADDRESS structure to specify the address of the EventMemory

to read data to. Specify the offset, data type, bit/byte position, and the number of
data.

pvBuffer Pointer to the data buffer to read data to. If the data type is bit, reading is performed
in a way that writes the value 0 or 1 to a 1-byte memory area. Accordingly, a byte
array buffer of the same size as the number of bits to be read is required.

dwNumberOfBytesBuffer Number of bytes of read buffer. If the number of bytes of read buffer is insufficient
for the read address specification, the data is not read in buffer.

Return Value

If the function completes normally, it returns TRUE. Otherwise, it returns FALSE. To get additional error information,
use the GetLastError function.

See Also

Em_openMemory, Em_closeMemory

31
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.6 Em_writeMemory Function

Function

This function writes data to the EventMemory.
BOOL Em_writeMemory (//Success: TRUE, Failure: FALSE
 HANDLE hMemory, //Memory handle
 pEM_ADDRESS psAddress, //Write address an specification
 PVOID pvData, //Pointer to write data
 DWORD dwNumberOfBytesData,
 //Number of bytes of writes data
)

Description

This function writes data to the EventMemory. If the target is shared memory, when writing data, it evaluates the event
conditions set in the write area, and automatically sends the event to the event port. If the target is remote memory,
when writing data, it does not evaluate the event conditions. To evaluate the event conditions, execute the
Em_judgeCondition function after writing the data.

Argument Description
hMemory Memory Handle of the EventMemory
psAddress Pointer to the EM_ADDRESS structure to specify the address of the EventMemory

to write data to. Specify the offset, data type, bit/byte position, and the number of
data.

pvData Pointer to the data buffer to write to. If the data type is bit, writing is performed in a
way that writes the value 0 or 1 to a 1-byte memory area. Accordingly, before writing,
set write data in a byte array of the same size as the number of bits to be written.

dwNumberOfBytesData Number of bytes of write data. If the number of bytes of write data is insufficient for
the write address specification, the data is not written.

Return Value

The function returns TRUE when data is normally written to the EventMemory. Otherwise, it returns FALSE. To get
additional error information, use the GetLastError function.

If only event automatic send by event-occurrence condition evaluation fails, the GetLastError function returns
EM_ERROR_FAIL_IN_SEND_EVENT_ON_WRITE and the Em_writeMemory function returns TRUE. To get log
information about the event (lost event) that failed in automatic send by event-occurrence condition evaluation, use the
Em_getLostEventLogs function.

If the shared memory port for reading the data to be sent is not opened during event automatic send, the function
internally opens the memory port.

See Also

Em_openMemory, Em_closeMemory, Em_setCondition, Em_setWideCondition, Em_getLostEventLogs,
Em_judgeCondition

7.7 Em_readMemoryEx Function

Function

Reads data from EventMemory.
BOOL Em_readMemory(//Successful: TRUE; failed: FALSE

32
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

 HANDLE hMemory, //Memory handle
 pEM_ADDRESS psAddress, //Read address specification
 PVOID pvBuffer, //Read buffer pointer
 DWORD dwNumberOfBytesBuffer,
 //Read buffer size (bytes)
 PVOID pvAccessMethodSpec
 //Pointer to structure exclusive to access method
)

Description

Reads the additional data exclusive to the access method. The additional data read function differs for each access
method. Depending on the access method implementation, the additional data read function is not necessarily
supported. The pvAccessMethodSpec parameter has a special meaning within each access method. Normally, set the
structure pointer.

Argument Description
hMemory EventMemory handle.

psAddress Pointer to the EM_ADDRESS structure, which specifies the data
read EventMemory address. Specify the offset, data type, bit/byte
position, and number of data.

pvBuffer Data read buffer pointer. If the data type is bit, the 0/1 value is read
and stored into a 1-byte memory area. Therefore, it is necessary
to have a byte array the same size as the number of bits to read.

dwNumberOfBytesBuffer Number of read buffer bytes. If the buffer size is smaller than the
read data, the data will not be read into the buffer.

pvAccessMethodSpec Specifies the pointer to the structure exclusive to the access
method. If NULL is specified, it operates the same as the
Em_readMemory function.

Return Value

If the function completes normally, it returns TRUE. Otherwise, it returns FALSE. To get additional error information,
use the GetLastError function.

See Also

Em_openMemory, Em_closeMemory, Em_readMemory

7.8 Em_writeMemoryEx Function

Function

Writes data to EventMemory.
BOOL Em_writeMemory(//Successful: TRUE; failed: FALSE
 HANDLE hMemory, //Memory handle
 pEM_ADDRESS psAddress, //Write address specification
 PVOID pvData, //Write data pointer
 DWORD dwNumberOfBytesData,
 //Number of write data bytes
 PVOID pvAccessMethodSpec
 //Pointer to structure exclusive to access method
)

Description

Writes the additional data exclusive to the access method. The additional data write function differs for each access
method. Depending on the access method implementation, the additional data write function is not necessarily

33
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

supported. The pvAccessMethodSpec parameter has a special meaning within each access method. Normally, set the
structure pointer.

Argument Description
hMemory EventMemory handle.

psAddress Pointer to the EM_ADDRESS structure, which specifies the data
write EventMemory address. Specify the offset, data type, bit/byte
position, and number of data.

pvData Data write buffer pointer. If the data type is bit, the 0/1 value is
stored into a 1-byte memory area. Therefore, it is necessary to have
a byte array the same size as the number of bits to write.

dwNumberOfBytesData Number of write data bytes. If the write data size is smaller than the
write data area, the data will not be written.

pvAccessMethodSpec Specifies the pointer to the structure exclusive to the access
method. If NULL is specified, it operates the same as the
Em_writeMemory function.

Return Value

If the function completes normally, it returns TRUE. Otherwise, it returns FALSE. To get additional error information,
use the GetLastError function.

If it only fails when sending the event after the event condition evaluation, the GetLastError function returns
EM_ERROR_FAIL_IN_SEND_EVENT_ON_WRITE, and the Em_writeMemoryEx function returns TRUE. To get the
log data of the events that failed on send (lost events log), use the Em_getLostEventLogs function.

If the shared memory port to read the send data is not open when sending the event, it is opened within the function.

See Also

Em_openMemory, Em_closeMemory, Em_setCondition, Em_setWideCondition, Em_getLostEventLogs

34
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.9 Em_closeMemory Function

Function

Closes a memory port of the EventMemory.
BOOL Em_closeMemory(//Success: TRUE, Failure: FALSE
 HANDLE hMemory, //Memory handle
)

Description

This closes an opened memory port. If the number of memory ports opend in a process becomes zero, the shared
memory is detached.

Argument Description
hMemory Memory Handle of the EventMemory

Return Value

If the function completes normally, it returns TRUE. Otherwise, it returns FALSE. To get additional error information,
use the GetLastError function.

See Also

Em_openMemory

35
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.10 Em_openEvent Function

Function

Opens an event port for the EventMemory.
HANDLE Em_openEvent (//Event handle, Failure: NULL
 LPCTSTR lpszEventName, //Event port name
)

Description

Opens an event port for the EventMemory.

Argument Description
lpszEventName Pointer to a NULL-terminated character string to specify the event name of the

EventMemory. Up to 15 characters are allowed. No distinction between uppercase
and lowercase letters is made.

Return Value

The function returns the Event handle of the EventMemory when it terminates normally. In other cases, it returns NULL.
To get additional error information, use the GetLastError function.

