

Functions and Function Blocks in ISaGRAF for SCM03

This Technical Note contains detailed information on all the Function Blocks available for PLC programming in the SCM03 controller.

Contents

ntroduction	2
unctions	3
Arithmetic Functions	4
Math Functions	5
Trigonometric Functions	10
Boolean Functions	11
Logic Functions	12
Comparison Functions	17
Register Control Functions	18
Data Manipulation Functions	20
Data Conversion Functions	28
0 String Management Functions	34
1 Array Manipulation Functions	35
2 System Access Functions	36
3 Hardware Specific Functions	37
unction Blocks	39
Boolean Data Manipulation FBs	40
Counting FBs	49
Timer FBs	50
Analog (Integer) Data Manipulation FBs	57
Real Data Manipulation FBs	80
Signal Generation FBs	106
Variable Access FBs	115
Hardware Specific FBs	117
ndex	121
	htroduction

1. Introduction

This document contains the list of Functions and Function Blocks written for the ISaGRAF softlogic system installed on the SCM03 board. Before using it, please make sure that the version you have is the most recent one, otherwise you might miss recently added blocks and changes to previously written blocks.

This list is intended for use as a reference by PLC programmers writing applications for the HMIControl systems based on ISaGRAF PLC language interpreter.

Throughout the document, the generic term "Function Block" will be used as a reference to Functions, Conversion Functions and Function Blocks, as defined in the ISaGRAF User's Manual. This Manual should also be used as a reference to standard Function Blocks written by CJ International and delivered as a part of the ISaGRAF package.

EXDR[°] Tech-note

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

2. Functions

A function has **at most one output** and **no internal memory**. Due to this lack of information transfer between calls, for the same set of inputs, a function will always return the same output value.

Each function belongs to one of the following classes:

- Arithmetic functions
- Math functions
- Trigonometric functions
- Boolean functions
- Logic functions
- Comparison functions
- Register control functions
- Data manipulation functions
- Data conversion functions
- String management functions
- Array manipulation functions
- System access functions
- Hardware specific functions

2.1 Arithmetic Functions

Standard Arithmetic Functions delivered by CJ International are not described in this document. For their full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these functions, containing the function name and short description:

ADD	Addition (INTEGERs and REALs, extensible)
SUB	Subtraction (INTEGERs and REALs)
MUL	Multiplication (INTEGERs and REALs, extensible)
DIV	Division (INTEGERs and REALs)

EXDR[°] Tech-note

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

2.2 Math Functions

Standard Math Functions delivered by CJ International are not described in this document. For their full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these functions, containing the function name and short description:

ABS	Absolute value of a REAL number
EXPT	Exponentiation of REAL base by the INTEGER exponent
LOG	Logarithm to the base 10 of a REAL number
POW	Power Calculation
SQRT	Square root of a REAL number
TRUNC	Truncation of a REAL number with REAL output

ABS_A

Description:

	ABS_A	
	input_value INT INT absolute_value	
	input_value absolute_value	
Short description:	Absolute analog (integer) value	
Description:	_	

Call parameters:	input_value	(INT)
Return parameter:	absolute_value (INT)	
Prototype:	absolute := abs_a (value	e);

This is the "analog" equivalent of the standard ABS function. Remarks:

EXP_R

Short description:	Exponentiation: real base, real exponent
Description:	-
Call parameters:	base (REAL) exponent (REAL)
Return parameter:	result (REAL)
Prototype:	result := EXP_R (base, exp);
Remarks:	This is an extension of the corresponding standard function which allows only an integer exponent to be applied to a real base.

