
 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 1

Functions and Function Blocks in ISaGRAF
for SCM03

This Technical Note contains detailed information on all the Function Blocks available for PLC
programming in the SCM03 controller.

Contents
1. Introduction ...2
2. Functions ..3

2.1 Arithmetic Functions ..4
2.2 Math Functions ..5
2.3 Trigonometric Functions ..10
2.4 Boolean Functions ...11
2.5 Logic Functions ...12
2.6 Comparison Functions...17
2.7 Register Control Functions ..18
2.8 Data Manipulation Functions..20
2.9 Data Conversion Functions..28
2.10 String Management Functions...34
2.11 Array Manipulation Functions ..35
2.12 System Access Functions..36
2.13 Hardware Specific Functions ...37

3. Function Blocks...39
3.1 Boolean Data Manipulation FBs...40
3.2 Counting FBs...49
3.3 Timer FBs..50
3.4 Analog (Integer) Data Manipulation FBs ..57
3.5 Real Data Manipulation FBs ..80
3.6 Signal Generation FBs...106
3.7 Variable Access FBs..115
3.8 Hardware Specific FBs ..117

4. Index ...121

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 2

1. Introduction

This document contains the list of Functions and Function Blocks written for the ISaGRAF softlogic
system installed on the SCM03 board. Before using it, please make sure that the version you have is
the most recent one, otherwise you might miss recently added blocks and changes to previously
written blocks.

This list is intended for use as a reference by PLC programmers writing applications for the
HMIControl systems based on ISaGRAF PLC language interpreter.

Throughout the document, the generic term "Function Block" will be used as a reference to Functions,
Conversion Functions and Function Blocks, as defined in the ISaGRAF User's Manual. This Manual
should also be used as a reference to standard Function Blocks written by CJ International and
delivered as a part of the ISaGRAF package.

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 3

2. Functions

A function has at most one output and no internal memory. Due to this lack of information transfer
between calls, for the same set of inputs, a function will always return the same output value.

Each function belongs to one of the following classes:

• Arithmetic functions
• Math functions
• Trigonometric functions
• Boolean functions
• Logic functions
• Comparison functions
• Register control functions
• Data manipulation functions
• Data conversion functions
• String management functions
• Array manipulation functions
• System access functions
• Hardware specific functions

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 4

2.1 Arithmetic Functions

Standard Arithmetic Functions delivered by CJ International are not described in this document. For
their full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these functions, containing the function name and
short description:

ADD Addition (INTEGERs and REALs, extensible)
SUB Subtraction (INTEGERs and REALs)
MUL Multiplication (INTEGERs and REALs, extensible)
DIV Division (INTEGERs and REALs)

Currently no functions written by EXOR have been added to this group.

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 5

2.2 Math Functions

Standard Math Functions delivered by CJ International are not described in this document. For their
full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these functions, containing the function name and
short description:

ABS Absolute value of a REAL number
EXPT Exponentiation of REAL base by the INTEGER exponent
LOG Logarithm to the base 10 of a REAL number
POW Power Calculation
SQRT Square root of a REAL number
TRUNC Truncation of a REAL number with REAL output

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 6

ABS_A

ABS_A

INT INTinput_value absolute_value

input_value absolute_value

Short description: Absolute analog (integer) value

Description: -

Call parameters: input_value (INT)
Return parameter: absolute_value (INT)
Prototype: absolute := abs_a (value);

Remarks: This is the "analog" equivalent of the standard ABS function.

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 7

EXP_R

EXP_R

REAL

REAL

REAL
base

exponent

result

x
base

exponent

resulty

Short description: Exponentiation: real base, real exponent

Description: -

Call parameters: base (REAL)
exponent (REAL)

Return parameter: result (REAL)
Prototype: result := EXP_R (base, exp);

Remarks: This is an extension of the corresponding standard function which allows
only an integer exponent to be applied to a real base.

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 8

EXP_E

EXP

REAL REALexponent result

e
base

exponent

resultx

Short description: Natural exponential function (base e) with real exponent

Description: -

Call parameters: exponent (REAL)
Return parameter: result (REAL)
Prototype: result := EXP_E (rex);

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 9

LN_E

LN

REAL REALvalue result

ln
base

exponent

result

Short description: Natural logarithm (base e) of a real number

Description: -

Call parameters: value (REAL)
Return parameter: result (REAL)
Prototype: logval := ln_e (rval);

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 10

2.3 Trigonometric Functions

Standard Trigonometric Functions delivered by CJ International are not described in this document.
For their full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these functions, containing the function name and
short description:

ACOS Arc cosine of a REAL number
ASIN Arc sine of a REAL number
ATAN Arc tangent of a REAL number
COS Cosine of a REAL number
SIN Sine of a REAL number
TAN Tangent of a REAL number

Currently no functions written by EXOR have been added to this group.

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 11

2.4 Boolean Functions

Standard Boolean Functions delivered by CJ International are not described in this document. For
their full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these functions, containing the function name and
short description:

AND Boolean AND (extensible)
OR Boolean OR (extensible)
XOR Boolean XOR (extensible)

Currently no functions written by EXOR have been added to this group.

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 12

2.5 Logic Functions

Standard Logic Functions delivered by CJ International are not described in this document. For their
full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these functions, containing the function name and
short description:

AND Analog (INTEGER) bit to bit AND (extensible)
OR Analog (INTEGER) bit to bit OR (extensible)
XOR Analog (INTEGER) bit to bit XOR (extensible)

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 13

BIT

BIT

INT

INT

BOOL
bit_num

input

bit

Short description: Test indicated bit of given integer

Description: If bit_num is less than 0 or greater than 31, bit 0 is tested.

Call parameters: bit_num: Bit number in range 0 to 31 (INT)
input: Integer whose bit is to be tested (INT)

Return parameter: bit: Tested bit (BOOL)
Prototype: tbit := bit (n,int);

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 14

SET

SET

INT

BOOL

INT

INT

bit_num

set_reset

input

output

Short description: Sets or resets indicated bit in an integer

Description: If bit_num is less than 0 or greater than 31, the input will be copied to the
output unchanged.

Call parameters: bit_num: Bit number in range 0 to 31 (INT)
set_reset: New value of the bit (BOOL)
input: Integer whose bit is to be changed (INT)

Return parameter: output: Modified integer (INT)
Prototype: new := set (bitnum,sr,old);

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 15

THRSHLD

THRSHLD

INT

BOOL

BOOL

BOOL

BOOL

thrsh_val

in1

in2

in16

out.

.

.

.

Short description: Threshold element

Description: out is set to TRUE if more than thrsh_val inputs are set to TRUE. thrsh_val
should be in range 1 to 16. If it is not within range, out is set to TRUE.

Call parameters: thrsh_val (INT)
in1 (BOOL)
in2 (BOOL)
....
in16 (BOOL)

Return parameter: out (BOOL)
Prototype: alarm := THRSHLD (maxnum,in1,...,in16);

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 16

PACKBOO

P A C K B O O

B O O L

B O O L

B O O L

IN T

b it0

b it15

packed.

.

.

.

b it1

Short description: Pack 16 boolean variables into one analog variable

Description: Packing bits into a word is sometimes needed to prepare data for
communication with other devices or I/O equipment.

Call parameters: bit0 (BOOL)
……………
bit15 (BOOL)

Return parameter: packed (INT)
Prototype: packed := packboo (b0,b1,b2,…….,b15);

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 17

2.6 Comparison Functions

Standard Comparison Functions delivered by CJ International are not described in this document. For
their full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these functions, containing the function name and
short description:

LT Less than (all data types)
LE Less than or equal (all data types except TMR)
GT Greater than (all data types)
GE Greater than or equal (all data types except TMR)
EQ Equal to (all data types except TMR)
NE Not equal to (all data types except TMR)

Currently no functions written by EXOR have been added to this group.

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 18

2.7 Register Control Functions

Standard Register Control Functions delivered by CJ International are not described in this document.
For their full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these functions, containing the function name and
short description:

ROL Rotate INTEGER left
ROR Rotate INTEGER right
SHL Shift INTEGER left
SHR Shift INTEGER right

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 19

SHIFT

SHIFT

INT

INT

BOOL

INT

input_value

nb_shifts

direction

shifted_value

Short description: Shifts an analog value left or right arithmetically

Description: Input value is copied to the output without change if the number of shifts is
less than or equal to zero.
If the number of shifts is greater than or equal to 32, the result is equal to all
zeros for left shift and either to all zeros or all ones for right shift, depending
on the MSB of the input value.
Shifting is done arithmetically, meaning that:
- when a number is shifted to the left, zeros are filled in at the right end
- when a number is shifted to the right, MSB is copied to the bit right of it.
For right shift direction is FALSE, for left shift direction is TRUE.

Call parameters: input_value (INT)
nb_shifts (INT)
direction (BOOL)

Return parameter: shifted_value (INT)
Prototype: result := shift (ival, nshifts, dir);

Example: input_value: 0100....10101
shifted_value: 00100....1010 (1 shift right with MSB=0)

input_value: 1100....10101
shifted_value: 11100....1010 (1 shift right with MSB=1)

input_value: 10011....0011
shifted_value: 0011....00110 (1 shift left)

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 20

2.8 Data Manipulation Functions

Standard Data Manipulation Functions delivered by CJ International are not described in this
document. For their full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these functions, containing the function name and
short description:

MIN Minimum of INTEGERs (extensible)
MAX Maximum of INTEGERs (extensible)
MOD Modulo (INTEGER division remainder)
MUX4 Multiplexer (4 INTEGER inputs)
MUX8 Multiplexer (8 INTEGER inputs)
ODD Odd parity for na INTEGRER
SEL Binary selector
LIMIT INTEGER limiter
RAND Random INTEGER generator

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 21

MAX_R

MAX_R

REAL

REAL

REAL

second_value

maximum_of_both
first_value

Short description: Maximum of two real values

Description: -

Call parameters: first_value (REAL)
second_value (REAL)

Return parameter: maximum_of_both (REAL)
Prototype: maxval := max_r (val1, val2);

Remarks: This is the "real" equivalent of the standard MAX function. It does not
support an extensible number of inputs.

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 22

MIN_R

MIN_R

REAL

REAL

REAL

second_value

minimum_of_both
first_value

Short description: Minimum of two real values

Description: -

Call parameters: first_value (REAL)
second_value (REAL)

Return parameter: minimum_of_both (REAL)
Prototype: minval := min_r (val1, val2);

Remarks: This is the "real" equivalent of the standard MIN function. It does not support
an extensible number of inputs.

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 23

MUX4_R

MUX4_R

INT

REAL

REAL

REAL

REAL

REAL

selector

value0

value1

value2

value3

result

Short description: Select one of four real values
For any other selector value, result is set to 0.

Call parameters: selector (INT)
value0 (REAL)
value1 (REAL)
value2 (REAL)
value3 (REAL)

Return parameter: result (REAL)
Prototype: result := mux4_r (select, val0, val1, val2, val3);

Remarks: This is the "real" equivalent of the standard MUX4 function. It does not
support an extensible number of inputs.

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 24

MUX8_R

MUX8_R

INT

REAL

REAL

REAL

REAL REAL

selector

value0

value1

value2

value3 result

REAL

REAL

REAL

REAL

value4

value5

value6

value7

Short description: Select one of eight real values

Description: If selector is : 0 then result = value0
1 value1
... ...
7 value7

For any other selector value, result is set to 0.

Call parameters: selector (INT)
value0 (REAL)
value1 (REAL)
... ...
value7 (REAL)

Return parameter: result (REAL)
Prototype: result := mux8_r (select, val0, val1, val2, val3, val4, val5, val6, val7);

Remarks: This is the "real" equivalent of the standard MUX8 function. It does not
support an extensible number of inputs.

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 25

MUX8_B

MUX8_B

INT

BOOL

BOOL

BOOL

BOOL BOOL

selector

value0

value1

value2

value3 result

BOOL

BOOL

BOOL

BOOL

value4

value5

value6

value7

Short description: Select one of eight boolean values

Description: If selector is : 0 then result = value0
1 value1
... ...
7 value7

For any other selector value, result is set to FALSE.

Call parameters: selector (INT)
value0 (BOOL)
value1 (BOOL)
... ...
value7 (BOOL)

Return parameter: result (BOOL)
Prototype: result := mux8_b (select, val0, val1, val2, val3, val4, val5, val6, val7);

Remarks: This is the "boolean" equivalent of the standard MUX8 function. It does not
support an extensible number of inputs.

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 26

SEL_R

SEL_R

BOOL

REAL

REAL

REAL

condition

false_value

true_value

result

Short description: Select one of two real values

Description: If condition = FALSE, then the result is equal to the false_value.
If condition = TRUE, then the result is equal to the true_value.

Call parameters: condition (BOOL)
false_value (REAL)
true_value (REAL)

Return parameter: result (REAL)
Prototype: result := sel_r (selector, value1, value2);

Remarks: This is the "real" equivalent of the standard SEL function. It does not support
 an extensible number of inputs.