See Also

Em_closeEvent, Em_receiveEvent, Em_sendEvent

36
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.11 Em_sendEvent Function

Function

This function sends an event of the EventMemory.
BOOL Em_sendEvent (//Success: TRUE, Failure: FALSE
 HANDLE hEvent, //Event handle
 LPCTSTR lpszEventName, //Event destination
 INT lEventId, //Event ID
 pEM_AREA psAreaInformed, //Information indicating
 //an event-occurrence
 PVOID pvData, //Pointer to send data
 DWORD dwNumberOfBytesData,
 //Number of bytes of send data
)

Description

This function sends an event of the EventMemory to an event port.

Argument Description
hEvent Event Handle of the EventMemory
lpszEventName Pointer to a NULL-terminated character string to specify the name of an event port

to which to send. Up to 15 characters are allowed. No distinction between
uppercase and lowercase letters is made.

lEventId Event ID
psAreaInformed Pointer to the EM_AREA structure to specify information indicating an

event-occurrence area (memory name plus address). This information is not always
necessary for the Em_sendEvent function, but can be used to exchange shared
memory data indirectly with the application at the event-receive end. When
psAreaInformed is NULL, this information is not sent.

pvData Pointer to the send data buffer. When pvData is NULL, no data are sent.
dwNumberOfBytesData Number of bytes of send data

Return Value

If the function completes normally, it returns TRUE. Otherwise, it returns FALSE. To get additional error information,
use the GetLastError function.

See Also

Em_openEvent, Em_closeEvent, Em_receiveEvent

37
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.12 Em_receiveEvent Function

Function

Receives an event of the EventMemory.
BOOL Em_receiveEvent (//Success: TRUE, Failure: FALSE
 HANDLE hEvent, //Event handle
 PINT plEventId, //Event ID
 pEM_AREA psAreaInformed, //Information indicating an
 //event-occurrence area
 PVOID pvBuffer, //Pointer to the beginning of
 //the receive data buffer
 DWORD dwNumberOfBytesBuffer,
 //Number of bytes of
 //the receive data buffer
 PDWORD pdwNumberOfBytesReceive,
 //Number of bytes of received data
 DWORD dwTimeout, //Receive timeout (milliseconds)
)

Description

Receives an event of the EventMemory.

Argument Description
hEvent Event handle of the EventMemory
plEventId Pointer to the variable to store the ID of a received event
psAreaInformed Pointer to the EM_AREA structure to specify information indicating an

event-occurrence area (memory name plus address).
psAreaInformed->lpszMemoryName[0]
 = EM_NO_ADDR_INFO indicates that no area to be reported is allocated in an
event-sending end.
When psAreaInformed is NULL, this information is not sent.

pvBuffer Pointer to the receive data buffer. When pvBuffer is NULL, no data are received.
dwNumberOfBytesBuffer Number of bytes of the receive data buffer. If the buffer size is smaller than the

size of received �data, only the data of the number of bytes specified in
dwNumberOfBytesBuffer is transferred, and the �function fails. In this case, part
of the data is lost.

pdwNumberOfBytesReceive Number of bytes of data possessed by a received event.
dwTimeout Receive timeout (milliseconds). If dwTimeout is INFINITE, the timeout function

does not work. If dwTimeout is 0, the function returns immediately, and
terminates normally only when a receive event exists.

Return Value

Only when all data sent as events are received does the Em_receiveEvent function succeed. If the function completes
normally, it returns TRUE. Otherwise, it returns FALSE. To get additional error information, use the GetLastError
function.

See Also

Em_openEvent, Em_closeEvent, Em_sendEvent, Em_writeMemory

38
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.13 Em_closeEvent Function

Function

Closes an event port of the EventMemory.
BOOL Em_closeEvent(//Success: TRUE, Failure: FALSE
 HANDLE hEvent, //Event handle
)

Description

This closes an open event port.

Argument Description
hEvent Event handle of the EventMemory

Return Value

If the function completes normally, it returns TRUE. Otherwise, it returns FALSE. To get additional error information,
use the GetLastError function.

See Also

Em_openEvent

39
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.14 Em_setCondition Function

Function

This function sets normal event conditions.
BOOL Em_setCondition (//Success: TRUE, Failure: FALSE
 HANDLE hMemory, //Memory handle
 PDWORD pdwConditionId, //ID of the set conditions
 pEM_ADDRESS psAddress,
 //Address at which conditions are set
 pEM_CONDITION psCondition,
 //Normal event conditions
 BOOLEAN bIsVolatile, //Volatility or non-volatility
 // of conditions
)

Description

This function sets normal event conditions in shared memory.

Argument Description
hMemory Memory Handle of the EventMemory
pdwConditionId Pointer to the variable to store the ID of the set conditions. Used to clear and get

conditions.
psAddress Pointer to the EM_ADDRESS structure to specify the address of the

EventMemory at which condition are set. Specify the offset, data type, byte
position, and the number of data.
Bit cannot be specified as the data type. The number of element must be 1.

psCondition Pointer to the EM_CONDITION structure to specify normal event conditions.
Specify a true/false evaluation operation, event send evaluation for the true/false
transition for operation results, event destination, event ID, and shared memory
area (memory name plus address) sent as data.
If the data in the shared memory area are not to be sent, set
psCondition->sSendObject.sSendArea
and .sAddress.byTypeOfFactor=EM_NO_DATA.

bIsVolatile Specification on volatility or nonvolatility of conditions. Specify the volatility or
nonvolatility of conditions to be set. To specify a condition as volatile, set
bIsVolatile=TRUE, and to specify it as nonvolatile, set bIsVolatile=FALSE. If
volatility is specified, the conditions are lost when the shared memory for which
they are set is unloaded. If nonvolatility is specified, the conditions are not lost
even if the shared memory is unloaded.

Return Value

If the function completes normally, it returns TRUE. Otherwise, it returns FALSE. To get additional error information,
use the GetLastError function.

See Also

Em_openMemory, Em_clearCondition, Em_getCondition, Em_getConditionList, Em_setMessageOnArrival,
Em_setThreadMessageOnArrival, Em_clearMessageOnArrival

40
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.15 Em_setWideCondition Function

Function

This function sets wie-area event conditions.
BOOL Em_setWideCondition (//Success: TRUE, Failure: FALSE
 HANDLE hMemory, //Memory handle
 PDWORD pdwConditionId, //ID of the set conditions
 pEM_ADDRESS psAddress,
 //Address at which conditions are set
 pEM_WIDE_CONDITION psWideCondition,
 //wide-area event conditions
 BOOLEAN bIsVolatile,
 //Volatility or non-volatility of conditions
)

Description

This function sets wide-area event conditions in shared memory.

Argument Description
hMemory Memory Handle of the EventMemory
pdwConditionId Pointer to the variable to store the ID of the set conditions. Used to clear and get

conditions.
psAddress Pointer to the EM_ADDRESS structure to specify the address of the

EventMemory at which condition are set. Specify the offset, data type, and the
number of data.
The data type must always be word. The byte position, if specified, is ignored.

psWideCondition Pointer to the EM_WIDE_CONDITION structure to specify wide-area event
conditions. Specify an event send evaluation method, event destination, event ID,
and shared memory area (memory name plus address) sent as data.
If the data in the shared memory area are not to be sent, set
psWideCondition->sSendObject.sSendArea
and .sAddress.byTypeOfFactor=EM_NO_DATA.

bIsVolatile Specification on volatility or nonvolatility of conditions. Specify the volatility or
nonvolatility of conditions to be set. To specify a condition as volatile, set
bIsVolatile=TRUE, and to specify it as nonvolatile, set bIsVolatile=FALSE. If
volatility is specified, the conditions are lost when the shared memory for which
they are set is unloaded. If nonvolatility is specified, the conditions are not lost
even if the shared memory is unloaded.