EXP_E

Short description:

Natural exponential function (base e) with real exponent

Description:

Call parameters:exponent(REAL)Return parameter:result(REAL)Prototype:result := EXP_E (rex);

-

LN_E

Short description:

Natural logarithm (base e) of a real number

Description:

Call parameters:	value	(REAL)
Return parameter:	result	(REAL)
Prototype:	logval	$:= \ln_e (rval);$

-

2.3 Trigonometric Functions

Standard Trigonometric Functions delivered by CJ International are not described in this document. For their full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these functions, containing the function name and short description:

ACOS	Arc cosine of a REAL number
ASIN	Arc sine of a REAL number
ATAN	Arc tangent of a REAL number
COS	Cosine of a REAL number
SIN	Sine of a REAL number
TAN	Tangent of a REAL number

2.4 Boolean Functions

Standard Boolean Functions delivered by CJ International are not described in this document. For their full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these functions, containing the function name and short description:

AND	Boolean AND (extensible)
OR	Boolean OR (extensible)
XOR	Boolean XOR (extensible)

EXDR[°] Tech-note

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

2.5 Logic Functions

Standard Logic Functions delivered by CJ International are not described in this document. For their full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these functions, containing the function name and short description:

AND	Analog (INTEGER) bit to bit AND (extensible)
OR	Analog (INTEGER) bit to bit OR (extensible)
XOR	Analog (INTEGER) bit to bit XOR (extensible)

BIT

		BIT	
bit_num —	INT	BOOL	— bit
input —	INT		

Short description:	Test indicated bit of given integer			
Description:	If bit_num is	less than 0 or greater than 31, bit	0 is tested	d.
Call parameters:	bit_num: input: Integ	Bit number in range 0 to 31 er whose bit is to be tested	(INT)	(INT)
Return parameter:	bit:	Tested bit		(BOOL)
Prototype:	tbit := bit (n,i	nt);		. ,

SET

		SET			
	bit_num —	INT			
	set_reset —	BOOL INT	- output		
	input —	INT			
Short description:	Sets or resets indicate	ed bit in an int	teger		
Description:	If bit_num is less that output unchanged.	n 0 or greater	than 31, the i	nput wil	ll be copied to the
Call parameters:	bit_num: Bit n set_reset: New input: Integer whos	umber in rang value of the l e bit is to be o	ge 0 to 31 pit changed	(INT)	(INT) (BOOL)
Return parameter: Prototype:	output: Modified inte new := set (bitnum,sr	eger ,old);	Junged	()	(INT)

THRSHLD

Short description: Threshold element

Description: out is set to TRUE if more than thrsh_val inputs are set to TRUE. thrsh_val should be in range 1 to 16. If it is not within range, out is set to TRUE.

Call parameters:	thrsh_val in1 in2	(INT) (BOOL) (BOOL)
Return parameter: Prototype:	in16 out alarm := THRS	 (BOOL) (BOOL) HLD (maxnum,in1,,in16);

PACKBOO

Short description:	Pack 16 boolean variables into one analog variable		
Description:	Packing bits into a word is sometimes needed to prepare data for communication with other devices or I/O equipment.		
Call parameters:	bit0	(BOOL)	
Return parameter: Prototype:	bit15 packed (INT) packed := packt	(BOOL) boo (b0,b1,b2,,b15);	

2.6 Comparison Functions

Standard Comparison Functions delivered by CJ International are not described in this document. For their full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these functions, containing the function name and short description:

- LT Less than (all data types)
- LE Less than or equal (all data types except TMR)
- GT Greater than (all data types)
- GE Greater than or equal (all data types except TMR)
- EQ Equal to (all data types except TMR)
- NE Not equal to (all data types except TMR)

2.7 Register Control Functions

Standard Register Control Functions delivered by CJ International are not described in this document. For their full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these functions, containing the function name and short description:

ROL	Rotate INTEGER left
ROR	Rotate INTEGER right
SHL	Shift INTEGER left
SHR	Shift INTEGER right

SHIFT

	SHIFT
	input_value — INT
	nb_shifts
	direction - BOOL
Short description:	Shifts an analog value left or right arithmetically
Description:	Input value is copied to the output without change if the number of shifts is less than or equal to zero. If the number of shifts is greater than or equal to 32, the result is equal to all zeros for left shift and either to all zeros or all ones for right shift, depending on the MSB of the input value. Shifting is done arithmetically, meaning that: - when a number is shifted to the left, zeros are filled in at the right end - when a number is shifted to the right, MSB is copied to the bit right of it. For right shift direction is FALSE, for left shift direction is TRUE.
Call parameters:	input_value (INT) nb_shifts (INT) direction (BOOL)
Return parameter: Prototype:	shifted_value (INT) result := shift (ival, nshifts, dir);
Example:	input_value: 010010101 shifted_value: 001001010 (1 shift right with MSB=0)
	input_value: 110010101 shifted_value: 111001010 (1 shift right with MSB=1)
	input_value: 100110011 shifted_value: 001100110 (1 shift left)