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 27

LIMIT_R

LIMIT_R

REAL

REAL

REAL

REAL

MN

IN

MX

Q

MN

IN

MX

Q

Short description: Bounds a real value between a minimum and a maximum

Description: -

Call parameters: MN: minimum value (REAL)
IN: input value (REAL)
MX: maximum value (REAL)

Return parameter: Q: bound value (REAL)
Prototype: bound_value := limit (mini, value, maxi);

Remarks: This is the "real" equivalent of the standard LIMIT function.

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 28

2.9 Data Conversion Functions

Standard Data Conversion Functions delivered by CJ International are not described in this document.
For their full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these functions, containing the function name and
short description:

BOO Convert to BOOLEAN (any input type)
ANA Convert to ANALOG (INTEGER) (any input type)
REAL Convert to REAL (any input type)
TMR Convert to TIMER (any input type)
MSG Convert to MESSAGE (any input type)
ASCII Character to ASCII code
CHAR ASCII code to character

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 29

SCALE_A

SCALE_A

INT

INT

INT

INT

INT

INT

in

inmin

inmax

outmin

outmax

out

Short description: Scaling of analog value

Description: This block scales the input value from range INMIN .. INMAX to the range
OUTMIN .. OUTMAX using the following formula:

 (IN - INMIN) * (OUTMAX - OUTMIN)
OUT = OUTMIN + -------------------------------

INMAX - INMIN

If INMIN >= INMAX or OUTMIN >= OUTMAX the output is set to
OUTMIN.
The IN - INMIN and OUTMAX - OUTMIN expressions MUST fall within
the range -32768 to 32767. If they get out of that range, the OUT output is set
to OUTMIN.

Call parameters: IN: input value (INT)
INMIN: minimum input value (INT)
INMAX: maximum input value (INT)
OUTMIN: output value if IN=INMIN (INT)
OUTMAX: output value if IN=INMAX (INT)

Return parameter: OUT : output value (INT)
Prototype: scaled_value := SCALE_A (inp, imin, imax, omin, omax);

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 30

SCALE_R

SCALE_R

REAL

REAL

REAL

REAL

REAL

REAL

in

inmin

inmax

outmin

outmax

out

Short description: Scaling of real value

Description: This block scales the input value from range INMIN .. INMAX to the range
OUTMIN .. OUTMAX using the following formula:

 IN - INMIN
OUT = OUTMIN + ---------------- * (OUTMAX - OUTMIN)
 INMAX - INMIN

Call parameters: IN: input value (REAL)
INMIN: minimum input value (REAL)
INMAX: maximum input value (REAL)
OUTMIN: output value if IN=INMIN (REAL)
OUTMAX: output value if IN=INMAX (REAL)

Return parameter: OUT : output value (REAL)
Prototype: scaled_value := SCALE_R (inp, imin, imax, omin, omax);

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 31

PT100

PT100

REAL REALin out

Short description: Converts PT100 resistance value to temperature value

Description: The temperature for input value >= 100 ohms is calculated exactly from
formula:

Rt = 100 * (1 + A*t + B*t^2)
The temperature for input value < 100 ohms is approximately calculated from
the formula:

Rt = 100 * (1 + A*t + B*t^2 - 100*C'*t^3)
where A = 3.90802E-3, B = -5.802E-7 and C' = -1.216532358E-11 (C' is the
'corrected' value of C = -4.2735E-12).
Compared with correct formula Rt = 100 * (1 + A*t + B*t^2 + C*(t-
100)*t^3), this formula gives error of maximum +- 0.0524141 Ohm in
temperature range of 0 to -200 degrees Celsius, which produces error of
maximum -0.126668 and +0.122284 degrees Celsius in resistance range 100
to 18.49316 Ohm.

Call parameters: IN: input value in ohms (REAL)
Return parameter: OUT: output value in degrees Celsius (REAL)
Prototype: temp := PT100 (res);

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 32

TRMCPL_J

TRMCPL_J

REAL

REAL

REAL
dV

Tc

out

Short description: Thermocouple linearization/compensation for J type

Description: For conversion from millivolts to degrees Celsius, the standard J-type
thermocouple conversion table is used with supporting points at every 10
degrees Celsius. Between supporting points, linear interpolation is used. We
could not estimate maximum errors that result from this 10-degree spacing of
supporting points since we had neither a table with more dense spacing nor a
polynomial describing the voltage-to-temperature mapping.

Call parameters: dV: Voltage diff. between thermocouple junctions (mV) (REAL)
Tc: Thermocouple cold junction temperature (degrees C) (REAL)

Return parameter: out: Thermocouple hot junction temperature (degrees C) (REAL)
Prototype: temp := TRMCPL_J (delta_v, tcold);

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 33

TRMCPL_K

TRMCPL_K

REAL

REAL

REAL
dV

Tc

out

Short description: Thermocouple linearization/compensation for K type

Description: For conversion from millivolts to degrees Celsius, the standard K-type
thermocouple conversion table is used with supporting points at every 10
degrees Celsius. Between supporting points, linear interpolation is used. We
could not estimate maximum errors that result from this 10-degree spacing of
supporting points since we had neither a table with more dense spacing nor a
polynomial describing the voltage-to-temperature mapping.

Call parameters: dV: Voltage diff. between thermocouple junctions (mV) (REAL)
Tc: Thermocouple cold junction temperature (degrees C) (REAL)

Return parameter: out: Thermocouple hot junction temperature (degrees C) (REAL)
Prototype: temp := TRMCPL_K (delta_v, tcold);

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 34

2.10 String Management Functions

Standard String Management Functions delivered by CJ International are not described in this
document. For their full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these functions, containing the function name and
short description:

DELETE Delete substring
FIND Find substring
REPLACE Replace substring
MLEN String length
INSERT Insert string
LEFT Extract left substring
MID Extract middle substring
RIGHT Extract right substring
CAT String Concatenation
DAY_TIME Time of Day

Currently no functions written by EXOR have been added to this group.

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 35

2.11 Array Manipulation Functions

Standard Array Manipulation Functions delivered by CJ International are not described in this
document. For their full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these functions, containing the function name and
short description:

ARCREATE Create INTEGER array
ARREAD Read INTEGER array element
ARWRITE Write INTEGER array element

Currently no functions written by EXOR have been added to this group.

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 36

2.12 System Access Functions

Standard System Access Functions delivered by CJ International are not described in this document.
For their full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these functions, containing the function name and
short description:

SYSTEM System access
OPERATE Operate I/O Channel

Currently no functions written by EXOR have been added to this group.

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 37

2.13 Hardware Specific Functions

WDRESET

WDRESET

BOOL dummy

Short description: Reset the WatchDog timer.

Description: The watch dog timer will reset the processor if a PLC cycle will exeed 1.6sec
duration. Calling WDRESET inside the program, will restart the timer.
ATTENTION, the use of WDRESET inside program loops can be dangerous.

Call parameters:
Return parameter: dummy

Prototype: dummy := WDRESET ();

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 38

CANONMT

CANONMT

BOOL

INT
BOOL

Enable

Cmd
ExecutingF

NodeId INT

Short description: Send NMT command to a CANopen node

Description: CANopen nodes can be controlled by a master using the NMT protocol. The
master can send NMT commands to cause a change of state in the remote
node.

Call parameters: Enable: enable the function (BOOL)
Cmd: NMT command, can assume the following values: (INT)
1 = START node
2 = STOP node
128 = enter PRE-OPERATIONAL mode
129 = RESET node
130 = RESET COMMUNICATION
NodeID: node number from 1 to 127 (INT)
0 will send command to ALL nodes

Return parameter: ExecutingF: TRUE while executing (BOOL)

Prototype: Exec := CANONMT (TRUE, command, node);

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 39

3. Function Blocks

Function blocks can have more than one output and can contain internal memory that lets certain
data be preseved from one execution of the block to another. Therefore, a function block may
return different values in two invocations with the same input parameters.

Each function block belongs to one of the following classes:

1. Boolean data manipulation FBs
2. Counting FBs
3. Timer FBs
4. Analog (integer) data manipulation FBs
5. Real data manipulation FBs
6. Signal generation FBs
7. Variable interface FBs
8. Hardware Specific FBs

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 40

3.1 Boolean Data Manipulation FBs

Standard Boolean Data Manipulation Function Blocks delivered by CJ International are not described
in this document. For their full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these function blocks, containing the function block
name and short description::

SR Set dominant bistable
RS Reset dominant bistable
R_TRIG Rising edge detection
F_TRIG Falling edge detection
SEMA Semaphore

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 41

DEMUX_B

DEMUX_B

BOOL

BOOL

BOOL

INT

BOOL

BOOLset

load

reset

address

input

out1

BOOL out2

BOOL out16

BOOL aerr

.

.

Short description: Boolean demultiplexer with memory

Description: RESET overrides SET and LOAD inputs.
SET overrides LOAD input.
If ADDRESS is 0, all outputs are set to 0, just as if RESET input was active.
See also DEMUX_R, DEMUX_A and DEMUX_T blocks.

Call parameters: set if TRUE, new input value is loaded in each cycle (BOOL)
load new input value is loaded on rising edge (BOOL)
reset if TRUE, all outputs are set to 0 (BOOL)
address address of output (range 1 to 16) (INT)
input input value to be demultiplexed (BOOL)

Return params: out1...out16 outputs (BOOL)
aerr address error: set if address <0 or >16 (BOOL)

Prototype: DEMUX_B (fs, fl, fr, addr, in);
o1 := DEMUX_B.out1;
err := DEMUX_B.aerr;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 42

SHIFT_B

SHIFT_B

INT

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

size

fwd_bwd

clk

reset

fwd_in

bwd_in

QB

BOOL QF

fwd_in

QB QF

bwd_in

Short description: Bidirectional boolean shift register of programmable length

Description: At each end of the shift register, there is one input and one output. When a forward
shift is executed, the value applied to the fwd_in input appears immediately at the QB
output. Likewise, when a backward shift is executed, the value applied to the bwd_in
input appears immediately at the QF output.
Initially (after power-up) and during reset, the whole register contains only zeros.
If a number less than 2 is applied to the size input, the shift register will have the
length of 2. If a number greater than 256 is applied to the size input, the shift register
will have the length of 256. The length of the register cannot be changed
dynamically; value applied to the size input is read only in first cycle after power-up
or reset.
See also SHIFT_R, SHIFT_A and SHIFT_T function blocks.

Call parameters: size: register length (range 2...256) (INT)
fwd_bwd: shift direction: forwards (TRUE)/backwards (BOOL)
clk: shifts one place on rising edge (BOOL)
reset: when TRUE, clears register to 0 (BOOL)
fwd_in: forward shift data input (BOOL)
bwd_in: backward shift data input (BOOL)

Return params: QF: forward shift data output (BOOL)
QB: backward shift data output (BOOL)

Prototype: SHIFT_B (100, TRUE, FALSE, FALSE, TRUE, TRUE);
outfwd := SHIFT_B.QF;
outbwd := SHIFT_B.QB;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 43

SHIFTP_B

SHIFTP_B

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

load

fwd_bwd

clk

reset

in1

in2

BOOL q1

BOOL

BOOL

in7

in8

.

 .
BOOL q8

BOOL q7

 .

 .

q2

q8q7q6q5q4q3q2q1

in8

in7in6in5in4in3in2

in1

Short description: Bidirectional boolean shift register with 8 parallel inputs and outputs

Description: Except that it is of fixed length and has parallel inputs and outputs, the
functioning of this block is similar to that of SHIFT_B block.
Initially (after power-up) and during reset, the whole register contains only
zeros.
Inputs in2...in7 are parallel inputs only, while inputs in1 and in8 are both
parallel and serial inputs.
See also SHIFTP_R, SHIFTP_A and SHIFTP_T function blocks.

Call parameters: load: on rising edge, register is loaded from parallel inputs (BOOL)
fwd_bwd: shift direction: forwards (TRUE)/backwards (BOOL)
clk: shifts one place on rising edge (BOOL)
reset: when TRUE, clears register to 0 (BOOL)
in1: parallel input 1 and forward shift data input (BOOL)
in2: parallel input 2 (BOOL)
...
in7: parallel input 7 (BOOL)
in8: parallel input 8 and backward shift data input (BOOL)

Return params: q1: output 1 (BOOL)
...
q8: output 8 (BOOL)

Prototype: SHIFTP_B (FALSE, TRUE, TRUE, FALSE, TRUE, FALSE, ... TRUE,
TRUE);
o1 := SHIFTP_B.q1;
...
o8 := SHIFTP_B.q8;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 44

SWITCH_B

SWITCH_B

BOOL

BOOL

BOOL

BOOL

BOOL

act

a1

a2

a7

q1

BOOLa8 BOOL q8

.

.

 .

 .

BOOL q2

BOOL q7

act

a1

a8

q1

FALSE

q8

.

.

.

.

.