Return Value

If the function completes normally, it returns TRUE. Otherwise, it returns FALSE. To get additional error information,
use the GetLastError function.

See Also

Em_openMemory, Em_clearCondition, Em_getWideCondition,

Em_getWideConditionList, Em_setMessageOnArrival,

Em_setThreadMessageOnArrival, Em_clearMessageOnArrival

41
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.16 Em_clearCondition Function

Function

Clears normal or wide-area event conditions.
BOOL Em_clearCondition(//Success: TRUE, Failure: FALSE
 HANDLE hMemory, //Memory handle
 DWORD dwConditionId, //Condition ID
)

Description

Clears normal or wide-area event conditions.

Argument Description
hMemory Memory Handle of the EventMemory
dwConditionId ID of condition to be cleared

Return Value

If the function completes normally, it returns TRUE. Otherwise, it returns FALSE. To get additional error information,
use the GetLastError function.

See Also

Em_setCondition, Em_setWideCondition

42
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.17 Em_judgeCondition Function

Function

Evaluates event conditions.
BOOL Em_judgeCondition(//Successful: TRUE; failed: FALSE
 HANDLE hMemory, //Memory handle
 pEM_ADDRESS psAddr, //Condition address
)

Return Value

Evaluates the normal event conditions set to the area specified in psAddr, and automatically sends an event to the
event port.

This function is generally used for the AmFinsRemote access method (not the EventMemory write functions), for
evaluating conditions without writing data. This is for the actual memory of devices that will have data written from other
sources. For shared memory, it is also possible just to evaluate the conditions, without writing data.

This function does not evaluate wide conditions.

Argument Description
hMemory EventMemory handle.

psAddr Specifies the event condition evaluation EventMemory address.
The data type must always be WORD.

Description

If the function completes normally, it returns TRUE. Otherwise, it returns FALSE. To get additional error information,
use the GetLastError function.

See Also

Em_setCondition, Em_setWideCondition

43
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.18 Em_ setMessageOnArrival Function

Function

Allows a message to be posted in a window when an event arrives.
BOOL Em_setMessageOnArrival(//Success: TRUE, Failure: FALSE
 HANDLE hEvent, //Event handle
 HWND hWindow, //Window handle of posting destination
 UINT uMessage, //Message to be posted
)

Description

This function allows a message to be posted in a window when an event arrives at an event port. In the window that
received a message in this way, an event arrives at the event port at the same time and the Em_receiveEvent function
succeeds in receiving the event without being blocked.

This function cannot allow messages to be posted in a thread. To change to message posting to a thread, temporarily
free the setting using Em_clearMessageOnArrival, then use the Em_setThreadMessageOnArrival function.

When an event arrives, a message is posted in a window only once, and no retry is performed, even if posting fails.

Argument Description
hEvent Event handle of the EventMemory. Specify the handle of an event port to set

message posting.
hWindow Window handle for a window in which to post messages
uMessage Specify the window message to be posted.

Return Value

If the function completes normally, it returns TRUE. Otherwise, it returns FALSE. To get additional error information,
use the GetLastError function.

See Also

Em_openEvent, Em_sendEvent, Em_writeMemory,

Em_clearMessageOnArrival

44
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.19 Em_ setThreadMessageOnArrival Function

Function

Allows a message to be posted in a thread when an event arrives.
BOOL Em_setThreadMessageOnArrival (//Success: TRUE, Failure: FALSE
 HANDLE hEvent, //Event handle
 DWORD dwThreadId, //Thread ID of posting destination
 UINT uMessage, //Message to be posted
)

Description

This function allows a message to be posted in a thread when an event arrives at an event port. In the thread that
received a message in this way, an event arrives at the event port at the same time and the Em_receiveEvent function
succeeds in receiving the event without being blocked.

This function cannot allow messages to be posted in a window. To change to message posting to a window,
temporarily free the setting using Em_clearMessageOnArrival, then use the Em_setMessageOnArrival function.

When an event arrives, a message is posted in a thread only once, and no retry is performed, even if posting fails.

Argument Description
hEvent Event handle of the EventMemory. Specify the handle of an event port to set

message posting.
dwThreadId ID of a thread to in which to post messages
uMessage Specify the window message to be posted.

Return Value

If the function completes normally, it returns TRUE. Otherwise, it returns FALSE. To get additional error information,
use the GetLastError function.

See Also

Em_openEvent, Em_sendEvent, Em_writeMemory,

Em_clearMessageOnArrival

45
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.20 Em_ clearMessageOnArrival Function

Function

This function clears the setting of message posting when an event arrives.
BOOL Em_ clearMessageOnArrival(//Success: TRUE, Failure: FALSE
 HANDLE hEvent, //Event handle
)

Description

This function clears the setting of message posting to a window or thread when an event arrives.

Argument Description
hEvent Event handle of the EventMemory.

Return Value

If the function completes normally, it returns TRUE. Otherwise, it returns FALSE. To get additional error information,
use the GetLastError function.

See Also

Em_openEvent, Em_setMessageOnArrival, Em_setThreadMessageOnArrival

46
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.21 Em_getCondition Function

Function

This function gets normal event-occurrence condition.
BOOL Em_getCondition (//Success: TRUE, Failure: FALSE
 HANDLE hMemory, //Memory handle
 pEM_CND_INFO psCndInfo, //Setting information items of set
 //normal event conditions
 DWORD dwCndId, //ID of the set conditions
)

Description

This function gets setting information from a set normal event-occurrence condition.

Argument Description
hMemory Memory handle of the EventMemory
psCndInfo Pointer to an EM_CND_INFO structure to store the setting information items of

normal event conditions
dwCndId ID of event-occurrence condition to get setting information

Return Value

If the function completes normally, it returns TRUE. Otherwise, it returns FALSE. To get additional error information,
use the GetLastError function.

See Also

Em_setCondition, Em_isWideConditionId

47
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.22 Em_getWideCondition Function

Function

This function gets wide-area event-occurrence condition.
BOOL Em_getWideCondition (//Success: TRUE, Failure: FALSE
 HANDLE hMemory, //Memory handle
 pEM_WIDE_CND_INFO psWideCndInfo,
 //Setting information items of set
 // wide-area event conditions
 DWORD dwCndId, //ID of the set conditions
)

Description

This function gets setting information from a set wide-area event-occurrence condition.

Argument Description
hMemory Memory handle of the EventMemory
psWideCndInfo Pointer to an EM_WIDE_CND_INFO structure to store the setting information

items of wide-area event conditions
dwCndId ID of event-occurrence condition to get setting information

Return Value

If the function completes normally, it returns TRUE. Otherwise, it returns FALSE. To get additional error information,
use the GetLastError function.