2.8 Data Manipulation Functions

Standard Data Manipulation Functions delivered by CJ International are not described in this document. For their full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these functions, containing the function name and short description:

Minimum of INTEGERs (extensible)
Maximum of INTEGERs (extensible)
Modulo (INTEGER division remainder)
Multiplexer (4 INTEGER inputs)
Multiplexer (8 INTEGER inputs)
Odd parity for na INTEGRER
Binary selector
INTEGER limiter
Random INTEGER generator

MAX_R

	first_value — REAL _ maximum_of_both _ REAL
Short description:	Maximum of two real values
Description:	-
Call parameters: Return parameter: Prototype:	first_value (REAL) second_value (REAL) maximum_of_both (REAL) maxval := max_r (val1, val2);
Remarks:	This is the "real" equivalent of the standard MAX function. It does not support an extensible number of inputs.

MIN_R

	first_value — REAL minimum_of_both second_value — REAL
Short description:	Minimum of two real values
Description:	-
Call parameters: Return parameter: Prototype:	first_value(REAL)second_value(REAL)minimum_of_both(REAL)minval := min_r (val1, val2);
Remarks:	This is the "real" equivalent of the standard MIN function. It does not support an extensible number of inputs.

MUX4_R

Short description:	Select one of fo For any other se	ur real values elector value, result is set to 0.
Call parameters:	selector value0 value1 value2 value3	(INT) (REAL) (REAL) (REAL) (REAL)
Return parameter:	result	(REAL)
Prototype:	result := $mux4$	r (select, val0, val1, val2, val3);
Remarks:	This is the "real support an exter	" equivalent of the standard MUX4 function. It does not asible number of inputs.

EXDR[®] *Tech-note* PN# tn145-0.doc - 04/04/00 - Ver. 1.00

MUX8_R

	MUX8_R
	selector — INT
	value0 — REAL
	value1 — REAL
	value2 — REAL
	value3 — REAL REAL — result
	value4 — REAL
	value5 — REAL
	value6 — REAL
	value7 — REAL
Short description:	Select one of eight real values
Description:	If selector is : 0 then result = value0 1 value1
	 7 value7
	For any other selector value, result is set to 0.
Call parameters:	selector (INT) value0 (REAL) value1 (REAL)
Return parameter: Prototype:	value7 (REAL) result (REAL) result := mux8_r (select, val0, val1, val2, val3, val4, val5, val6, val7);
Remarks:	This is the "real" equivalent of the standard MUX8 function. It does not support an extensible number of inputs.

EXDR[®] *Tech-note* PN# tn145-0.doc - 04/04/00 - Ver. 1.00

MUX8_B		
		MUX8_B
	selecto	or — INT
	value	0 - BOOL
	value	BOOL
	value	BOOL
	value	BOOL BOOL result
	value	4 — BOOL
	value	5 - BOOL
	value	6 - BOOL
	value	7 - BOOL
Short description:	Select one of ei	ght boolean values
Description:	If selector is :	0 then result = value0 1 value1
		7 value7
	For any other se	elector value, result is set to FALSE.
Call parameters:	selector	(INT)
	value0	(BOOL) (BOOL)
Datum nononostam	value7	(BOOL)
Prototype:	result := $mux8$	b (select, val0, val1, val2, val3, val4, val5, val6, val7);
Remarks:	This is the "boo support an exter	lean" equivalent of the standard MUX8 function. It does not nsible number of inputs.

SEL_R

	SEL_R	
condition	BOOL	
false_value —	REAL REAL	- result
true_value —	REAL	

Short description:	Select one of two real values
Description:	If condition = FALSE, then the result is equal to the false_value. If condition = TRUE, then the result is equal to the true_value.
Call parameters:	condition(BOOL)false_value(REAL)true value(REAL)
Return parameter:	result (REAL)
Prototype:	result := sel_r (selector, value1, value2);
Remarks:	This is the "real" equivalent of the standard SEL function. It does not support an extensible number of inputs.