.

Short description: 8 single switches for analog (integer) data

Description: -

Call parameters: act: TRUE: inputs connected to outputs (BOOL)
FALSE: FALSE output on all outputs

a1: input to switch 1 (BOOL)
...
a8: input to switch 8 (BOOL)

Return params: q1: output of switch 1 (BOOL)
...
q8: output of switch 8 (BOOL)

Prototype: SWITCH_B (TRUE, TRUE, FALSE, ... TRUE, TRUE);
out1 := SWITCH_B.q1;
...
out8 := SWITCH_B.q8;

Remarks: a) See also SWITCH_A, SWITCH_R and SWITCH_T function blocks.

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 45

SWITCC_B

SWITCC_B

BOOL

BOOL

BOOL

BOOL

BOOL

act

a1

b1

a8

q1

BOOLb8

BOOL q8

.

.

 .

 .

 .

act

a1

b1

a8

q1

b8

q8

.

.

.

.

.

Short description: 8 changeover switches for boolean data

Description: -

Call parameters: act: TRUE: A inputs connected to outputs (BOOL)
FALSE: B inputs connected to outputs

a1: switch 1, input A (BOOL)
b1: switch 1, input B (BOOL)
...
a8: switch 8, input A (BOOL)
b8: switch 8, input B (BOOL)

Return params: q1: output of switch 1 (BOOL)
...
q8: output of switch 8 (BOOL)

Prototype: SWITCC_B (TRUE, FALSE, TRUE, FALSE, FALSE, ... FALSE, FALSE);
out1 := SWITCC_B.q1;
...
out8 := SWITCC_B.q8;

Remarks: a) See also SWITCH_R, SWITCH_A and SWITCH_T function blocks.

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 46

EN_CH

EN_CH

BOOL

BOOL
BOOL

EN1

IN1
Q

BOOL

BOOL

EN2

IN2

Short description: Set output to last changed input

Description: Whenever any of IN1, IN2 inputs is changed, with its corresponding enable
input (EN1, EN2) set to TRUE, output is set to the new (changed) state of
that input.
If both inputs are changed at the same time (in the same PLC cycle) and both
are enabled, the new state of the input IN1 will be output.
State changes on a disabled input (ENx = FALSE) cannot change the output.
This block is used where one boolean value (Q) should be changed from two
or more sources. If more than two sources exist, blocks of this type can be
cascaded.

Call parameters: EN1: enable input1 (BOOL)
IN1: input1 (BOOL)
EN2: enable input2 (BOOL)
IN2: input2 (BOOL)

Return params: Q: output (BOOL)
Prototype: EN_CH (en1, in1, en2, in2);

out := EN_CH.Q;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 47

LATCH

LATCH

BOOL

BOOL

BOOL
EN

IN

OUT

Short description: Binary latch

Description: If enable input EN is TRUE, output follows input IN, otherwise output
remains unchanged. If EN is FALSE at power-up, the initial value of OUT
will be FALSE.

Call parameters: EN: enable input (BOOL)
IN: input (BOOL)

Return parameter: OUT: output (BOOL)

Prototype: LATCH (en, in);
out := LATCH.OUT;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 48

UNPACKBOO

U N P A C K B O O

B O O L

B O O L

B O O L

IN T

b it0

b it15

packed

.

.

.

.

b it1

Short description: Unpack a word into bits

Description: Unpacking a word in bits is sometimes needed when managing data coming
from communication with other devices or I/O equipments.

Call parameters: word (INT)

Return parameter: bit0 (BOOL)
……………
bit15 (BOOL)

Prototype: unpackboo (word);
b0 := unpackboo.bit0;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 49

3.2 Counting FBs

Standard Counting Function Blocks delivered by CJ International are not described in this document.
For their full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these function blocks, containing the function block
name and short description::

CTU Up counter
CTD Down counter
CTUD Up-down counter

Currently no functions written by EXOR have been added to this group.

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 50

3.3 Timer FBs

Standard Timer Function Blocks delivered by CJ International are not described in this document. For
their full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these function blocks, containing the function block
name and short description:

TON On-delay timing
TOFF Off-delay timing
TP Pulse timing

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 51

DEMUX_T

DEMUX_T

BOOL

BOOL

BOOL

INT

TMR

TMRset

load

reset

address

input

out1

TMR out2

TMR out16

BOOL aerr

.

.

Short description: Timer demultiplexer with memory

Description: RESET overrides SET and LOAD inputs.
SET overrides LOAD input.
If ADDRESS is 0, all outputs are set to 0, just as if RESET input was active.
See also DEMUX_A, DEMUX_B and DEMUX_R blocks.

Call parameters: set: if TRUE, new input value is loaded in each cycle (BOOL)
Load: new input value is loaded on rising edge (BOOL)
seset: if TRUE, all outputs are set to 0 (BOOL)
address: address of output (range 1 to 16) (INT)
input: input value to be demultiplexed (TMR)

Return params: out1...out16: outputs (TMR)
aerr address error: set if address <0 or >16 (BOOL)

Prototype: DEMUX_T (fs, fl, fr, addr, in);
o1 := DEMUX_T.out1;
err := DEMUX_T.aerr;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 52

SHIFT_T

SHIFT_T

INT

BOOL

BOOL

BOOL

TMR

TMR

TMR

size

fwd_bwd

clk

reset

fwd_in

bwd_in

QB

TMR QF

fwd_in

QB QF

bwd_in

Short description: Bidirectional timer shift register of programmable length

Description: At each end of the shift register, there is one input and one output. When a
forward shift is executed, the value applied to the fwd_in input appears
immediately at the QB output. Likewise, when a backward shift is executed,
the value applied to the bwd_in input appears immediately at the QF output.
Initially (after power-up) and during reset, the whole register contains only
zeros.
If a number less than 2 is applied to the size input, the shift register will have
the length of 2. If a number greater than 256 is applied to the size input, the
shift register will have the length of 256. The length of the register cannot be
changed dynamically; value applied to the size input is read only in first cycle
after power-up or reset.
See also SHIFT_A, SHIFT_B and SHIFT_R function blocks.

Call parameters: size: register length (range 2...256) (INT)
fwd_bwd: shift direction: forwards (TRUE)/backwards (BOOL)
clk: shifts one place on rising edge (BOOL)
reset: when TRUE, clears register to 0 (BOOL)
fwd_in: forward shift data input (TMR)
bwd_in: backward shift data input (TMR)

Return params: QF: forward shift data output (TMR)
QB: backward shift data output (TMR)

Prototype: SHIFT_T (100, TRUE, FALSE, FALSE, 4m30s, 0s50);
outfwd := SHIFT_T.QF;
outbwd := SHIFT_T.QB;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 53

SHIFTP_T

SHIFTP_T

BOOL

BOOL

BOOL

BOOL

TMR

TMR

TMR

load

fwd_bwd

clk

reset

in1

in2

TMR q1

TMR

TMR

in7

in8

.

 .
TMR q8

TMR q7

 .

 .

q2

q8q7q6q5q4q3q2q1

in8

in7in6in5in4in3in2

in1

Short description: Bidirectional timer shift register with 8 parallel inputs and outputs

Description: Except that it is of fixed length and has parallel inputs and outputs, the
functioning of this block is similar to that of SHIFT_T block.
Initially (after power-up) and during reset, the whole register contains only
zeros.
Inputs in2...in7 are parallel inputs only, while inputs in1 and in8 are both
parallel and serial inputs.
See also SHIFTP_A, SHIFTP_B and SHIFTP_R function blocks.

Call parameters: load: on rising edge, register is loaded from parallel inputs (BOOL)
fwd_bwd: shift direction: forwards (TRUE)/backwards (BOOL)
clk: shifts one place on rising edge (BOOL)
reset: when TRUE, clears register to 0 (BOOL)
in1: parallel input 1 and forward shift data input (TMR)
in2: parallel input 2 (TMR)
...
in7: parallel input 7 (TMR)
in8: parallel input 8 and backward shift data input (TMR)

Return params: q1: output 1 (TMR)
...
q8: output 8 (TMR)

Prototype: SHIFTP_T (FALSE, TRUE, TRUE, FALSE, 2s, 15h30m, ... 5m20s,
120ms);
o1 := SHIFTP_T.q1;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 54

...
o8 := SHIFTP_T.q8;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 55

SWITCH_T

SWITCH_T

BOOL

TMR

TMR

TMR

TMR

act

a1

a2

a7

q1

TMRa8 TMR q8

.

.

 .

 .

TMR q2

TMR q7

act

a1

a8

q1

0

q8

.

.

.

.

.

.

Short description: 8 single switches for timer data

Description: -

Call parameters: act: TRUE: inputs connected to outputs (BOOL)
FALSE: zero output on all outputs

a1: input to switch 1 (TMR)
...
a8: input to switch 8 (TMR)

Return params: q1: output of switch 1 (TMR)
...
q8: output of switch 8 (TMR)

Prototype: SWITCH_T (TRUE, 1s, 22m, 17h, 4m30s, 5s12, 90ms, 1s20, 1h20m);
out1 := SWITCH_T.q1;
...
out8 := SWITCH_T.q8;

Remarks: a) See also SWITCH_A, SWITCH_B and SWITCH_R function blocks.

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 56

SWITCC_T

SWITCC_T

BOOL

TMR

TMR

TMR

TMR

act

a1

b1

a8

q1

TMRb8

TMR q8

.

.

 .

 .

 .

act

a1

b1

a8

q1

b8

q8

.

.

.

.

.

Short description: 8 changeover switches for timer data

Description: -

Call parameters: act: TRUE: A inputs connected to outputs (BOOL)
FALSE: B inputs connected to outputs
a1: switch 1, input A (TMR)
b1: switch 1, input B (TMR)
...
a8: switch 8, input A (TMR)
b8: switch 8, input B (TMR)

Return params: q1: output of switch 1 (TMR)
...
q8: output of switch 8 (TMR)

Prototype: SWITCC_T (TRUE, 1s, 220ms, 17h, 4m30s, ... 100ms, 0s20);
out1 := SWITCC_T.q1;
...
out8 := SWITCC_T.q8;

Remarks: a) See also SWITCH_A, SWITCH_B and SWITCH_R function blocks.

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 57

3.4 Analog (Integer) Data Manipulation FBs

Standard Analog (INTEGER) Data Manipulation Function Blocks delivered by CJ International are
not described in this document. For their full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these function blocks, containing the function block
name and short description::

CMP Full comparison
STACKINT Stack of INTEGERs

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 58

AVRG_A

AVRG_A

BOOL

INT

INT

INT

RUN

XIN

N

XOUT

Short description: Running average over N integer (analog) samples

Description: This is the "analog" equivalent of the standard AVERAGE function block.
Except for changed input and output types, its functioning is exactly the same
as the original block. For further details, please refer to the description of the
original block in the ISaGRAF User's Manual.

Call parameters: RUN: enable command, reset average if FALSE (BOOL)
XIN: input sample (INT)
N: number of samples for averaging (INT)

Return params: XOUT: running average (INT)
Prototype: AVRG_A (average_enable, sample_value, 4);

clean_value := AVRG_A.XOUT;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 59

DERIV_A

DERIV_A

BOOL

INT

TMR

INT

RUN

XIN

CYCLE

XOUT

dxRUN

XIN XOUT

CYCLE dt

Short description: Differentiation with respect to time

Description: This is the "analog" equivalent of the standard DERIVATE function block.
Except for changed input and output types, its functioning is exactly the same
as the original block.
Derivation is output in units of 1/10ms, i.e. the output numerical quantity
represents the change of the input signal in the interval of 10ms.
The value applied to the CYCLE input does not influence the output value,
but is only used to execute calculation and output updating not more often
than it states.
For further details, please refer to the description of the original block in the
ISaGRAF User's Manual.

Call parameters: RUN: enable command, reset output if FALSE (BOOL)
 XIN: sample of the function to be differentiated (INT)
 CYCLE: sampling period (TMR)
Return params: XOUT: output = differentiated input (INT)
Prototype: DERIV_A (TRUE, temp_5, period_5);

speed_5 := DERIV_A.XOUT;

Example: If the rate of change of input is 200 units per second (200/s), the value that
will be output is 2 (200/s = 200/(100*10ms) = (200/100)*(1/10ms) =
2*(1/10ms)).
ATTENTION! For an input with rate of change less than 100 units per
second (100/s), output will be 0 (99/s = 99/(100*10ms) = (99/100)*(1/10ms)
= INTEGER ARITHMETIC!! = 0*(1/10ms) = 0).

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 60

HYSTER_A

HYSTER_A

INT

INT

INT

BOOL

XIN1

XIN2

EPS

Q

XIN1

XIN2
Q

EPS

TRUE

FALSE

Q

XIN1XIN2

EPS

Short description: Boolean hysteresis on the difference of analog inputs

Description: This is the "analog" equivalent of the standard HYSTER function block.
Except for changed input and output types, its functioning is exactly the same
as the original block. For details, please refer to the above drawing and to the
description of the original block in the ISaGRAF User's Manual.