See Also

Em_setWideCondition, Em_isWideConditionId

48
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.23 Em_isWideConditionId Function

Function

This function determines whether a condition ID is for wide-area event conditions.
BOOL Em_isWideConditionId (//Success: TRUE, Failure: FALSE
 HANDLE hMemory, //Memory handle
 DWORD dwCndId, //ConditionID
 PBOOLEAN pbIsWide, //Judgment on wide-area conditions
)

Description

This function determines whether a set condition ID is for wide-area event conditions or for normal event conditions.

Argument Description
hMemory Memory handle of the EventMemory.
dwCndId ConditionID
pbIsWide Pointer to the variable to store the judgment on wide-area conditions. TRUE

indicates wide-area conditions, and FALSE indicates normal conditions.

Return Value

If the function completes normally, it returns TRUE. Otherwise, it returns FALSE. To get additional error information,
use the GetLastError function.

See Also

Em_setCondition, Em_setWideCondition

49
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.24 Em_getConditionList Function

Function

This function gets a list of set normal event conditions.
BOOL Em_getConditionList (//Success: TRUE, Failure: FALSE
 HANDLE hMemory, //Memory handle
 pEM_CND_INFO psCndInfo,
 //Structure to store in a list of
 //the setting information items of set
 //normal event conditions
 DWORD dwNumberOfCndBufs,
 //Number of items of a structural array
 PDWORD pdwNumberOfCnds,
 //Number of set normal event-occurrence
 //conditions
)

Description

This function gets a list of the setting information items of set normal event conditions, as a structural array by condition
ID value in ascending order.

Argument Description
hMemory Memory handle of the EventMemory
psCndInfo Pointer to the beginning of an EM_CND_INFO structure array to store a list of the

setting information items of normal event conditions.
dwNumberOfCndBufs Number of items of a structural array to store in a list.

If the number of set normal event conditions exceeds dwNumberOfCndBufs, the
number of setting information items to be retrieved is set to
dwNumberOfCndBufs.

pdwNumberOfCnds Pointer to the variable to store the number of normal event conditions set in
shared memory.

Return Value

If the function completes normally, it returns TRUE. Otherwise, it returns FALSE. To get additional error information,
use the GetLastError function.

See Also

Em_setCondition

50
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.25 Em_getWideConditionList Function

Function

This function gets a list of set wide-area event conditions.
BOOL Em_getWideConditionList (//Success: TRUE, Failure: FALSE
 HANDLE hMemory, //Memory handle
 pEM_WIDE_CND_INFO psCndInfo,
 //Structure to store in a list of
 //the setting information items of set wide-area
 //event conditions
 DWORD dwNumberOfCndBufs,
 //Number of items of a structural array
 PDWORD pdwNumberOfCnds,
 //Number of set wide-area event conditions
)

Description

This function gets a list of the setting information items of set wide-area event conditions, as a structural array by
condition ID value in ascending order.

Argument Description
hMemory Memory handle of the EventMemory
psCndInfo Pointer to the beginning of an EM_WIDE_CND_INFO structure array to store a

list of the setting information items of wide-area event conditions.
dwNumberOfCndBufs Number of items of a structural array to store in a list.

If the number of set wide-area event conditions exceeds dwNumberOfCndBufs,
the number of setting information items to be retrieved is set to
dwNumberOfCndBufs.

pdwNumberOfCnds Pointer to the variable to store the number of wide-area event conditions set in
shared memory.

Return Value

If the function completes normally, it returns TRUE. Otherwise, it returns FALSE. To get additional error information,
use the GetLastError function.

See Also

Em_setWideCondition

51
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.26 Em_getLostEventLogs Function

Function

This function gets log information of lost event.
BOOL Em_getLostEventLogs(//Success: TRUE, Failure: FALSE
 pEM_LOST_EVENT psLostEvents,
 //Structure to store a log of lost events
 DWORD dwNumberOfEventBufs,
 //Number of items of a structural array
 PDWORD pdwNumberOfEventLogs,
 //Number of logged lost events
)

Description

This function gets log information of lost event as a structural array on a most recently output basis. Logs of lost events
are logs of event-send failure (by event-occurrence condition) after the EventMemory system is loaded. When the
EventMemory system has been unloaded, all log information of lost events is lost. The maximum number of items of
stored lost events is the same as the total number of lost events log retrieved by the Em_getSystemInfo function.

Argument Description
psLostEvents Pointer to the beginning of an EM_LOST_EVENT structural array to store a log of

lost events
dwNumberOfEventBufs Number of items of a structure array to store log items. If the number of logged lost

events exceeds dwNumberOfEventBufs, the number of lost events to be retrieved is
set to dwNumberOfEventBufs.

pdwNumberOfEventLogs Pointer to the variable to store the number of logged lost events

Log Information of Lost Event (EM_LOST_EVENT Structure)
typedef struct TagEmLostEvent {
 SYSTEMTIME sSystemTime;
 char lpszEventName[EM_NAME_LENGTH_MAX];
 INT lEventId;
 DWORD dwErrorCode;
} EM_LOST_EVENT, *pEM_LOST_EVENT;

Structure member Description
sSystemTime Local date and local time when event send failed. For details on the SYSTEMTIME

structure, refer to Win32API.
lpszEventName NULL-terminated character string to indicate the name of an event port to which to

send lost events
lEventId Event ID of a lost event
dwErrorCode Error code to indicate the cause of failure of an event send

Return Value

If the function completes normally, it returns TRUE. Otherwise, it returns FALSE. To get additional error information,
use the GetLastError function.

See Also

Em_getSystemInfo, Em_getLastErrorMessage

52
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.27 Em_getSystemInfo Function

Function

This function gets information about the entire the EventMemory system.
BOOL Em_getSystemInfo (//Success: TRUE, Failure: FALSE
 pEM_SYSTEM_INFO psSystemInfo,
 //Information about the entire EventMemory
)

Description

This function gets information about the entire EventMemory system.

Argument Description
psSystemInfo Pointer to the EM_SYSTEM_INFO structure to store information about the entire

EventMemory system

Information about the Entire System (EM_SYSTEM_INFO Structure)
typedef struct TagEventMemorySystemInformation {
 DWORD dwTotalNumberOfSharedMemories;
 DWORD dwTotalNumberOfEventPorts;
 DWORD dwTotalNumberOfEvents;
 DWORD dwTotalNumberOfLostEventLogs;
} EM_SYSTEM_INFO, *pEM_SYSTEM_INFO;

Structure member Description
dwTotalNumberOfSharedMemories Total number of shared memory areas that can be opened in the entire

system
dwTotalNumberOfEventPorts Total number of event ports that can be opened in the entire system
dwTotalNumberOfEvents Total number of events that can be held in the entire system
dwTotalNumberOfLostEventLogs Total number of log items for lost events that can be stored in the entire

system

Return Value

If the function completes normally, it returns TRUE. Otherwise, it returns FALSE. To get additional error information,
use the GetLastError function.

See Also

None

53
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.28 Em_getMemoryInfo Function

Function

This function gets information on shared memory.
BOOL Em_getMemoryInfo (//Success: TRUE, Failure: FALSE
 HANDLE hMemory, //Memory handle
 pEM_MEMORY_INFO psMemoryInfo, //Memory-port information
)

Description

This function gets information on shared memory of an open memory port.