EXDR[°] Tech-note

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

LIMIT_R

Short description:	Bounds a real v	alue between a minimum	n and a maximum
Description:	-		
Call parameters:	MN: IN: MX:	minimum value input value maximum value	(REAL) (REAL) (REAL)
Return parameter:	Q:	bound value	(REAL)
Prototype:	bound_value :=	limit (mini, value, maxi));
Remarks:	This is the "real	" equivalent of the stand	ard LIMIT function.

2.9 Data Conversion Functions

Standard Data Conversion Functions delivered by CJ International are not described in this document. For their full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these functions, containing the function name and short description:

BOOConvert to BOOLEAN (any input type)ANAConvert to ANALOG (INTEGER) (any input type)REALConvert to REAL (any input type)TMRConvert to TIMER (any input type)MSGConvert to MESSAGE (any input type)ASCIICharacter to ASCII codeCHARASCII code to character

SCALE_A					
			SCALE_A		
		in — IN	Т		
	inm	nin — IN	т		
	inm			out	
			-	out	
	outm		1		
	outma	ax — IN	T		
Short description:	Scaling of analo	og value			
Description:	This block scale OUTMIN OU	es the inp TMAX u	ut value fr using the fo	om range INI ollowing form	MIN INMAX to the range nula:
OUT =	(I OUTMIN + -	N - IN INMAX	MIN) * - INMIN	(OUTMAX - 	- OUTMIN)
	If INMIN >= IN OUTMIN. The IN - INMIN the range -3276 to OUTMIN.	VMAX or N and OU 8 to 3276	TOUTMIN TMAX - (57. If they ;	I >= OUTMA OUTMIN exp get out of tha	AX the output is set to pressions MUST fall within t range, the OUT output is set
Call parameters:	IN: INMIN: INMAX: OUTMIN: OUTMAX [.]	input va minimun maximu output v output v	lue n input val m input va alue if IN= alue if IN=	ue lue INMIN INMAX	(INT) (INT) (INT) (INT) (INT)
Return parameter: Prototype:	OUT : scaled_value :=	output v SCALE	alue _A (inp, in	nin, imax, or	(INT) nin, omax);

SCALE_R						
		[SCALE_R			
		in —	REAL			
	inm	nin —	REAL			
	inm	iax —	REAL REAL	— out		
	outm	nin —	REAL			
	outm	iax —	REAL			
		L				
Short description:	Scaling of real	value				
Description:	This block scale OUTMIN OU	es the i	input value fro X using the fo	om range INN ollowing forn	MIN INMAX to the ra nula:	nge
OUT =	OUTMIN + -	IN INMA	- INMIN X - INMIN	* (OUI	MAX - OUTMIN)	
Call parameters:	IN: INMIN: INMAX: OUTMIN: OUTMAX:	input minin maxin outpu outpu	value num input val num input val tt value if IN= tt value if IN=	ue lue INMIN INMAX	(REAL) (REAL) (REAL) (REAL) (REAL)	
Return parameter: Prototype:	OUT : scaled_value :=	outpu SCAI	t value LE_R (inp, im	in, imax, om	(REAL) in, omax);	

PT100

	PT100
	in — REAL REAL — out
Short description:	Converts PT100 resistance value to temperature value
Description:	The temperature for input value >= 100 ohms is calculated exactly from formula: Rt = 100 * (1 + A*t + B*t^2) The temperature for input value < 100 ohms is approximately calculated from the formula: Rt = 100 * (1 + A*t + B*t^2 - 100*C'*t^3) where A = 3.90802E-3, B = -5.802E-7 and C' = -1.216532358E-11 (C' is the 'corrected' value of C = -4.2735E-12). Compared with correct formula Rt = 100 * (1 + A*t + B*t^2 + C*(t- 100)*t^3), this formula gives error of maximum +- 0.0524141 Ohm in temperature range of 0 to -200 degrees Celsius, which produces error of maximum -0.126668 and +0.122284 degrees Celsius in resistance range 100 to 18.49316 Ohm.
Call parameters: Return parameter: Prototype:	IN:input value in ohms(REAL)OUT:output value in degrees Celsius(REAL)temp := PT100 (res);(REAL)