Call parameters: XIN1: input signal (INT)
 XIN2: hysteresis centerpoint (INT)
 EPS: hysteresis halfwidth (INT)

Return params: Q: output (BOOL)
Prototype: HYSTER_A (pressure, press_limit, 21);

too_high := HYSTER_A.Q;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 61

DEADB_A

DEADB_A

INT

INT INT

in

set_pt out

INTbw

DB

in

out

bw

set_pt

Short description: Deadband for analog (integer) input

Description: The deadband of total width 2∗bw is positioned symetrically around the
center point. If the value of "in" input falls within the deadband, "set_pt"
value is output, otherwise "in" value is output.
See also DEADB_R and DEADBH_A function blocks.

Call parameters: in: input signal (INT)
set_pt: center point (INT)
bw: halfwidth of deadband (INT)

Return params: out: output signal (INT)

Prototype: DEADB_A (input, 10, 2);
out := DEADB_A.out;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 62

DEADBH_A

DEADBH_A

INT

INT

INT

INT

INT

in

set_pt

eps

bw

out

in

set_pt

out
eps

bw
eps

bw

Short description: Deadband with hysteresis for analog (integer) input

Description: To reduce the frequency of switching operations, it is usual to provide final
control elements with a hysteresis or differential gap. This hysteresis prevents
minor deviations of input signal from the center point from being forwarded
to the output. If the system deviation exceeds the switching differential, the
input value is passed unchanged to the output.
The deadband of width 2∗bw is positioned symetrically around the center
point and flanked on both sides by hysteresis regions of width eps.
Width of deadband bw is measured from the origin of the coordinate system
to the center of any hysteresis region.

Call parameters: in: input signal (INT)
set_pt: center point (INT)
eps: width of hysteresis (INT)
bw: width of deadband (INT)

Return params: out: output signal (INT)

Prototype: DEADBH_A (input, cpt, hyst, bw);
out := DEADBH_A.out;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 63

DELAY_A

DELAY_A

INT

TMR

INT
val

delay

delayed_val

Short description: Time delay of analog value

Description: If delay is smaller than the duration of one program execution cycle,
DELAY_A block just passes the unmodified input value to the output. The
maximum delay value is limited only by ISaGRAF limit on variables of TMR
type, i.e. it is 24 hours.
If the specified delay is shorter than 100 cycles, val measured in each cycle is
put into FIFO and is output after the delay elapses.
However, if this is not the case, max. delayed_val update period is delay/100,
otherwise the FIFO through which the input values pass before being output
would be too long.
Inside one update period, the values of val input in all cycles belonging to it
are averaged to produce the value that is eventually put into FIFO and output
later.
Averaging is correct for up to 10 cycles per update period, but for longer
update periods, certain values are weighted with varying weights in order to
keep the needed memory space limited.

Call parameters: val: value to delay (INT)
delay: delay time (TMR)

Return params: delayed_val: delayed value (INT)
Prototype: DELAY_A (value, deltat);

d_val := DELAY_A.delayed_val

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 64

DEMUX_A

DEMUX_A

BOOL

BOOL

BOOL

INT

INT

INTset

load

reset

address

input

out1

INT out2

INT out16

BOOL aerr

.

.

Short description: Integer demultiplexer with memory

Description: RESET overrides SET and LOAD inputs.
SET overrides LOAD input.
If ADDRESS is 0, all outputs are set to 0, just as if RESET input was active.
See also DEMUX_R, DEMUX_B and DEMUX_T blocks.

Call parameters: set if TRUE, new input value is loaded in each cycle (BOOL)
load new input value is loaded on rising edge (BOOL)
reset if TRUE, all outputs are set to 0 (BOOL)
address address of output (range 1 to 16) (INT)
input input value to be demultiplexed (INT)

Return params: out1...out16 outputs (INT)
aerr address error: set if address <0 or >16 (BOOL)

Prototype: DEMUX_A (fs, fl, fr, addr, in);
o1 := DEMUX_A.out1;
err := DEMUX_A.aerr;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 65

DIVIDE_A

DIVIDE

INT

INT

INTdividend

divisor

quotient

INT modulo

Short description: Full integer divider (quotient and remainder)

Description: Returns -1 on both outputs if divisor is less than or equal to 0.

Call parameters: dividend: number to be divided (INT)
divisor: number to divide with (INT)

Return params: quotient: result of division (INT)
modulo: remainder value (INT)

Prototype: DIVIDE_A (dend, sor);
res := DIVIDE_A.quotient;
rem := DIVIDE_A.modulo;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 66

DSEL_A

DSEL_A

BOOL

BOOL

INT

INT

INT

INT

sel_in

sel_out

in_1

in_2

default_out

out_2

INT out_1

sel_in

sel_out

in_1

in_2

default_out

out_1

out_2

Short description: Double independently operated analog switch with two inputs

Description: Please refer to the above relay diagram which should be clear enough.

Call parameters: sel_in: Selects in_1 (FALSE) or in_2 (TRUE) (BOOL)
sel_out:Selects out_1 (FALSE) or out_2 (TRUE) (BOOL)
in_1: Analog input 1 (INT)
in_2: Analog input 2 (INT)
default_out: Value to be placed at non-selected output (INT)

Return params: out_1: Analog output 1 (INT)
out_2: Analog output 2 (INT)

Prototype: DSEL_A (selin, selout, inval1, inval2, defout);
outval1 := DSEL_A.out_1;
outval2 := DSEL_A.out_2;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 67

LIM_AL_A

LIM_AL_A

INT

INT

INT

INT

BOOL

H

X

L

EPS

QL

BOOL Q

BOOL QH

Short description: Alarm detection for an analog (integer) variable

Description: -

Call parameters: H: High limit (INT)
X: Variable value (INT)
L: Lower limit (INT)
EPS: Hysteresis around limits(INT)

Return params: QH: High alarm (BOOL)
Q: Any alarm (QH or QL) (BOOL)
QL: Low alarm (BOOL)

Prototype: LIM_AL_A (215.0, temp_5, 120.5, 30);
hot := LIM_ALRM.QH;
alarm := LIM_ALRM.Q;
cold := LIM_ALRM.QL;

Remarks: a) This is the "analog" equivalent of the standard LIM_ALRM function
block.

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 68

LIMMON_A

LIMMON_A

INT

INT

INT

INT

INT

BOOL

INPUT

HH_Limit

H_Limit

L_Limit

LL_Limit

L

BOOL LL

BOOL H

BOOL HH

Short description: Extended limit monitor of integer value

Description: This function block implements the standard industrial 4-level limit monitor,
supporting high alarm (HH), high prealarm (H), low prealarm (L) and low
alarm (LL) levels. The 4 outputs indicate in which of the 5 regions the input
value currently is:
above HH HH output TRUE
between HH and H H output TRUE
between L and H (inside "normal" band)all outputs FALSE
between LL and L L output TRUE
below LL LL output TRUE
At most one of the outputs will be TRUE at any time, except when the limit
values are not in increasing order, i.e. when the inequality
LL_Limit <= L_Limit < H_Limit <= HH_Limit
is not satisfied, in which case all 4 outputs will be set to TRUE.

Call parameters: INPUT (INT)
HH_Limit (INT)
H_Limit (INT)
L_Limit (INT)
LL_Limit (INT)

Return params: HH (BOOL)
H (BOOL)
L (BOOL)
LL (BOOL)

Prototype: LIMMON_A (in, hh_l, h_l, l_l, ll_l);
hh_alarm := LIMMON_A.HH;
h_alarm := LIMMON_A.H;
l_alarm := LIMMON_A.L;
ll_alarm := LIMMON_A.LL;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 69

MAJOR_A

MAJOR_A

INT

INT

INT

INT

INT

BOOL

dev

in1

in2

in3

in4

err

INT out

Short description: Majority selector for integer inputs

Description: The majority selector calculates the mean value of all inputs. If exactly one
input differs from the calculated mean value by more than dev, mean value is
calculated once more, but that input is excluded from the calculation.
If more than one input deviates by more than dev, the mean value of all of the
input values is calculated and the output err is set.
See also MAJOR_R function block.

Call parameters: dev: Max. permissible deviation between (INT)
any input and the calculated mean value
in1: Input 1 (INT)
...
in4: Input 4 (INT)

Return params: out: Mean value of inputs not deviating by (INT)
more than dev from itself
err: set when majority selection is impossible (BOOL)

Prototype: MAJOR_A (deviation, i1, i2, i3, i4);
error := MAJOR_A.err;
mean := MAJOR_A.out;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 70

PID_A

PID_A

BOOL

INT

INT

INT

INT

INT

INT

AUTO

PV

SP

X0

KP

TR

XOUT

INTTD

TMRCYCLE

INTXMIN

INTXMAX

Short description: PID Controller with analog (integer) inputs and output

Description: This is the "analog" version of the standard PID_REX function block: all
inputs and the output which are of type REAL in the original block are here
of type ANALOG (INTEGER).

Call parameters: AUTO: Auto (TRUE)/Manual (FALSE) mode (BOOL)
PV: Process variable (X) (INT)
SP: Setpoint (W) (INT)
X0: Value to be output in Manual mode (INT)
KP: Proportional gain (INT)
TR: Integral time (INT)
TD: Derivative time (INT)
CYCLE : Calculation and output updating period (TMR)
XMIN: Min. value of output quantity (Y) (INT)
XMAX: Max. value of output quantity (Y) (INT)

Return params: XOUT: Output quantity (Y) (INT)

Prototype: PID_A (TRUE, temp_5, 1200, manual_temp, kp, tr, td, 0s40, 0, 10000);
heater := PID_A.XOUT;

Remarks: Algorithm implemented in this block is the so-called "independent" PID
algorithm. Kp multiplies all three terms (proportional, integral and derivative)
in the following way:

error = SP - PV
XOUT = KP * (error + (1/TR)*integral(error) + TD*derivative(error))

For this type of algorithm, optimum KP, TR, TD parameters according to the Ziegler-Nichols method
are:

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 71

for P controller: KP = 0.5 *KPosc
for PI controller: KP = 0.45*KPosc TR = 0.83*Tosc
for PID controller: KP = 0.6 *KPosc TR = 0.5 *Tosc TD = 0.125*Tosc

where KPosc is that KP which causes constant-amplitude closed-loop oscillations with only
P-action enabled and Tosc is the period of these oscillations.

WARNINGS FOR THE USER:

With respect to PID algorithm using real (floating-point) arithmetic, PID algorithm using integer
arithmetic suffers from the following additional problems:

1. Overflow

Overflow is a major problem in integer PID algorithms using 16-bit variables for internal data storage.
However, since here variables are of the type "signed long integer", which are 32-bit entities in C-
compilers for 80x86 processors, the problem is much less pronounced.

Having the range of -2 147 483 648 to +2 147 483 647, with reasonable values for process value (X),
set-point (W) and output value (Y), as well as proportional gain (Kp), integral (Ti) and derivative (Td)
times, the probability of exceeding the "signed long" range is extremely low. For this reason, no range
checking is done, which makes the algorithm faster.

2. Rounding noise

Integer arithmetic rounds off all division results. Obviously, accuracy is lost in this way. Divisions
cannot be avoided, but it is important to make sure that:
a) the ratio between the integer division result and the truncated decimal part is as large as

possible and that
b) rounding-off errors are not cumulative.

The problem of keeping the dividends much larger than divisors is in stand-alone PID controllers
usually solved by appropriate scaling (normalization). This is easily done, since, although X, W and Y
can each be expressed in its own physical units, they are usually represented by already normalized
input or output signals (0-10V, 0-20mA, 4-20mA), transferred into digital domain also as normalized
quantities (0-4095 for 12-bit A/D converters).

OUR CASE IS DIFFERENT. Our PID is a function block having numerical inputs and outputs for
which no fixed range is defined in advance. For this reason, no reasonable normalization can be done
and this step remains AT THE RESPONSIBILITY OF THE BLOCK USER.

In extreme cases, rounding errors can make an otherwise stable system become unstable. In less
critical cases, permanent small oscillations of the output value (Y) in the stable state result. They can
adversely affect the actuator, if not filtered out by an external dead-band block.

To avoid problems of this kind and worse, it is recommended to choose Y range to be at least 1-1000
and to scale X and W to values greater than 100 before applying them to the inputs of the analog PID
block.

3. Input parameters resolution

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 72

Since input parameters of an analog PID are also integer quantities, they too are subject to loss od
resolution.

For example, Kp is often in the range 1-10. If Kp were input without scaling, with Kp = 1,5 we could
only choose whether to apply 1 or 2 to the Kp input, with Kp = 1 probably giving too slow rise-time
and Kp = 2 too high and too broad an overshoot.

Ti and Td are subject to similar resolution-related problems.