Argument Description
hMemory Memory handle of shared memory on which information is to be retrieved
psMemoryInfo Pointer to the EM_MEMORY_INFO structure to store information on shared

memory

Information on shared memory (size information and file-path information) (EM_MEMORY_INFO structure)

Information on shared memory consists of size information and file-path information.
//Size information on shared memory
typedef struct TagMemorySizeInformation {
 DWORD dwWordSizeOfMemory;
 DWORD dwTotalNumberOfNormalConditions;
 DWORD dwTotalNumberOfWideConditions;
} EM_MEMORY_SIZE_INFO, *pEM_MEMORY_SIZE_INFO;

//Path information about a file holding shared memory data
typedef struct TagMemoryMappedFilePathInformation {
 char lpszPathOfMemoryDataFile[MAX_PATH];
 char lpszPathOfNormalConditionFile[MAX_PATH];
 char lpszPathOfWideConditionFile[MAX_PATH];
} EM_FILE_PATH_INFO, *pEM_FILE_PATH_INFO;

//Information on shared memory (size information and file-path information)
typedef struct TagMemoryInformation {
 EM_MEMORY_SIZE_INFO sMemorySizeInfo;
 EM_FILE_PATH_INFO sFilePathInfo;
} EM_MEMORY_INFO, *pEM_MEMORY_INFO;

Structure member Description
sMemorySizeInfo
 .dwWordSizeOfMemory

Memory size (words)

sMemorySizeInfo
 .dwTotalNumberOfNormalConditions

Total number of normal conditions that can be set on memory

sMemorySizeInfo
 .dwTotalNumberOfWideConditions

Total number of wide-area conditions that can be set on memory

sFilePathInfo
.lpszPathOfMemoryDataFile

NULL-terminated character string to indicate the path of a file
holding data in the case of nonvolatile shared memory

sFilePathInfo
 .lpszPathOfNormalConditionFile

NULL-terminated character string to indicate the path of a file
holding normal conditions

sFilePathInfo
 .lpszPathOfWideConditionFile

NULL-terminated character string to indicate the path of a file
holding wide-area conditions

54
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

Return Value

If the function completes normally, it returns TRUE. Otherwise, it returns FALSE. To get additional error information,
use the GetLastError function.

See Also

Em_openMemory

55
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.29 Em_getMemoryPortUsage Function

Function

This function gets information about memory-port usage status.
BOOL Em_getMemoryPortUsage (//Success: TRUE, Failure: FALSE
 pEM_MEMORY_PORT_USED psUsedMemoryPort,
 //Structure for storing memory-port usage status
 DWORD dwNumberOfPortBufs,
 //Number of items of a structural array
 PDWORD pdwNumberOfUsedPorts,
 //Number of memory ports used
)

Description

This function gets usage status information about memory ports (shared memories) with different names.

Argument Description
psUsedMemoryPort Pointer to the beginning of the EM_MEMORY_PORT_USAGE structural array for

storing memory-port usage status.
dwNumberOfPortBufs Number of structural array items to store memory-port usage status. If the number

of memory ports used exceeds dwNumberOfPortBufs, the number of memory port
usage statuses to be retrieved is set to dwNumberOfPortBufs.

pdwNumberOfUsedPorts Pointer to the variable to store the number of memory ports (number of shared
memory areas) used.

Information about memory-port usage status (EM_MEMORY_PORT_USED structure)
typedef struct TagMemoryPortUsed {
 char lpszMemoryName[EM_NAME_LENGTH_MAX];
 DWORD dwProcess;
} EM_MEMORY_PORT_USED, *pEM_MEMORY_PORT_USED;

Structure member Description
lpszMemoryName NULL-terminated character string to indicate the name of open memory ports.
dwProcess Indicates the number of processes that open memory ports.

Return Value

If the function completes normally, it returns TRUE. Otherwise, it returns FALSE. To get additional error information,
use the GetLastError function.

See Also

Em_openMemory, Em_closeMemory

56
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.30 Em_getEventPortUsage Function

Function

This function gets information about event-port usage status.
BOOL Em_getEventPortUsage (//Success: TRUE, Failure: FALSE
 pEM_EVENT_PORT_USED psUsedEventPort,
 //Structure for storing event-port usage status
 DWORD dwNumberOfPortBufs,
 //Number of items of a structural array
 PDWORD pdwNumberOfUsedPorts,
 //Number of event ports used
)

Description

This function gets information about event-port usage status.

Argument Description
psUsedEventPort Pointer to the beginning of the EM_EVENT_PORT_USED structural array for

storing event-port usage status.
dwNumberOfPortBufs Number of structural array items to store event-port usage status. If the number of

event ports used exceeds dwNumberOfPortBufs, the number of event port usage
statuses to be retrieved is set to dwNumberOfPortBufs.

pdwNumberOfUsedPorts This function gets the number of event ports used.

Information about event-port usage status (EM_EVENT_PORT_USED structure)
typedef struct TagEventPortUsed {
 char lpszEventName[EM_NAME_LENGTH_MAX];
} EM_EVENT_PORT_USED, *pEM_EVENT_PORT_USED;

Structure member Description
lpszEventName NULL-terminated character string to indicate the name of open event ports.

Return Value

If the function completes normally, it returns TRUE. Otherwise, it returns FALSE. To get additional error information,
use the GetLastError function.

See Also

Em_openEvent, Em_closeEvent

57
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.31 Em_getEventHandle Function

Function

Gets the handle of the Win32API event object used internally by the API function to receive events of the
EventMemory.

HANDLE Em_getEventHandle(
 //Win32API Event handle, Failure: NULL
 HANDLE hEvent, //Event handle
)

Description

This function gets the handle of the Win32API event object used internally by the Em_receiveEvent function to receive
events of the EventMemory. If the event object of the retrieve handle is a signal, an event arrives in Event port and the
Em_receiveEvent function succeeds in receiving the event without being blocked.

Argument Description
hEvent Event Handle of the EventMemory

Return Value

The function returns the handle of the Win32API event object when it terminates normally. In other cases, it returns
NULL. To get additional error information, use the GetLastError function.

See Also

Em_openEvent, Em_receiveEvent

58
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.32 Em_getMutexHandle Function

Function

This function gets the handle of the Win32API Mutex object used internally by API functions.
HANDLE Em_getMutexHandle (//Mutex handle, Failure: NULL
 HANDLE hMemory, //Memory handle
)

Description

This function gets the handle of the Win32API Mutex object used for exclusive control internally by API functions that
read and write through the memory ports of the EventMemory, and set and clear event conditions. Acquisition of the
rights to use Mutex objects blocks the functions shown below from processing other threads. Note that acquisition of
the rights to use Mutex objects may exert a serious influence on the operation of I/O communication units (service) and
CPU units (service) of FinsGateway:

• Em_openMemory, Em_readMemory, Em_writeMemory, Em_closeMemory,

• Em_setCondition, Em_setWideCondition, Em_clearCondition,

• Em_isWideConditionId, Em_getCondition, Em_getWideCondition,

• Em_getConditionList, Em_getWideConditionList,

• Em_openEvent, Em_closeEvent, Em_sendEvent, Em_setMessageOnArrival,

• Em_setThreadMessageOnArrival, Em_clearMessageOnArrival,

• Em_getLostEventLogs, Em_getMemoryInfo, Em_flushFile,

• Em_getMemoryPortUsage, Em_getEventPortUsage
Argument Description
hMemory Memory Handle of the EventMemory

Return Value

The function returns the handle of the Win32API Mutex object when it terminates normally. In other cases, it returns
NULL. To get additional error information, use the GetLastError function.