TRMCPL_J

	TRM	CPL_J	
dV —	REAL	REAL	— out
Tc —	REAL		

Thermocouple linearization/compensation for J type	
For conversion from millivolts to degrees Celsius, the standard J-type thermocouple conversion table is used with supporting points at every 1 degrees Celsius. Between supporting points, linear interpolation is used could not estimate maximum errors that result from this 10-degree space supporting points since we had neither a table with more dense spacing polynomial describing the voltage-to-temperature mapping.	0 . We ing of nor a
dV:Voltage diff. between thermocouple junctions (mV)(REA)Tc:Thermocouple cold junction temperature (degrees C)(REA)	L) L)
out: Thermocouple hot junction temperature (degrees C) (REA) temp := TRMCPL J (delta v. tcold):	L)
	Thermocouple linearization/compensation for J typeFor conversion from millivolts to degrees Celsius, the standard J-typethermocouple conversion table is used with supporting points at every 1degrees Celsius. Between supporting points, linear interpolation is used.could not estimate maximum errors that result from this 10-degree spacesupporting points since we had neither a table with more dense spacingpolynomial describing the voltage-to-temperature mapping.dV: Voltage diff. between thermocouple junctions (mV)(REAIThermocouple cold junction temperature (degrees C)out: Thermocouple hot junction temperature (degrees C)(REAItemp:= TRMCPL J (delta v, tcold);

TRMCPL_K

	TRMC	PL_K	
dV —	REAL	REAL	— out
Tc —	REAL		

Short description:	Thermo	ocouple linearization/compensation for K type	
Description:	For cor thermo- degrees could n support polynor	aversion from millivolts to degrees Celsius, the standard k couple conversion table is used with supporting points at s Celsius. Between supporting points, linear interpolation ot estimate maximum errors that result from this 10-degree ting points since we had neither a table with more dense s mial describing the voltage-to-temperature mapping.	K-type every 10 is used. We ee spacing of pacing nor a
Call parameters:	dV:	Voltage diff. between thermocouple junctions (mV)	(REAL)
	Tc:	Thermocouple cold junction temperature (degrees C)	(REAL)
Return parameter:	out:	Thermocouple hot junction temperature (degrees C)	(REAL)
Prototype:	temp :=	= TRMCPL_K (delta_v, tcold);	

2.10 String Management Functions

Standard String Management Functions delivered by CJ International are not described in this document. For their full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these functions, containing the function name and short description:

DELETE	Delete substring
FIND	Find substring
REPLACE	Replace substring
MLEN	String length
INSERT	Insert string
LEFT	Extract left substring
MID	Extract middle substring
RIGHT	Extract right substring
CAT	String Concatenation
DAY_TIME	Time of Day

2.11 Array Manipulation Functions

Standard Array Manipulation Functions delivered by CJ International are not described in this document. For their full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these functions, containing the function name and short description:

ARCREATE	Create INTEGER array
ARREAD	Read INTEGER array element
ARWRITE	Write INTEGER array element

2.12 System Access Functions

Standard System Access Functions delivered by CJ International are not described in this document. For their full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these functions, containing the function name and short description:

SYSTEMSystem accessOPERATEOperate I/O Channel

2.13 Hardware Specific Functions

WDRESET

Short description:	Reset the WatchDog timer.
Description:	The watch dog timer will reset the processor if a PLC cycle will exced 1.6sec duration. Calling WDRESET inside the program, will restart the timer. ATTENTION, the use of WDRESET inside program loops can be dangerous.
Call parameters: Return parameter:	dummy

Prototype: dummy := WDRESET ();

CANONMT

	CANONMT Enable — BOOL Cmd — INT Nodeld — INT	
Short description:	Send NMT command to a CANopen node	
Description:	CANopen nodes can be controlled by a master using the NM master can send NMT commands to cause a change of state i node.	T protocol. The n the remote
Call parameters:	Enable: enable the function Cmd: NMT command, can assume the following values: 1 = START node 2 = STOP node 128 = enter PRE-OPERATIONAL mode 129 = RESET node 130 = RESET COMMUNICATION NodeID: node number from 1 to 127 0 will send command to ALL nodes	(BOOL) (INT)
Return parameter:	ExecutingF: TRUE while executing	(BOOL)
Prototype: Exec	:= CANONMT (TRUE, command, node);	

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

3. Function Blocks

Function blocks can have **more than one output** and can contain **internal memory** that lets certain data **be preseved from one execution of the block to another**. Therefore, a function block may return different values in two invocations with the same input parameters.