Standard "real" PID block supplied by CJ International already uses Ti and Td in 10ms units, which is
equal to the basic resolution of the whole system. Therefore, 100 is applied to Ti input to indicate Ti =
1 second. This approach was not changed; on "analog" PID, the same units are used, so that no
problems with Td and Ti resolution emerge.

Kp, however, was subject to input scaling: what is input is NOT the actual value od Kp, but the value
Kp*100. Therefore, for Kp = 1,5, the value applied to the Kp input should be 150.

This is consistent with Ti and Td and helps improve resolution in the most useful range of Kp values.

See also PID_REX function block.

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 73

PLAUS_A

PLAUS_A

INT

INT

INT
in

diff

out

Short description: Plausibility checking block for analog (integer) input

Description: The block compares the difference between two succesive values sampled on
the "in" input with the value on the "diff" input. If the difference of
successive samples is less than "diff", the actual "in" value is forwarded to
the output.
If the difference exceeds "diff", the value to be output is calculated as the
mean value of "in" samples in the 3 preceding cycles. In the cycle following
this one, "in" is compared not to the preceding value, but with the last
plausible value, i.e. one before it.
If the difference in the cycle following the cycle in which the mean value was
output is still above "diff", this is taken as the proof that both this and
previous "in" values are plausible and the "in" value is normally forwarded to
the output.

Call parameters: in: input (INT)
diff: allowed difference (INT)

Return params: out: output (INT)

Prototype: PLAUS_A (input, difference);
o := PLAUS_A.out;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 74

SHIFT_A

SHIFT_A

INT

BOOL

BOOL

BOOL

INT

INT

INT

size

fwd_bwd

clk

reset

fwd_in

bwd_in

QB

INT QF

fwd_in

QB QF

bwd_in

Short description: Bidirectional analog (integer) shift register of programmable length

Description: At each end of the shift register, there is one input and one output. When a
forward shift is executed, the value applied to the fwd_in input appears
immediately at the QB output. Likewise, when a backward shift is executed,
the value applied to the bwd_in input appears immediately at the QF output.
Initially (after power-up) and during reset, the whole register contains only
zeros.
If a number less than 2 is applied to the size input, the shift register will have
the length of 2. If a number greater than 256 is applied to the size input, the
shift register will have the length of 256. The length of the register cannot be
changed dynamically; value applied to the size input is read only in first cycle
after power-up or reset.
See also SHIFT_R, SHIFT_B and SHIFT_T function blocks.

Call parameters: size: register length (range 2...256) (INT)
fwd_bwd: shift direction: forwards (TRUE)/backwards (BOOL)
clk: shifts one place on rising edge (BOOL)
reset: when TRUE, clears register to 0 (BOOL)
fwd_in: forward shift data input (INT)
bwd_in: backward shift data input (INT)

Return params: QF: forward shift data output (INT)
QB: backward shift data output (INT)

Prototype: SHIFT_A (100, TRUE, FALSE, FALSE, 123, 47);
outfwd := SHIFT_A.QF;
outbwd := SHIFT_A.QB;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 75

SHIFTP_A

SHIFTP_A

BOOL

BOOL

BOOL

BOOL

INT

INT

INT

load

fwd_bwd

clk

reset

in1

in2

INT q1

INT

INT

in7

in8

.

 .
INT q8

INT q7

 .

 .

q2

q8q7q6q5q4q3q2q1

in8

in7in6in5in4in3in2

in1

Short description: Bidirectional analog (integer) shift register with 8 parallel inputs and outputs

Description: Except that it is of fixed length and has parallel inputs and outputs, the
functioning of this block is similar to that of SHIFT_A block.
Initially (after power-up) and during reset, the whole register contains only
zeros.
Inputs in2...in7 are parallel inputs only, while inputs in1 and in8 are both
parallel and serial inputs.
See also SHIFTP_R, SHIFTP_B and SHIFTP_T function blocks.

Call parameters: load: on rising edge, register is loaded from parallel inputs (BOOL)
fwd_bwd: shift direction: forwards (TRUE)/backwards (BOOL)
clk: shifts one place on rising edge (BOOL)
reset: when TRUE, clears register to 0 (BOOL)
in1: parallel input 1 and forward shift data input (INT)
in2: parallel input 2 (INT)
...
in7: parallel input 7 (INT)
in8: parallel input 8 and backward shift data input (INT)

Return params: q1: output 1 (INT)
...
q8: output 8 (INT)

Prototype: SHIFTP_A (FALSE, TRUE, TRUE, FALSE, 2, 15, -4, 0, 100, 1, 52, -12);
o1 := SHIFTP_A.q1;
...

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 76

o8 := SHIFTP_A.q8;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 77

SWITCH_A

SWITCH_A

BOOL

INT

INT

INT

INT

act

a1

a2

a7

q1

INTa8 INT q8

.

.

 .

 .

INT q2

INT q7

act

a1

a8

q1

0

q8

.

.

.

.

.

.

Short description: 8 single switches for analog (integer) data

Description: -

Call parameters: act: TRUE: inputs connected to outputs (BOOL)
FALSE: zero output on all outputs

a1: input to switch 1 (INT)
...
a8: input to switch 8 (INT)

Return params: q1: output of switch 1 (INT)
...
q8: output of switch 8 (INT)

Prototype: SWITCH_A (TRUE, 1, 22, -17, 4, 512, -93, 100, 0);
out1 := SWITCH_A.q1;
...
out8 := SWITCH_A.q8;

Remarks: a) See also SWITCH_R, SWITCH_B and SWITCH_T function blocks.

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 78

SWITCC_A

SWITCC_A

BOOL

INT

INT

INT

INT

act

a1

b1

a8

q1

INTb8

INT q8

.

.

 .

 .

 .

act

a1

b1

a8

q1

b8

q8

.

.

.

.

.

Short description: 8 changeover switches for analog (integer) data

Description: -

Call parameters: act: TRUE: A inputs connected to outputs (BOOL)
FALSE: B inputs connected to outputs

a1: switch 1, input A (INT)
b1: switch 1, input B (INT)
...
a8: switch 8, input A (INT)
b8: switch 8, input B (INT)

Return params: q1: output of switch 1 (INT)
...
q8: output of switch 8 (INT)

Prototype: SWITCC_A (TRUE, 1, 22, -17, 4, ... 100, 0);
out1 := SWITCC_A.q1;
...
out8 := SWITCC_A.q8;

Remarks: a) See also SWITCH_R, SWITCH_B and SWITCH_T function blocks.

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 79

RAMP_A

RAMP_A

INT

INT

INT
IN

SLOPE

OUT

Short description: Ramp limiter for analog signals

Description: Output (OUT) follows the input signal (IN) as long as the absolute value of its rate
of change is below the value applied to the SLOPE input. When the absolute value
of rate of change of input exceeds SLOPE, the rate of change of output il limited
to +SLOPE or -SLOPE until the moment when OUT again becomes equal to IN. At
that moment, tracking continues.
SLOPE is expressed in units of 1/10ms, i.e. the numerical value applied to this
input represents the maximum allowed change of the IN signal in the interval of
10ms. This makes the block compatible with blocks delivered by CJ International
(e.g. derivator). However, care should be taken to appropriately scale the IN
signal, since due to integer arithmetic, the least SLOPE supported is 100 units per
second (100/s = 1/10ms).

Call parameters: IN: input (INT)
SLOPE: allowed input change (INT)

Return params: OUT: output (INT)
Prototype: RAMP_A (inp, slope);

outp := RAMP_A.out;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 80

3.5 Real Data Manipulation FBs

Standard Real Data Manipulation Function Blocks delivered by CJ International are not described in
this document. For their full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these function blocks, containing the function block
name and short description::

AVERAGE Running average of REAL samples
HYSTER Boolean hysteresis on the difference of REALs
LIM_ALRM High/low limit alarm with hysteresis
INTEGRAL Integration over time
DERIVATE Differentiation with respect to time

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 81

CMP_R

CMP_R

BOOL LT

BOOL EQ

BOOL GT

VAL1 REAL

VAL2 REAL

Short description: Full comparison of two real numbers

Description: -

Call parameters: VAL1, VAL2: numbers to be compared (REAL)

Return params: LT: TRUE if VAL1 is lower than VAL2 (BOOL)
EQ: TRUE if VAL1 is equal to VAL2 (BOOL)
GT: TRUE if VAL1 is greater than VAL2 (BOOL)

Prototype: CMP_R (value, reference);
is_lower = CMP_R.LT;
is_equal = CMP_R.EQ;
is_greater = CMP_R.GT;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 82

REALATCH

REALATCH

REAL

BOOL

REAL
data

follow

output

Short description: Real data latch

Description: For follow = TRUE, output follows data.
For follow = FALSE, output holds the value present at the data input at the
moment of the TRUE-to-FALSE transition.

Call parameters: data: real data input (REAL)
follow: enable input following (INT)

Return params: output: (REAL)

Prototype: REALATCH (flow, pass);
flow_max := REALATCH.OUTPUT;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 83

DEADB_R

DEADB_R

REAL

REAL REAL

in

set_pt out

REALbw

DB

in

out

bw

set_pt

Short description: Deadband for real input

Description: The deadband of total width 2∗bw is positioned symetrically around the
center point. If the value of "in" input falls within the deadband, "set_pt"
value is output, otherwise "in" value is output.
See also DEADB_A and DEADBH_R function blocks.

Call parameters: in: input signal (REAL)
set_pt: center point (REAL)
bw: halfwidth of deadband (REAL)

Return params: out: output signal (REAL)

Prototype: DEADB_R (input, 10., 2.);
out := DEADB_R.out;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 84

DEADBH_R

DEADBH_R

REAL

REAL

REAL

REAL

REAL

in

set_pt

eps

bw

out

in

set_pt

out
eps

bw
eps

bw

Short description: Deadband with hysteresis for real input

Description: To reduce the frequency of switching operations, it is usual to provide final
control elements with a hysteresis or differential gap. This hysteresis prevents
minor deviations of input signal from the center point from being forwarded
to the output. If the system deviation exceeds the switching differential, the
input value is passed unchanged to the output.
The deadband of width 2∗bw is positioned symetrically around the center
point and flanked on both sides by hysteresis regions of width eps.
Width of deadband bw is measured from the origin of the coordinate system
to the center of any hysteresis region.

Call parameters: in: input signal (REAL)
set_pt: center point (REAL)
eps: width of hysteresis (REAL)
bw: width of deadband (REAL)

Return params: out: output signal (REAL)

Prototype: DEADBH_R (input, cpt, hyst, bw);
out := DEADBH_R.out;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 85

DELAY_R

DELAY_R

REAL

TMR

REAL
val

delay

delayed_val

Short description: Time delay of real value

Description: If delay is smaller than the duration of one program execution cycle,
DELAY_R block just passes the unmodified input value to the output. The
maximum delay value is limited only by ISaGRAF limit on variables of TMR
type, i.e. it is 24 hours.
If the specified delay is shorter than 100 cycles, val measured in each cycle is
put into FIFO and is output after the delay elapses.
However, if this is not the case, max. delayed_val update period is delay/100,
otherwise the FIFO through which the input values pass before being output
would be too long.
Inside one update period, the values of val input in all cycles belonging to it
are averaged to produce the value that is eventually put into FIFO and output
later.
Averaging is correct for up to 10 cycles per update period, but for longer
update periods, certain values are weighted with varying weights in order to
keep the needed memory space limited.

Call parameters: val: value to delay (REAL)
delay: delay time (TMR)

Return params: delayed_val: delayed value (REAL)

Prototype: DELAY_R (value, deltat);
d_val := DELAY_R.delayed_val

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 86

DEMUX_R

DEMUX_R

BOOL

BOOL

BOOL

INT

REAL

REALset

load

reset

address

input

out1

REAL out2

REAL out16

BOOL aerr

.

.

Short description: Real demultiplexer with memory

Description: RESET overrides SET and LOAD inputs.
SET overrides LOAD input.
If ADDRESS is 0, all outputs are set to 0, just as if RESET input was active.
See also DEMUX_A, DEMUX_B and DEMUX_T blocks.

Call parameters: set: if TRUE, new input value is loaded in each cycle (BOOL)
load new input value is loaded on rising edge (BOOL)
reset if TRUE, all outputs are set to 0 (BOOL)
address: address of output (range 1 to 16) (INT)
input input value to be demultiplexed (REAL)

Return params: out1...out16 outputs (REAL)
aerr address error: set if address <0 or >16 (BOOL)

Prototype: DEMUX_R (fs, fl, fr, addr, in);
o1 := DEMUX_R.out1;
err := DEMUX_R.aerr;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 87

DSEL_R

DSEL_R

BOOL

BOOL

REAL

REAL

REAL

REAL

sel_in

sel_out

in_1

in_2

default_out

out_2

REAL out_1

sel_in

sel_out

in_1

in_2

default_out

out_1

out_2

Short description: Double independently operated real switch with two inputs

Description: Please refer to the above relay diagram which should be clear enough.