See Also

Em_openMemory

59
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.33 Em_getBaseAddress Function

Function

This function gets the starting address of the map of shared memory.
PVOID Em_getBaseAddress (
 //Starting address of the map of shared memory
 HANDLE hMemory, //Memory handle
)

Description

This function gets the starting address at which shared memory is mapped in process address space.

Argument Description
hMemory Memory Handle of the EventMemory

Return Value

The function returns the map address of shared memory when it terminates normally. In other cases, it returns NULL.
To get additional error information, use the GetLastError function.

See Also

Em_openMemory

60
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.34 Em_swapBytes Function

Function

This function swaps the most significant and least-significant bytes in a word data array.
BOOL Em_swapBytes(
 PWORD pwData, //Pointer to a buffer containing swap data
 DWORD dwNumberOfWords, //Size (words) of swap data
)

Description

This function swaps the most significant and least-significant bytes of each two-byte data item in a word data array.

Argument Description
pwData Pointer to the beginning of a word data array to be swapped
dwNumberOfWords Number of words to be swapped. Note that this is not the number of bytes.

Return Value

If the function completes normally, it returns TRUE. Otherwise, it returns FALSE. To get additional error information,
use the GetLastError function.

See Also

Em_readMemory, Em_writeMemory, Em_receiveEvent,

Em_setCondition, Em_getCondition, Em_getConditionList

61
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.35 Em_getLastErrorMessage Function

Function

This function gets an error message corresponding to the error code
int Em_getLastErrorMessage(
 //Number of bytes transferred to the buffer
 DWORD dwErrorCode, //Error code
 LPTSTR lpBuffer, //Pointer to a character-string buffer
 int lNumberOfBytesBuffer,
 //Number of bytes in the buffer
)

Description

This function gets an error message corresponding to the error code retrieved by the GetLastError function.

Argument Description
dwErrorCode Error code retrieved by the GetLastError
lpBuffer Pointer to top of the character string in which to store an error message
lNumberOfBytesBuffer Number of character strings in which to store error messages. If the number of

character strings for error messages exceeds lNumberOfBytesBuffer, the number of
character strings for error messages is set to lNumberOfBytesBuffer-1.

Return Value

Upon normal termination, this function returns the number of bytes transferred to the buffer. In other cases, it returns 0
(zero). To get additional error information, use the GetLastError function.

See Also

GetLastError

62
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.36 Em_flushFile Function

Function

This function flushes data to a file.
BOOL Em_flushFile(//Success: TRUE, Failure: FALSE
 HANDLE hMemory, //Memory handle
)

Description

This function flushes shared memory data to a file. In the event of nonvolatile EventMemory, shared memory data is
flushed in the following case:

• When a process detaches shared memory (when the number of open memory ports becomes 0 or when
a process is terminated)

• Automatic update sequence by Windows NT

• When the Em_flushFile function is called
Since flushing to a file is automatically performed by the operating system, basically the Em_flushFile function need not
be called in normal applications. Use this function only when file flushing is required after data updating. If no data are
updated, calling the Em_flushFile function does not trigger writing to a file.

Frequent file flushing may adversely affect the system's speed.

Argument Description
hMemory Memory handle of the EventMemory. Specify the shared memory area from which

data is to be flushed.

Return Value

If the function completes normally, it returns TRUE. Otherwise, it returns FALSE. To get additional error information,
use the GetLastError function.

See Also

Em_openMemory, Em_writeMemory

63
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

7.37 Em_getBytesBuffer Function

Function

This function gets the number of bytes of the buffer required to access shared memory.
BOOL Em_getBytesBuffer(//Success: TRUE, Failure: FALSE
 pEM_ADDRESS psAddress, //Access address
 PDWORD pdwNumberOfBytesBuffer,
 //Number of bytes of the buffer
)

Description

This function gets the number of bytes of the buffer required to access shared memory for a specified access address.

Argument Description
psAddress Pointer to the EM_ADDRESS structure to specify the address of the EventMemory

to access. Specify the offset, data type, bit/byte position, and the number of data.
pdwNunberOfBytesBuffer Pointer to the variable to store the number of bytes of the buffer required for access.

Return Value

If the function completes normally, it returns TRUE. Otherwise, it returns FALSE. To get additional error information,
use the GetLastError function.

See Also

Em_readMemory, Em_writeMemory

64
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

8 Data Structure

8.1 The EventMemory Address

The EventMemory Address (EM_ADDRESS Structure)
typedef struct TagEmAddress {
 BYTE byTypeOfFactor;
 BYTE byLocateOnWord;
 DWORD dwWordOffset;
 DWORD dwNumberOfFactors;
} EM_ADDRESS, *pEM_ADDRESS;

Structure member Description
byTypeOfFactor Data type. Specify the data types of the data items for read, write, and condition

settings. Bit, byte, word, and double word are represented by EM_BIT_TYPE,
EM_BYTE_TYPE, EM_WORD_TYPE, and EM_DWORD_TYPE, respectively. The
data type used for wide-area condition setting is word only. For the setting of event
conditions, no data (EM_NO_DATA) can be specified to specify a shared memory
area to send data.

byLocateOnWord When the data type is bit or byte, specify the starting bit or byte position in the first
offset used for read, write, or condition setting.
For bit, specify 0 to 15 bits.
For byte, specify most-significant (EM_BYTE_HIGH) or least-significant
(EM_BYTE_LOW) byte.
The bit or byte position has meaning only in the following cases:
Read/write setting when the data type is bit or byte
Condition setting when the data type is byte

dwWordOffset Specify in words the starting offset of an address for which read, write, and condition
settings are to be performed. If the data type is double word in the condition setting,
the offset must be even.

dwNumberOfFactors Specify the number of data elements for which a read, write, or condition setting is
made. For the setting of normal event conditions, be sure to specify 1 as the number
of data.

65
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

8.2 Event conditions

Normal Event Send-evaluation Information (EM_ESTIMATION Structure)
typedef struct TagEmEstimation {
 EM_LOGIC sLogic;
 EM_ACTION sAction[TRANSIT];
 EM_PREVIOUS_RESULT sPreviousResult;
} EM_ESTIMATION, *pEM_ESTIMATION;

Structure member Description
sLogic
sLogicType
sConst

sLogicType: An operation returning a true/false result that is executed during
updating of shared memory. You may set any of the operations shown in Table 3-1
"Operations on Normal Event conditions."
sConst.dwConst1/sConst.dwConst2:
Constant compared for a true/false operation

sAction:
sAction[FtoF]
sAction[FtoT]
sAction[TtoT]
sAction[TtoF]

You may set whether an event is to be sent (ExecuteOnTransit) or not
(NothingOnTransit), for all of the four true/false transition patterns ("false -> false,"
"false -> true," "true -> true," and "true -> false") derived from the operation results
from previous memory updating and those upon current memory updating.

sPreviousResult True/false operation result from previous memory updating.
When acquiring event conditions, true or false is obtained as the previous true/false
operation results.
For setting event conditions, set true, false, or auto as an initial value.
The parameter sPreviousResult includes true and false. Auto can be set so that true
or false is set depending on the value of shared memory according to the settings
for event conditions. This applies only to the setting of event conditions. In the setting
of event conditions, when the operation (Prev*) to compare a previous value is
performed as a true/false evaluation operation and sPreviousResult=Auto is
specified, the previous value for condition setting must be set in sConst.dwConst1 to
obtain the previous true/false result.