Each function block belongs to one of the following classes:

- 1. Boolean data manipulation FBs
- 2. Counting FBs
- 3. Timer FBs
- 4. Analog (integer) data manipulation FBs
- 5. Real data manipulation FBs
- 6. Signal generation FBs
- 7. Variable interface FBs
- 8. Hardware Specific FBs

3.1 Boolean Data Manipulation FBs

Standard Boolean Data Manipulation Function Blocks delivered by CJ International are not described in this document. For their full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these function blocks, containing the function block name and short description::

SR	Set dominant bistable
RS	Reset dominant bistable
R_TRIG	Rising edge detection
F_TRIG	Falling edge detection
SĒMA	Semaphore

EXDR[®] *Tech-note* PN# tn145-0.doc - 04/04/00 - Ver. 1.00

DEMUX_B			
		DEMUX_B	
	Se	et - BOOL BOOL - out1	
	loa	id - BOOL BOOL - out2	
	rese	et - BOOL	
	addres	s - INT BOOL - out16	
	inpu	ut BOOL BOOL aerr	
Short description:	Boolean demult	tiplexer with memory	
Description:	RESET overrid SET overrides I If ADDRESS is See also DEMU	es SET and LOAD inputs. LOAD input. s 0, all outputs are set to 0, just as if RESET input JX_R, DEMUX_A and DEMUX_T blocks.	was active.
Call parameters:	set if TRUI load reset address address input	E, new input value is loaded in each cycle new input value is loaded on rising edge if TRUE, all outputs are set to 0 of output (range 1 to 16) input value to be demultiplexed	(BOOL) (BOOL) (BOOL) (INT) (BOOL)
Return params:	out1out16 aerr	outputs address error: set if address <0 or >16	(BOOL) (BOOL)
Prototype:	DEMUX_B (fs, o1 := DEMUX_ err := DEMUX_	, fl, fr, addr, in); _B.out1; _B.aerr;	

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

SHIFTP_B

Short description:	Bidirectional boolean shift register with 8 parallel inputs and outputs			
Description:	Except that it is of fixed length and has parallel inputs and outputs, the functioning of this block is similar to that of SHIFT_B block. Initially (after power-up) and during reset, the whole register contains only zeros. Inputs in2in7 are parallel inputs only, while inputs in1 and in8 are both parallel and serial inputs. See also SHIFTP_R, SHIFTP_A and SHIFTP_T function blocks.			
Call parameters:	 load: on rising edge, register is loaded from parallel inputs fwd_bwd: shift direction: forwards (TRUE)/backwards clk: shifts one place on rising edge reset: when TRUE, clears register to 0 in1: parallel input 1 and forward shift data input in2: parallel input 2 	(BOOL) (BOOL) (BOOL) (BOOL) (BOOL) (BOOL)		
Return params:	 in7: parallel input 7 in8: parallel input 8 and backward shift data input q1: output 1 	(BOOL) (BOOL) (BOOL)		
Prototype:	<pre>q8: output 8 SHIFTP_B (FALSE, TRUE, TRUE, FALSE, TRUE, FALSE, . TRUE); o1 := SHIFTP_B.q1; o8 := SHIFTP_B.q8;</pre>	(BOOL) TRUE,		

EXDR[®] *Tech-note* PN# tn145-0.doc - 04/04/00 - Ver. 1.00

SWITCH	_B		
act — a1 — a2 — a7 — a8 —	SWITCH_B BOOL BOOL BOOL BOOL BOOL BOOL BOOL BOOL	q1 q2 q7 q8 FALSE	q1 q1 1 1 1 1 1 1 1 1 1 1 1 1 1
Short description:	8 single	e switches for analog (integer) data	
Description: -			
Call parameters:	act:	TRUE: inputs connected to outputs FALSE: FALSE output on all outputs	(BOOL)
	a1:	input to switch 1	(BOOL)
Return params:	a8: q1:	input to switch 8 output of switch 1	(BOOL) (BOOL)
Prototype:	q8: SWITC out1 := out8 :=	output of switch 8 CH_B (TRUE, TRUE, FALSE, TRUE, SWITCH_B.q1; SWITCH_B.q8;	(BOOL) TRUE);
Remarks:	a) See a	also SWITCH_A, SWITCH_R and SWIT	CH_T function blocks.