Call parameters: sel_in: Selects in_1 (FALSE) or in_2 (TRUE) (BOOL)
sel_out:Selects out_1 (FALSE) or out_2 (TRUE) (BOOL)
in_1: Real input 1 (REAL)
in_2: Real input 2 (REAL)
default_out: Value to be placed at non-selected output (REAL)

Return params: out_1: Real output 1 (REAL)
out_2: Real output 2 (REAL)

Prototype: DSEL_R (selin, selout, inval1, inval2, defout);
outval1 := DSEL_R.out_1;
outval2 := DSEL_R.out_2;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 88

LIMMON_R

LIMMON_R

REAL

REAL

REAL

REAL

REAL

BOOL

INPUT

HH_Limit

H_Limit

L_Limit

LL_Limit

L

BOOL LL

BOOL H

BOOL HH

Short description: Extended limit monitor of real value

Description: This function block implements the standard industrial 4-level limit monitor,
supporting high alarm (HH), high prealarm (H), low prealarm (L) and low
alarm (LL) levels. The 4 outputs indicate in which of the 5 regions the input
value currently is:
above HH HH output TRUE
between HH and H H output TRUE
between L and H (inside "normal" band)all outputs FALSE
between LL and L L output TRUE
below LL LL output TRUE
At most one of the outputs will be TRUE at any time, except when the limit
values are not in increasing order, i.e. when the inequality
LL_Limit <= L_Limit < H_Limit <= HH_Limit
is not satisfied, in which case all 4 outputs will be set to TRUE.

Call parameters: INPUT (REAL)
HH_Limit (REAL)
H_Limit (REAL)
L_Limit (REAL)
LL_Limit (REAL)

Return params: HH (BOOL)
H (BOOL)
L (BOOL)
LL (BOOL)

Prototype: LIMMON_R (in, hh_l, h_l, l_l, ll_l);
hh_alarm := LIMMON_R.HH;
h_alarm := LIMMON_R.H;
l_alarm := LIMMON_R.L;
ll_alarm := LIMMON_R.LL;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 89

MAJOR_R

MAJOR_R

REAL

REAL

REAL

REAL

REAL

BOOL

dev

in1

in2

in3

in4

err

REAL out

Short description: Majority selector for real inputs

Description: The majority selector calculates the mean value of all inputs. If exactly one
input differs from the calculated mean value by more than dev, mean value is
calculated once more, but that input is excluded from the calculation.
If more than one input deviates by more than dev, the mean value of all of the
input values is calculated and the output err is set.
See also MAJOR_A function block.

Call parameters: dev: Max. permissible deviation between (REAL)
any input and the calculated mean value
in1: Input 1 (REAL)
...
in4: Input 4 (REAL)

Return params: out: Mean value of inputs not deviating by (REAL)
more than dev from itself
err: set when majority selection is impossible (BOOL)

Prototype: MAJOR_R (deviation, i1, i2, i3, i4);
error := MAJOR_R.err;
mean := MAJOR_R.out;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 90

PLAUS_R

PLAUS_R

REAL

REAL

REAL
in

diff

out

Short description: Plausibility checking block for real input

Description: The block compares the difference between two succesive values sampled on
the "in" input with the value on the "diff" input. If the difference of
successive samples is less than "diff", the actual "in" value is forwarded to
the output.
If the difference exceeds "diff", the value to be output is calculated as the
mean value of "in" samples in the 3 preceding cycles. In the cycle following
this one, "in" is compared not to the preceding value, but with the last
plausible value, i.e. one before it.
If the difference in the cycle following the cycle in which the mean value was
output is still above "diff", this is taken as the proof that both this and
previous "in" values are plausible and the "in" value is normally forwarded to
the output.

Call parameters: in: input (REAL)
diff: allowed difference (REAL)

Return params: out: output (REAL)

Prototype: PLAUS_R (input, difference);
o := PLAUS_R.out;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 91

SHIFT_R

SHIFT_R

INT

BOOL

BOOL

BOOL

REAL

REAL

REAL

size

fwd_bwd

clk

reset

fwd_in

bwd_in

QB

REAL QF

fwd_in

QB QF

bwd_in

Short description: Bidirectional real shift register of programmable length

Description: At each end of the shift register, there is one input and one output. When a
forward shift is executed, the value applied to the fwd_in input appears
immediately at the QB output. Likewise, when a backward shift is executed,
the value applied to the bwd_in input appears immediately at the QF output.
Initially (after power-up) and during reset, the whole register contains only
zeros.
If a number less than 2 is applied to the size input, the shift register will have
the length of 2. If a number greater than 256 is applied to the size input, the
shift register will have the length of 256. The length of the register cannot be
changed dynamically; value applied to the size input is read only in first cycle
after power-up or reset.
See also SHIFT_A, SHIFT_B and SHIFT_T function blocks.

Call parameters: size: register length (range 2...256) (INT)
fwd_bwd: shift direction: forwards (TRUE)/backwards (BOOL)
clk: shifts one place on rising edge (BOOL)
reset: when TRUE, clears register to 0 (BOOL)
fwd_in: forward shift data input (REAL)
bwd_in: backward shift data input (REAL)

Return params: QF: forward shift data output (REAL)
QB: backward shift data output (REAL)

Prototype: SHIFT_R (100, TRUE, FALSE, FALSE, 123.55, 47.2);
outfwd := SHIFT_R.QF;
outbwd := SHIFT_R.QB;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 92

SHIFTP_R

SHIFTP_R

BOOL

BOOL

BOOL

BOOL

REAL

REAL

REAL

load

fwd_bwd

clk

reset

in1

in2

REAL q1

REAL

REAL

in7

in8

.

 .
REAL q8

REAL q7

 .

 .

q2

q8q7q6q5q4q3q2q1

in8

in7in6in5in4in3in2

in1

Short description: Bidirectional real shift register with 8 parallel inputs and outputs

Description: Except that it is of fixed length and has parallel inputs and outputs, the
functioning of this block is similar to that of SHIFT_R block.
Initially (after power-up) and during reset, the whole register contains only
zeros.
Inputs in2...in7 are parallel inputs only, while inputs in1 and in8 are both
parallel and serial inputs.
See also SHIFTP_A, SHIFTP_B and SHIFTP_T function blocks.

Call parameters: load: on rising edge, register is loaded from parallel inputs (BOOL)
fwd_bwd: shift direction: forwards (TRUE)/backwards (BOOL)
clk: shifts one place on rising edge (BOOL)
reset: when TRUE, clears register to 0 (BOOL)
in1: parallel input 1 and forward shift data input (REAL)
in2: parallel input 2 (REAL)
...
in7: parallel input 7 (REAL)
in8: parallel input 8 and backward shift data input (REAL)

Return params: q1: output 1 (REAL)
...
q8: output 8 (REAL)

Prototype: SHIFTP_R (FALSE, TRUE, TRUE, FALSE, 2.1, 15., -4.11, 0., 100., 1.5,
5.2, -.7);
o1 := SHIFTP_R.q1;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 93

...
o8 := SHIFTP_R.q8;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 94

STACKR

STACKR

BOOL

BOOL

BOOL

REAL

INT

BOOL

PUSH

POP

R1

IN

N

OFLO

REAL OUT

BOOL EMPTY

Short description: Stack of real values

Description: -

Call parameters: PUSH: pushes IN value on rising edge (BOOL)
POP: pops value on rising edge (BOOL)
R1: TRUE resets stack to the "Empty" state (BOOL)
IN: value to be pushed (REAL)
N: maximum stack depth (INT)

Return params: EMPTY: TRUE indicates that the stack is empty (BOOL)
OFLO: TRUE indicates stack overflow (BOOL)
OUT: value at the top of stack (REAL)

Prototype: STACKR (push_cmd, pop_cmd, reset_cmd, push_value, max_stack);
stackempty := STACKR.EMPTY;
overflow := STACKR.OFLO;
top_value := STACKR.OUT;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 95

SWITCH_R

SWITCH_R

BOOL

REAL

REAL

REAL

REAL

act

a1

a2

a7

q1

REALa8 REAL q8

.

.

 .

 .

REAL q2

REAL q7

act

a1

a8

q1

0

q8

.

.

.

.

.

.

Short description: 8 single switches for real data

Description: -

Call parameters: act: TRUE: inputs connected to outputs (BOOL)
FALSE: zero output on all outputs

a1: input to switch 1 (REAL)
...
a8: input to switch 8 (REAL)

Return params: q1: output of switch 1 (REAL)
...
q8: output of switch 8 (REAL)

Prototype: SWITCH_R (TRUE, 1., 22.2, -17.11, 4., 512., -93.745, 100., 0.);
out1 := SWITCH_R.q1;
...
out8 := SWITCH_R.q8;

Remarks: a) See also SWITCH_A, SWITCH_B and SWITCH_T function blocks.

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 96

SWITCC_R

SWITCC_R

BOOL

REAL

REAL

REAL

REAL

act

a1

b1

a8

q1

REALb8

REAL q8

.

.

 .

 .

 .

act

a1

b1

a8

q1

b8

q8

.

.

.

.

.

Short description: 8 changeover switches for real data

Description: -

Call parameters: act: TRUE: A inputs connected to outputs (BOOL)
FALSE: B inputs connected to outputs

a1: switch 1, input A (REAL)
b1: switch 1, input B (REAL)
...
a8: switch 8, input A (REAL)
b8: switch 8, input B (REAL)

Return params: q1: output of switch 1 (REAL)
...
q8: output of switch 8 (REAL)

Prototype: SWITCC_R (TRUE, 1., 22.6, -17.11, 4., ... 100., 0.52);
out1 := SWITCC_R.q1;
...
out8 := SWITCC_R.q8;

Remarks: a) See also SWITCH_A, SWITCH_B and SWITCH_T function blocks.

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 97

LAG

LAG

REAL

REAL

TMR

REAL

IN

TI

CYCLE

OUT

Short description: First order filter

Description: The transfer function implemented by this block is: 1/(TI∗p + 1), where TI
has the dimension of time, and p is the Laplace transform (p-plane) operator.
In the time domain, output OUT will follow the value of input IN with a
certain lag. The rate of output change is proportional to the difference IN -
OUT.
If a step function is applied to the input, an exponential waveform will be
output, according to the following formula: OUT = IN∗(1 - exp(-t/TI)).
In this case, but also in any other case in which the IN value is stable for a
reasonable amount of time, for practical purposes, the output can be
considered to be equal to the input after an interval of 3..5∗TI.
Many natural phenomena (for example common heating processes) can be
simulated using the LAG block.

Call parameters: IN: value to be filtered (REAL)
TI: integral time (in units of 0,01s) (REAL)
CYCLE: input sampling interval (TMR)

Return parameter: OUT: filtered value (REAL)

Prototype: LAG (in, 10., 1s);
filtered = LAG.OUT;

Remarks: a) TI input is of type REAL although it is used for inputting a quantity that
has a dimension of time, so type TMR would be appropriate. The reason for
this awkward typing is in keeping the block compatible with similar standard
blocks, delivered by CJ International. This may change with the following
release of ISaGRAF!
ALL inputs/outputs in ALL function blocks with dimension of time and type
REAL use a unit of 10ms. For example, to denote a time interval of 1s, value
100. must be applied to such an input.

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 98

TWO_ST

TWO_ST

REAL

TMR

TMR

REAL

BOOL

IN

DT

PD

DB

OUT

Short description: Two state regulator

Description: This block is used for switching the output load ON and OFF according to
the value of the input signal. Two mechanisms for protecting both the
contactor and the load from too frequent switching are provided:
- deadband
- minimum times for ON and OFF output states.
If IN exceeds DB and if the time elapsed since last ON-to-OFF transition of
OUT exceeds DT, OUT is set to ON.
If IN falls below the negative value of DB and if the time elapsed since last
OFF-to-ON transition of OUT exceeds PD, OUT is set to OFF.

Call parameters: IN: input value (REAL)
DT: min. output non-activation time (dead time) (TMR)
PD: minimum output ON pulse duration (TMR)
DB: dead band (REAL)

Return params: OUT: ON (TRUE)/OFF output (BOOL)

Prototype: TWO_ST (in, 5s, 20s, 1.5);
on_off := TWO_ST.OUT;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 99

STEP_REG

STEP_REG

REAL

REAL

REAL

REAL

REAL

REAL

BOOL

SP

PV

DB

KD

KI

KP

OPEN

REAL

TMR

NORMA

PD

TMRDT

TMR

TMR

CYCLE

OT

BOOL CLOSE

Short description: 3-state controller with PID velocity algorithm

Description: Internally, the block can be conceived as being composed ot two sub-blocks:
PID and 3-state Controller, connected in series.
Input to the PID sub-block is the deviation value : SP - PV, and its output is
the internal variable Y.
The difference of PID output values in the current and previous calculation
cycles, Y[k] - Y[k-1], is fed to the input of the 3-state Controller sub-block.
If this value exceeds the positive value of the dead band, output OPEN is set
to TRUE (ON) and output CLOSE is set to FALSE (OFF). If it exceeds the
negative value of dead band, OPEN is set to FALSE and CLOSE is set to
TRUE, providing that minimum output ON and OFF times have elapsed.
The minimum duration of TRUE (ON) state on any output is equal to PD and
the minimum duration of FALSE (OFF) state is equal to DT.
Input sampling period (CYCLE) depends on the process that is controlled.
Since PID parameters also depend on the process, a good rule of the thumb is
to choose CYCLE to be approximately equal to Tmin/10, where Tmin is
defined as min(KD,KP).