Event Destination (EM_DESTINATION Structure)
typedef struct TagEmDestinationOnEvent {
 char lpszEventName[EM_NAME_LENGTH_MAX];
} EM_DESTINATION, *pEM_DESTINATION;

Structure member Description
lpszEventName NULL-terminated character string to indicate the name of an event port to which to

send. Up to 15 characters are allowed. No distinction between uppercase and
lowercase letters is made.

Shared Memory Area Information (EM_AREA Structure)

This information can be used to a specify shared memory area from which data are to be sent as event sent depending
on event conditions or to send shared memory data related to events in event send or receive.

typedef struct TagEmMemoryArea {
 char lpszMemoryName[EM_NAME_LENGTH_MAX];
 EM_ADDRESS sAddress;
} EM_AREA, *pEM_AREA;

66
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

Structure member Description
lpszMemoryName NULL-terminated character string to indicate the name of a shared memory area
sAddress Address of shared memory

Send Event Information (EM_SEND_OBJECT Structure)
typedef struct TagEmObjectSent {
 INT lEventId;
 EM_AREA sSendArea;
} EM_SEND_OBJECT, *pEM_SEND_OBJECT;

Structure member Description
lEventId Event ID
sSendArea Area (memory name plus address) of shared memory sent as event data

Normal Event conditions (EM_CONDITION Structure)

Normal event conditions consist of normal event send-evaluation information, event destination, and send event
information.

typedef struct TagEmCondition {
 EM_ESTIMATION sEstimation;
 EM_DESTINATION sDestination;
 EM_SEND_OBJECT sSendObject;
} EM_CONDITION, *pEM_CONDITION;

Structure member Description
sEstimation Information for determining whether or not to send an event
sDestination Event port to which to send an event
sSendObject Information sent as an event

Wide-area Event conditions (EM_WIDE_CONDITION Structure)

Wide-area event conditions consist of wide-area event send-evaluation information, event destination, and send event
information.

typedef struct TagEmWideCondition {
 EM_WIDE_ESTIMATION sWideEstimation;
 EM_DESTINATION sDestination;
 EM_SEND_OBJECT sSendObject;
} EM_WIDE_CONDITION, *pEM_WIDE_CONDITION;

Structure member Description
sWideEstimation The parameter sWideEstimation contains information about whether an event is

sent when data on a specified shared memory area changes (EventOnChange) or
when data is written to a specified shared memory area (EventOnWrite).

sDestination Event port to which to send an event
SSendObject Information sent as an event

67
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

8.3 Acquired Information

Setting Information Items of Normal Event Conditions (EM_CND_INFO Structure)

The acquired information on set normal event conditions
typedef struct TagEmConditionInfo {
 DWORD dwCndId;
 EM_ADDRESS sAddress;
 EM_CONDITION sCondition;
 BOOLEAN bIsVolatile;
} EM_CND_INFO, *pEM_CND_INFO;

Structure member Description
dwCndId ID of event conditions
sAddress Address at which event conditions are set
sCondition Normal event-occurrence condition
bIsVolatile It indicates volatility or non-volatility of conditions.

Setting Information Items of Wide-area Event Conditions (EM_WIDE_CND_INFO Structure)

Acquired information on set wide-area event conditions
typedef struct TagEmWideConditionInfo {
 DWORD dwCndId;
 EM_ADDRESS sAddress;
 EM_WIDE_CONDITION sWideCondition;
 BOOLEAN bIsVolatile;
} EM_WIDE_CND_INFO, *pEM_WIDE_CND_INFO;

Structure member Description
dwCndId ID of event conditions
sAddress Address at which event conditions are set
sWideCondition Wide-area event-occurrence condition
bIsVolatile It indicates volatility or non-volatility of conditions.

68
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

8.4 Structure Exclusive to the Access Method

AmShmem Shared Memory Access Method Additional Data Write

Specify the pointer to this structure for the pvAccessMethodSpec argument of the Em_writeMemoryEx()
function.

typedef struct _am_shmem_write_entry_tag {
 DWORD version;
 AMSHMEM_WRITE writeEntry;
} AMSHMEM_WRITE_SPEC, *pAMSHMEM_WRITE_SPEC;

typedef struct _am_shmem_write_tag {
 long* plTime;
 PVOID pvAddedData;
 WORD wAddedDataSize;
 AMSHMEM_WRITE_MODE fMode;
} AMSHMEM_WRITE, *pAMSHMEM_WRITE;

Structure Member Description
version Specifies the operating version.
plTime Specifies the time to be saved in the history as a UTC format long

value. If NULL is specified, the system time at data write is
automatically written.

pvAddedData Pointer to the additional write data buffer. If it is not needed, specify
NULL.

wAddedDataSize Number of additional write data bytes.
fMode Specifies the additional data write processing. The following values

can be set:
AMSHMEM_WRITE_MODE_ADDED = Write additional data.
AMSHMEM_WRITE_MODE_HIST = Write additional data history.
AMSHMEM_WRITE_MODE_CLEAR = Clear the additional data and
history of the specified area.

Description

Writes data to EventMemory with additional data. To read the data back with the additional data, use the
Em_readMemoryEx function. To read only the EventMemory data, the Em_readMemory function ca be used.

If AMSHMEM_WRITE_MODE_HIST is specified for fMode, the data before writing is retained with the additional data
in a history. If AMSHMEM_WRITE_MODE_CLEAR is specified, the additional and history data for the area specified in
psAddre is all deleted. No data is written in this case.

69
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

AmShmem Shared Memory Access Method Additional Data Read

Specify the pointer to this structure for the pvAccessMethodSpec argument of the Em_readMemoryEx()
function.

typedef struct _am_shmem_read_entry_tag {
 DWORD version;
 AMSHMEM_READ readEntry;
} AMSHMEM_READ_SPEC, *pAMSHMEM_READ_SPEC;

typedef struct _am_shmem_read_tag {
 short nHistIndex;
 long* plTime;
 PVOID pvAddedDataBuff;
 WORD wAddedDataBuffSize;
 WORD wAddedDataSize;
 WORD wCurHistNum;
 AMSHMEM_READ_MODE fMode;
} AMSHMEM_READ, *pAMSHMEM_READ;

Structure Member Description
version Specifies the operating version.
nHistIndex Specifies the history index for the read data. If 0 is specified, it reads

the current data. If 1 is specified, it reads the data from the first
history level.

plTime Specifies the time of data write (or the time specified at data write)
as a UTC format long value.
If it is not needed, specify NULL.

pvAddedDataBuff Pointer to additional data read buffer.
If it is not needed, specify NULL.

wAddedDataBuffSize Specifies the number of additional data read buffer bytes.
wAddedDataSize Specifies the number of additional data write bytes.
wCurHistNum Specifies the current number of history levels saved.
fMode Specifies the additional data read processing. The following values

can be set:
AMSHMEM_READ_MODE_NORMAL = Read additional and history data.
AMSHMEM_READ_MODE_CLEAR = Clear the additional data and
history of the specified area.

Description

Reads EventMemory data with additional data that was written with the Em_writeMemoryEx function. It cannot read
data that was written with the Em_writeMemory function. If an address with multiple data is specified, the additional data
of the start offset is read.

70
EventMemory Programmer’s Manual

©Copyright OMRON Corporation 1995-98 All Rights Reserved.