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 100

Call parameters: SP: setpoint (REAL)
PV: process variable (REAL)
DB: dead band (REAL)
KD: derivative time (REAL)
KI: integral time (REAL)
KP: proportional gain (REAL)
NORMA: maximum setpoint or process variable value (REAL)
PD: minimum output ON time (TMR)
DT: minimum output OFF time (dead time) (TMR)
CYCLE: inputs sampling period (TMR)
OT: time needed for fully opening/closing the valve (TMR)

Return params: OPEN: when TRUE (ON), valve is opening (BOOL)
CLOSE: when TRUE (ON), valve is closing (BOOL)

Prototype: STEP_REG (in_real, db_real, kd_real, ki_real, kp_real, norma_real,
pd_tmr, dt_tmr, cycle_tmr, ot_tmr);
op_out := STEP_REG.OPEN;
cl_out := STEP_REG.CLOSE;

Remarks: or an external automatic control specialist
b) KD and KI inputs are of type REAL although they are used for inputting
quantites that have a dimension of time, so type TMR would be appropriate.
The reason for this awkward typing is in keeping the block compatible with
similar standard blocks, delivered by CJ International. This may change with
the following release of ISaGRAF!
ALL inputs/outputs in ALL function blocks with dimension of time and type
REAL use a unit of 10ms. For example, to denote a time interval of 1s, value
100. must be applied to such an input.

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 101

RAMP_R

RAMP_R

REAL

REAL

REAL
IN

SLOPE

OUT

Short description: Ramp limiter for real signals

Description: Output (OUT) follows the input signal (IN) as long as the absolute value of
its rate of change is below the value applied to the SLOPE input. When the
absolute value of rate of change of input exceeds SLOPE, the rate of change
of output il limited to +SLOPE or -SLOPE until the moment when OUT
again becomes equal to IN. At that moment, tracking continues.
SLOPE is expressed in units of 1/10ms, i.e. the numerical value applied to
this input represents the maximum allowed change of the IN signal in the
interval of 10ms. This makes the block compatible with blocks delivered by
CJ International (e.g. derivator).

Call parameters: IN: input (REAL)
SLOPE: allowed input change (REAL)

Return params: OUT: output (REAL)

Prototype: RAMP_R (inp, slope);
outp := RAMP_R.out;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 102

PID_REX

PID_REX

BOOL

REAL

REAL

REAL

REAL

REAL

REAL

AUTO

PV

SP

X0

KP

TR

XOUT

REALTD

TMRCYCLE

REALXMIN

REALXMAX

Short description: PID controller with real I/O, EXOR version

Description: This PID Controller block implements the same algorithm as the standard
PID_CJ function block delivered by CJI with the following differences:
- current time is not read from the static variable LAST_DATE, since this
doesn't work; a call to sys_readtim() function is done instead
- when calculated output is outside the XMIN-XMAX interval, the
appropriate limit value is output just as in PID_CJ; but, integral term is not
reset to zero - it is recalculated so that the equation PTERM + ITERM +
DTERM = XOUT remains satisfied.

Call parameters: AUTO: Auto (TRUE)/Manual (FALSE) mode (BOOL)
PV: Process variable (X) (REAL)
SP: Setpoint (W) (REAL)
X0: Value to be output in Manual mode (REAL)
KP: Proportional gain (REAL)
TR: Integral time (REAL)
TD: Derivative time (REAL)
CYCLE : Calculation and output updating period (TMR)
XMIN: Min. value of output quantity (Y) (REAL)
XMAX: Max. value of output quantity (Y) (REAL)

Return params: XOUT: Output quantity (Y) (REAL)

Prototype: PID_REX (TRUE, temp_5, 120.5, manual_temp, kp, tr, td, 0s40, 0., 1000.);
heater := PID_REX.XOUT;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 103

Remarks: Algorithm implemented in this block is the so-called "independent" PID
algorithm. Kp multiplies all three terms (proportional, integral and derivative)
in the following way:

error = SP - PV
XOUT = KP * (error + (1/TR)*integral(error) + TD*derivative(error))

For this type of algorithm, optimum KP, TR, TD parameters according to the
Ziegler-Nichols method are:

for P controller: KP = 0.5 *KPosc
for PI controller: KP = 0.45*KPosc TR = 0.83*Tosc
for PID controller: KP = 0.6 *KPosc TR = 0.5 *Tosc TD =
0.125*Tosc

where KPosc is that KP which causes constant-amplitude closed-loop
oscillations with only P-action enabled and Tosc is the period of these
oscillations.

IMPORTANT! Integral time (TR) and derivative time (TD) MUST be input in units of 10ms, e.g. 100
should be applied to TR to indicate that integral time is 1 second.

See also PID_A function block.

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 104

RESERV

RESERV

REAL

REAL

REAL

qin

qout

levelREALbasearea

REALminlevel

REALmaxlevel

qin

qout
minlevel

maxlevel

level

basearea

Short description: Reservoir (integrator) with input and output flow

Description: This block simulates a prismatic (cylindrical) reservoir with input and output
pipe and upper (full) and lower (empty) limit level as depicted above.

Call parameters: qin: flow in input pipe (REAL)
qout: flow in output pipe (REAL)
basearea: area of the prismatic reservoir base (REAL)
minlevel: minimum level (reservoir empty) (REAL)
maxlevel: maximum level (reservoir spilling over) (REAL)

Return params: level: current level in the reservoir (REAL)

Prototype: RESERV (0.5, 0.4, 1., 0., 5.);
lvl = RESERV.level;

Remarks: Reasonable care about units must be taken: if one wants level to be expressed
in U units, then minlevel and maxlevel must also be expressed in U units,
basearea must be expressed in U2 units and qin and qout must be expressed in
U3/s units.

Example: For level in meters, minlevel could be 0, maxlevel 5m, basearea 1m2, qin
could be 0,5m3/s and qout 0,4m3/s. In this case, level would steadily rise at
the rate of 0,1m/s until it reaches 5m, then it would remain at that value until
qout becomes greater then qin.

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 105

LINTRANS

LINTRANS

REAL

REAL

REAL

REAL

in

a

b

out

Short description: Linear transformation of real input

Description: out = a ∗ in + b

Call parameters: in: input signal (REAL)
a: multiplication factor (REAL)
b: offset (REAL)

Return params: out: output signal (REAL)

Prototype: LINTRANS (input, 10., 2.);
out := LINTRANS.out;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 106

3.6 Signal Generation FBs

Standard Signal Generation Function Blocks delivered by CJ International are not described in this
document. For their full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these function blocks, containing the function block
name and short description::

BLINK Blinking BOOLEAN signal

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 107

BLINK_A

BLINK_A

BOOL

TMR

INT

INT

run

cycle

high_val

out_a

INTlow_val

run

cycle
out_a

high_val

low_val

Short description: Alternating analog (integer) signal generation

Description: Based on standard boolean BLINK function block. Once enabled, the output
will toggle continuously between high_val and low_val values with the
period equivalent to cycle. When disabled, low_val will be output.

Call parameters: run: Bink enable (BOOL)
cycle: Blinking period (TMR)
high_val: 1st level to be output (INT)
low_val: 2nd level to be output (INT)

Return params: out_a: Output signal (INT)

Prototype: BLINK_A (enab, period, hilev, lolev);
signal = BLINK_A.out_a;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 108

BLINK_R

BLINK_R

BOOL

TMR

REAL

REAL

run

cycle

high_val

out_r

REALlow_val

run

cycle
out_r

high_val

low_val

Short description: Alternating real signal generation

Description: Based on standard boolean BLINK function block. Once enabled, the output
will toggle continuously between high_val and low_val values with the
period equivalent to cycle. When disabled, low_val will be output.

Call parameters: run: Bink enable (BOOL)
cycle: Blinking period (TMR)
high_val: 1st level to be output (REAL)
low_val: 2nd level to be output (REAL)

Return params: out_r: Output signal (REAL)

Prototype: BLINK_A (enab, period, hilev, lolev);
signal = BLINK_A.out_r;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 109

MONO

MONO

BOOL

BOOL

TMR

TMR

retriggerable

start

pulse_time

time_elapsed

BOOL Q

Short description: Monostable element

Description: -

Call parameters: retriggerable: if TRUE, monostable can be retriggered (BOOL)
start: positive edge triggers monostable (BOOL)
pulse_time: duration of monostable pulse (TMR)

Return params: Q: monostable output (BOOL)
time_elapsed: time elapsed from last pos. edge of start (TMR)

Prototype: MONO (TRUE, TRUE, 5s);
out := MONO.Q;
rest := MONO.time_elapsed;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 110

OSC_SIN

OSC_SIN

BOOL

TMR

REAL

REAL

enable

period

amplitude

sine

BOOL err

Short description: Sine wave oscillator

Description: The sine wave is created from a table containing 256 amplitude values per
period.
If enable is FALSE, output is set to 0.
The period should be minimally 20 times longer than the duration of one PLC
cycle, otherwise the err output is set and zero is output on the sine output.

Call parameters: enable: oscillator enable (BOOL)
period: period of oscillations (TMR)
amplitude: amplitude of sine wave (REAL)

Return params: sine: sine wave (REAL)
err: set to TRUE if period is too short (BOOL)

Prototype: OSC_SIN (TRUE, per, amp);
osc := OSC_SIN.sine;
error := OSC_SIN.err;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 111

OSC_SQW

OSC_SQW

BOOL

REAL

REAL

REAL

REAL

TMR

REAL

enable

amp1

amp2

amp3

amp4

t1

square

TMR

TMR

t2

t3

TMRt4

Short description: Four-level square wave oscillator

Description: One full period of the square wave is composed of 4 parts with potentially
different duration and with the output amplitude selectable for each sub-
period independently.
If enable is FALSE, output is set to 0.

Call parameters: enable: oscillator enable (BOOL)
amp1: amplitude during time T1 (REAL)
amp2: amplitude during time T2 (REAL)
amp3: amplitude during time T3 (REAL)
amp4: amplitude during time T4 (REAL)
t1: time T1 (TMR)
t2: time T2 (TMR)
t3: time T3 (TMR)
t4: time T4 (TMR)

Return params: square: square wave output (REAL)

Prototype: OSC_SQW (start, 0., 1., 0., -1., 1s, 1s, 1s, 1s);
sqw := OSC_SQW.square;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 112

DUTYCYC

DUTYCYC

TMR

REAL

BOOL
cycle

dutyc

out

Short description: Digital oscillator with variable duty-cycle

Description: Within each cycle, the out signal will be TRUE for dutyc percent of the cycle
duration and FALSE for (100 - dutyc) percent of the cycle duration.
The first cycle after power-up will begin with out set to TRUE, except if
dutyc is less than or equal to zero.
If dutyc is less than or equal to zero, a steady FALSE signal will be output.
If dutyc is greater than or equal to 100%, a steady TRUE signal will be
output.

REMARK: One should take into account the limited time resolution of the PC-based
target: 55ms (one BIOS tick). No regular pulse can be shorter than this
interval. Therefore, some lower limit on the CYCLE input variable to
DUTYCYC and DUTYCYCM blocks must be respected.
As a reasonable value, 10 seconds for this limit is proposed. (Since the unit
for CYCLE is 10ms, 10 seconds are represented by number 1000 applied to
CYCLE input of the block.) In this case, 55ms will be approximately 0,5% of
the cycle and this amount of error introduced by the finite resolution can be
accepted in most applications.
If CYCLE is shorter than this, one must be aware of the increased influence
of the resolution-related error, rising with the decreasing CYCLE value.

Call parameters: cycle: Cycle time (TMR)
dutyc: Duty-cycle percentage (0...100%) (REAL)

Return params: out: Output waveform (BOOL)

Prototype: DUTYCYC (1m30s, 20.5);
wave := DUTYCYC.out;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 113

DUTYCYCM

DUTYCYCM

TMR

REAL

REAL

cycle

dutyc1

dutyc2

REALdutyc8 BOOL out8

BOOL out1

BOOL out2

 .

 .

.

.

cycle 1 cycle 2

out1

out2

out7

out8

......