AmFinsRemote Remote Memory Access Method Additional Data Read/Write

Specify the pointer to this structure for the pvAccessMethodSpec argument of the Em_readMemoryEx() or
Em_writeMemoryEx() function.

typedef struct _am_fins_write_entry_tag {
 DWORD version;
 AMFINS_ERROR_INFO accessError;
} AMFINS_SPEC, *pAMFINS_SPEC;

typedef struct {
 AMFINS_ERROR_TYPE errorType;
 struct {
 BYTE MRES;
 BYTE SRES;
 } finsResp;
 DWORD apiLastError;
 TCHAR description[MAX_PATH];
} AMFINS_ERROR_INFO, *pAMFINS_ERROR_INFO;;

Structure Member Description
version Specifies the operating version.
errorType Specifies the error type generated.
MRES
SRES

Specifies the FINS response code, if the error type is FINS
communication error.

apiLastError Specifies the GetLastError code if the error type is API error.
description Specifies the error message.

Description

Obtains the error data for read/write errors in EventMemories using the AmFinsRemote access method. FINS
communication errors generated when using the Em_readMemoryEx() or Em_readMemoryEx() functions can be
obtained.

	Introduction
	
	
	
	Memory I/O Communication API
	Remote Memory
	Shared Memory of FINS Communication

	Setup
	Operating Environment
	
	
	Files Required for Application Development
	Files Required for Access Method Development

	EventMemory
	EventMemory Structure
	Shared Memory
	Remote Memory
	Access Method
	Events
	Event Conditions
	Wide-Area Event conditions

	Interface and Data Structure
	
	
	Memory configuration
	Note:
	Addressing
	Examples of Addressing

	Sending or Receiving Data with an Event

	Programming
	Using the EventMemory
	
	
	Specifying the Operating Version

	Reading or Writing the EventMemory Data
	
	
	Opening a Memory Port for Reading or Writing

	Sending or Receiving Events of the EventMemory
	
	
	Opening an Event Port

	Setting or Clearing Event conditions
	
	
	Opening a Memory Port to Set Event conditions

	Receiving Events by Message-driven Type
	
	
	Opening an Event Port to Set Messages to be Posted

	Terminating the EventMemory
	
	
	Closing an Open Port

	Access Methods
	Standard Access Methods
	Shared Memory Access Method
	Remote Memory Access Method

	Creating an Independent Access Method
	Access Method Implementation
	Implementing the init Function
	Implementing the open Process Function
	Implementing the close Process Function
	Implementing the read Process Function
	Implementing the write Process Function
	Implementing the readEx Process Function
	Implementing the writeEx Process Function
	Implementing the Event Condition Evaluation
	EmCondition_OnWriteMemoryNormal
	EmCondition_OnWriteMemoryWide
	EmCondition_sendWideEvents

	Registering the Access Method
	Setting the Registry

	Error Systems
	Error Codes

	API Reference
	Summary
	Em_requestVersion Function
	
	
	Function
	Description
	Return Value
	See Also

	Em_getVersion Function
	
	
	Function
	Description
	EventMemory Version Information (EM_VERSION Structure)
	Return Value
	See Also

	Em_openMemory Function
	
	
	Function
	Description
	Return Value
	See Also

	Em_readMemory Function
	
	
	Function
	Description
	Return Value
	See Also

	Em_writeMemory Function
	
	
	Function
	Description
	Return Value
	See Also

	Em_readMemoryEx Function
	
	
	Function
	Description
	Return Value
	See Also

	Em_writeMemoryEx Function
	
	
	Function
	Description
	Return Value
	See Also

	Em_closeMemory Function
	
	
	Function
	Description
	Return Value
	See Also

	Em_openEvent Function
	
	
	Function
	Description
	Return Value
	See Also

	Em_sendEvent Function
	
	
	Function
	Description
	Return Value
	See Also

	Em_receiveEvent Function
	
	
	Function
	Description
	Return Value
	See Also

	Em_closeEvent Function
	
	
	Function
	Description
	Return Value
	See Also

	Em_setCondition Function
	
	
	Function
	Description
	Return Value
	See Also

	Em_setWideCondition Function
	
	
	Function
	Description
	Return Value
	See Also

	Em_clearCondition Function
	
	
	Function
	Description
	Return Value
	See Also

	Em_judgeCondition Function
	
	
	Function
	Return Value
	Description
	See Also

	Em_ setMessageOnArrival Function
	
	
	Function
	Description
	Return Value
	See Also

	Em_ setThreadMessageOnArrival Function
	
	
	Function
	Description
	Return Value
	See Also

	Em_ clearMessageOnArrival Function
	
	
	Function
	Description
	Return Value
	See Also

	Em_getCondition Function
	
	
	Function
	Description
	Return Value
	See Also

	Em_getWideCondition Function
	
	
	Function
	Description
	Return Value
	See Also

	Em_isWideConditionId Function
	
	
	Function
	Description
	Return Value
	See Also

	Em_getConditionList Function
	
	
	Function
	Description
	Return Value
	See Also

	Em_getWideConditionList Function
	
	
	Function
	Description
	Return Value
	See Also

	Em_getLostEventLogs Function
	
	
	Function
	Description
	Log Information of Lost Event (EM_LOST_EVENT Structure)
	Return Value
	See Also

	Em_getSystemInfo Function
	
	
	Function
	Description
	Information about the Entire System (EM_SYSTEM_INFO Structure)
	Return Value
	See Also

	Em_getMemoryInfo Function
	
	
	Function
	Description
	Information on shared memory (size information and file-path i...
	Return Value
	See Also

	Em_getMemoryPortUsage Function
	
	
	Function
	Description
	Information about memory-port usage status (EM_MEMORY_PORT_USE...
	Return Value
	See Also

	Em_getEventPortUsage Function
	
	
	Function
	Description
	Information about event-port usage status (EM_EVENT_PORT_USED ...
	Return Value
	See Also

	Em_getEventHandle Function
	
	
	Function
	Description
	Return Value
	See Also

	Em_getMutexHandle Function
	
	
	Function
	Description
	Return Value
	See Also

	Em_getBaseAddress Function
	
	
	Function
	Description
	Return Value
	See Also

	Em_swapBytes Function
	
	
	Function
	Description
	Return Value
	See Also

	Em_getLastErrorMessage Function
	
	
	Function
	Description
	Return Value
	See Also

	Em_flushFile Function
	
	
	Function
	Description
	Return Value
	See Also

	Em_getBytesBuffer Function
	
	
	Function
	Description
	Return Value
	See Also

	Data Structure
	The EventMemory Address
	
	
	The EventMemory Address (EM_ADDRESS Structure)

	Event conditions
	
	
	Normal Event Send-evaluation Information (EM_ESTIMATION Struct...
	Event Destination (EM_DESTINATION Structure)
	Shared Memory Area Information (EM_AREA Structure)
	Send Event Information (EM_SEND_OBJECT Structure)
	Normal Event conditions (EM_CONDITION Structure)
	Wide-area Event conditions (EM_WIDE_CONDITION Structure)

	Acquired Information
	
	
	Setting Information Items of Normal Event Conditions (EM_CND_I...
	Setting Information Items of Wide-area Event Conditions (EM_WI...

	Structure Exclusive to the Access Method
	
	AmShmem Shared Memory Access Method Additional Data Write
	Description

	AmShmem Shared Memory Access Method Additional Data Read
	Description

	AmFinsRemote Remote Memory Access Method Additional Data Read/W...
	Description