Short description: Multiple digital oscillator with variable duty-cycle

Description: Within each cycle, on each channel the outX signal will be TRUE for dutycX
percent of the cycle duration and FALSE for (100 - dutycX) percent of cycle
duration.
The FALSE-to-TRUE transition on each two successive channels will be
apart by 0.125∗cycle. In this way, FALSE-to-TRUE (OFF-to-ON) transitions
will be uniformly spaced over the cycle duration.
This is very important since this function block is typically used as a pulse-
width modulator whose outputs drive electrical heaters, known to create
current surges in a short interval following the switch-on. By spacing the
OFF-to-ON transitions uniformly over the cycle duration, the power supply
can be designed for just Isurgemax instead of 8*Isurgemax, which is the worst
case for non-synchronized channels.
If dutyc is less than or equal to zero for some channel, a steady FALSE signal
will be output on that channel's output.
If dutyc is greater than or equal to 100% for some channel, a steady TRUE
signal will be output on that channel's output.

REMARK: One should take into account the limited time resolution of the PC-based
target: 55ms (one BIOS tick). No regular pulse can be shorter than this
interval. Therefore, some lower limit on the CYCLE input variable to
DUTYCYC and DUTYCYCM blocks must be respected.

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 114

As a reasonable value, 10 seconds for this limit is proposed. (Since the unit
for CYCLE is 10ms, 10 seconds are represented by number 1000 applied to
CYCLE input of the block.) In this case, 55ms will be approximately 0,5% of
the cycle and this amount of error introduced by the finite resolution can be
accepted in most applications.
If CYCLE is shorter than this, one must be aware of the increased influence
of the resolution-related error, rising with the decreasing CYCLE value.

Call parameters: cycle: Cycle time (TMR)
dutyc1: Duty-cycle percentage, channel 1 (0...100%) (REAL)
dutyc2: Duty-cycle percentage, channel 2 (0...100%) (REAL)
...
dutyc8: Duty-cycle percentage, channel 8 (0...100%) (REAL)

Return params: out1: Output waveform, channel 1 (BOOL)
out2: Output waveform, channel 2 (BOOL)
...
out8: Output waveform, channel 8 (BOOL)

Prototype: DUTYCYCM (1m30s, 10.7, 22.5, 30., 49.2, 55.5, 65., 78., 83.1);
wave1 := DUTYCYCM.out1;
...

wave8 := DUTYCYCM.out8;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 115

3.7 Variable Access FBs

USR_RANA

U S R _R A N A

IN T IN T
w ord_adr w ord_va l

Short description: Read one analog variable

Description: Read the analog value of a variable using the Network Address to select it.
If the variable is not found (Network Address is not defined) the returned
value is 0
The returned value is always analog even if the variable is of different type.

Call parameters: WORD_ADR: network address (INT)

Return params: WORD_VAL: analog output (INT)

Prototype: USR_RANA (16#1000);
value := USR_RANA.WORD_VAL;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 116

USR_WANA

U S R _W A N A

IN T
IN T

w ord_adr w ritten

IN Tw ord_va l

Short description: Write one analog variable

Description: Write a analog value to a variable using the Network Address to select it.
If the variable is not found (Network Address is not defined) the returned
value is FALSE
The value is always written as analog even if the variable is of different type.

Call parameters: WORD_ADR: network address (INT)
WORD_VAL: analog output (INT)

Return params: WRITTEN: TRUE if successful (BOO)

Prototype: USR_WANA (16#1000,1234);
isok := USR_WANA.WRITTEN;

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 117

3.8 Hardware Specific FBs

CANSDORD

C A N S D O R D

IN T

IN T

E nab le E xecu ting F

IN T

D ata type IN T

B O O L

Idx

S ub Idx

B O O L

E rrC od

A bortC od

R E A L

IN T

In tegerV a lueIN T

F loa tV a lu e

N ode Id IN T

Short description: Read one variable in CANopen node using SDO protocol

Description: Read an element of remote database using SDO protocol, as defined in
CANopen standard document DS301.

Call parameters: ENABLE: start the read operation, must be reset by user (BOO)
NODEID: node number od the remote node (INT)
IDX: index in remote database (INT)
SUBIDX: subindex in database (INT)
DATATYPE type of data to be read (see table below) (INT)

Return params: EXECUTINGF: TRUE if operation is still in progress (BOO)
ERRCOD:state of the last execution (see table below) (BOO)
ABORTCOD: code answered by remote node (see table below) (BOO)
INTEGERVALUE: value read represented as integer number (INT)
FLOATVALUE: value read represented as float numbe (REAL)

Prototype: CANSDORD(TRUE, node, index, subindex, INT32);
isrunning := CANSDORD.EXECUTINGF;
error := CANSDORD.ERRCOD;
answer:= CANSDORD.ABORTCOD;
Value := CANSDORD.INTEGERVALUE;

Remarks: several SDO operations cannot be executed on the same node at the same
time.

Data Type Table
1 BOOL
2 INT8
3 INT16
4 INT32
5 UINT8
6 UINT16
7 UINT32
8 FLOAT

Error Codes Table
12 Too many SDO/PDO

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 118

13 Invalid parameter/s
14 Invalid reply from remote SDO server
15 Returned size differs from requested size
16 No reply timeout

Abort code Description
0503 0000h Toggle bit not alternated.
0504 0000h SDO protocol timed out.
0504 0001h Client/server command specifier not valid or unknown.
0504 0002h Invalid block size (block mode only).
0504 0003h Invalid sequence number (block mode only).
0504 0004h CRC error (block mode only).
0504 0005h Out of memory.
0601 0000h Unsupported access to an object.
0601 0001h Attempt to read a write only object.
0601 0002h Attempt to write a read only object.
0602 0000h Object does not exist in the object dictionary.
0604 0041h Object cannot be mapped to the PDO.
0604 0042h The number and length of the objects to be mapped would exceed PDO length.
0604 0043h General parameter incompatibility reason.
0604 0047h General internal incompatibility in the device.
0606 0000h Access failed due to an hardware error.
0607 0010h Data type does not match, length of service parameter does not match
0607 0012h Data type does not match, length of service parameter too high
0607 0013h Data type does not match, length of service parameter too low
0609 0011h Sub-index does not exist.
0609 0030h Value range of parameter exceeded (only for write access).
0609 0031h Value of parameter written too high.
0609 0032h Value of parameter written too low.
0609 0036h Maximum value is less than minimum value.
0800 0000h general error
0800 0020h Data cannot be transferred or stored to the application.
0800 0021h Data cannot be transferred or stored to the application because of local control.
0800 0022h Data cannot be transferred or stored to the application because of the present device state.
0800 0023h Object dictionary dynamic generation fails or no object dictionary is present (e.g. object
dictionary is generated from file and generation fails because of an file error).

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 119

CANSDOWR

C A N S D O W R

IN T

IN T

E nab le E xecu ting F

IN T

D ata type IN T

B O O L

Idx

S ub Idx

B O O L

E rrC od

A bortC od

R E A L

IN T

In tegerV a lue IN T

F loa tV a lu e

N ode Id IN T

Short description: Write one variable in CANopen node using SDO protocol

Description: Write an element of remote database using SDO protocol, as defined in
CANopen standard document DS301.

Call parameters: ENABLE: start the read operation, must be reset by user (BOO)
NODEID: node number od the remote node (INT)
IDX: index in remote database (INT)
SUBIDX: subindex in database (INT)
DATATYPE type of data to be read (see table below) (INT)
INTEGERVALUE: value read represented as integer number (INT)
FLOATVALUE: value read represented as float numbe (REAL)

Return params: EXECUTINGF: TRUE if operation is still in progress (BOO)
ERRCOD: state of the last execution (see table below) (BOO)
ABORTCOD: code answered by remote node (see table below) (BOO)

Prototype: CANSDORD(TRUE, node, index, subindex, INT32, 1234, 0.0);
isrunning := CANSDORD.EXECUTINGF;
error := CANSDORD.ERRCOD;
answer:= CANSDORD.ABORTCOD;

Remarks: several SDO operations cannot be executed on the same node at the same
time.

Data Type Table
1 BOOL
2 INT8
3 INT16
4 INT32
5 UINT8
6 UINT16
7 UINT32
8 FLOAT

Error Codes Table
12 Too many SDO/PDO
13 Invalid parameter/s
14 Invalid reply from remote SDO server
15 Returned size differs from requested size

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 120

16 No reply timeout

Abort code Description
0503 0000h Toggle bit not alternated.
0504 0000h SDO protocol timed out.
0504 0001h Client/server command specifier not valid or unknown.
0504 0002h Invalid block size (block mode only).
0504 0003h Invalid sequence number (block mode only).
0504 0004h CRC error (block mode only).
0504 0005h Out of memory.
0601 0000h Unsupported access to an object.
0601 0001h Attempt to read a write only object.
0601 0002h Attempt to write a read only object.
0602 0000h Object does not exist in the object dictionary.
0604 0041h Object cannot be mapped to the PDO.
0604 0042h The number and length of the objects to be mapped would exceed PDO length.
0604 0043h General parameter incompatibility reason.
0604 0047h General internal incompatibility in the device.
0606 0000h Access failed due to an hardware error.
0607 0010h Data type does not match, length of service parameter does not match
0607 0012h Data type does not match, length of service parameter too high
0607 0013h Data type does not match, length of service parameter too low
0609 0011h Sub-index does not exist.
0609 0030h Value range of parameter exceeded (only for write access).
0609 0031h Value of parameter written too high.
0609 0032h Value of parameter written too low.
0609 0036h Maximum value is less than minimum value.
0800 0000h general error
0800 0020h Data cannot be transferred or stored to the application.
0800 0021h Data cannot be transferred or stored to the application because of local control.
0800 0022h Data cannot be transferred or stored to the application because of the present device state.
0800 0023h Object dictionary dynamic generation fails or no object dictionary is present (e.g. object
dictionary is generated from file and generation fails because of an file error).

 Tech-note
PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Page 121

4. Index

A
ABS_A, 6
ACCESS TO VARIABLE
FBs, 115
ANALOG (INTEGER)
DATA MANIPULATION
FBs, 57
ARITHMETIC
FUNCTIONS, 4
ARRAY MANIPULATION
FUNCTIONS, 35
AVRG_A, 58
B
BIT, 13
BLINK_A, 107
BLINK_R, 108
BOOLEAN DATA
MANIPULATION FBs, 40
BOOLEAN FUNCTIONS,
11
C
CANONMT, 38
CANSDORD, 117
CANSDOWR, 119
CMP_R, 81
COMPARISON
FUNCTIONS, 17
COUNTING FBs, 49
D
DATA CONVERSION
FUNCTIONS, 28
DATA MANIPULATION
FUNCTIONS, 20
DEADB_A, 61
DEADB_R, 83
DEADBH_A, 62
DEADBH_R, 84
DELAY_A, 63
DELAY_R, 85
DEMUX_A, 64
DEMUX_B, 41
DEMUX_R, 86
DEMUX_T, 51
DERIV_A, 59
DIVIDE_A, 65
DSEL_A, 66
DSEL_R, 87

DUTYCYC, 112
DUTYCYCM, 113
E
EN_CH, 46
EXP, 8
EXP_R, 7
H
HARDWARE SPECIFIC
FBs, 117
HARDWARE SPECIFIC
FUNCTIONS, 37
HYSTER_A, 60
L
LAG, 97
LATCH, 47
LIM_AL_A, 67
LIMIT_R, 27
LIMMON_A, 68
LIMMON_R, 88
LINTRANS, 105
LN, 9
LOGIC FUNCTIONS, 12
M
MAJOR_A, 69
MAJOR_R, 89
MAX_R, 21
MIN_R, 22
MONO, 109
MUX4_R, 23
MUX8_B, 25
MUX8_R, 24
O
OSC_SIN, 110
OSC_SQW, 111
P
PACKBOO, 16
PID_A, 70
PID_REX, 102
PLAUS_A, 73
PLAUS_R, 90
PT100, 31
R
RAMP_A, 79
RAMP_R, 101
REAL DATA
MANIPULATION FBs, 80
REALATCH, 82
REGISTER CONTROL
FUNCTIONS, 18
RESERV, 104
S
SCALE_A, 29

SCALE_R, 30
SEL_R, 26
SET, 14
SHIFT, 19
SHIFT_A, 74
SHIFT_B, 42
SHIFT_R, 91
SHIFT_T, 52
SHIFTP_A, 75
SHIFTP_B, 43
SHIFTP_R, 92
SHIFTP_T, 53
SIGNAL GENERATION
FBs, 106
STACKR, 94
STEP_REG, 99
STRING MANAGEMENT
FUNCTIONS, 34
SWITCC_A, 78
SWITCC_B, 45
SWITCC_R, 96
SWITCC_T, 56
SWITCH_A, 77
SWITCH_B, 44
SWITCH_R, 95
SWITCH_T, 55
SYSTEM ACCESS
FUNCTIONS, 36
T
THRSHLD, 15
TIMER FBs, 50
TRIGONOMETRIC
FUNCTIONS, 10
TRMCPL_J, 32
TRMCPL_K, 33
TWO_ST, 98
U
UNPACKBOO, 48
USR_RANA, 115
USR_WANA, 116
W
WDRESET, 37