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

SWITCC_B

Short description:

8 changeover switches for boolean data

Description:

-

Call parameters:	act:	TRUE: A inputs connected to outputs	(BOOL)			
		FALSE: B inputs connected to outputs				
	a1:	switch 1, input A	(BOOL)			
	b1:	switch 1, input B	(BOOL)			
	a8:	switch 8, input A	(BOOL)			
	b8:	switch 8, input B	(BOOL)			
Return params:	q1:	output of switch 1	(BOOL)			
	 a8 [.]	output of switch 8	(BOOL)			
Prototype:	SWITe out1 :=	CC_B (TRUE, FALSE, TRUE, FALSE, FALSE, = SWITCC_B.q1;	FALSE, FALSE);			
	 out8 :=	= SWITCC_B.q8;				
Remarks:	a) See	also SWITCH_R, SWITCH_A and SWITCH_T	function blocks.			

EN CH

Short description: Set output to last changed input

Description: Whenever any of IN1, IN2 inputs is changed, with its corresponding enable input (EN1, EN2) set to TRUE, output is set to the new (changed) state of that input. If both inputs are changed at the same time (in the same PLC cycle) and both are enabled, the new state of the input IN1 will be output. State changes on a disabled input (ENx = FALSE) cannot change the output. This block is used where one boolean value (Q) should be changed from two or more sources. If more than two sources exist, blocks of this type can be cascaded. Call parameters: EN1: enable input1 (BOOL) input1 (BOOL) IN1: EN2: enable input2 (BOOL) IN2: input2 (BOOL)

(BOOL)

output

Return params: Q: Prototype: EN_CH (en1, in1, en2, in2); out := EN_CH.Q;

LATCH

		LATCH	
	EN -	BOOL BOOL	
	IN —	BOOL	
Short description:	Binary latch		
Description:	If enable input EN remains unchange will be FALSE.	l is TRUE, ou d. If EN is FA	tput follows input IN, otherwise output LSE at power-up, the initial value of OUT
Call parameters:	EN: er IN: in	nable input	(BOOL) (BOOL)
Return parameter:	OUT: ou	utput	(BOOL)
Prototype:	LATCH (en, in); out := LATCH.OU	JT;	

UNPACKBOO

Short description:	Unpack a word into bits		
Description:	Unpacking a word in bits is sometimes needed when managing data coming from communication with other devices or I/O equipments.		
Call parameters:	word	(INT)	
Return parameter:	bit0	(BOOL)	
	bit15	(BOOL)	
Prototype:	unpackboo (wo b0 := unpackbo	rd); o.bit0;	

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

3.2 Counting FBs

Standard Counting Function Blocks delivered by CJ International are not described in this document. For their full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these function blocks, containing the function block name and short description::

CTU	Up counter
CTD	Down counter
CTUD	Up-down counter

Currently no functions written by EXOR have been added to this group.

3.3 Timer FBs

Standard Timer Function Blocks delivered by CJ International are not described in this document. For their full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these function blocks, containing the function block name and short description:

TON	On-delay timing
TOFF	Off-delay timing
TP	Pulse timing

DEMUX_T			
		DEMUX_T	
	S	et - BOOL TMR - out1	
	loa	ad - BOOL TMR - out2	
	res	et - BOOL	
	addres	ss - INT TMR - out16	
	inp	ut — TMR BOOL — aerr	
Short description:	Timer demultip	lexer with memory	
Description:	RESET overrid SET overrides I If ADDRESS is See also DEMU	es SET and LOAD inputs. LOAD input. s 0, all outputs are set to 0, just as if RESET inpu JX_A, DEMUX_B and DEMUX_R blocks.	ıt was active.
Call parameters:	set: if TRU Load: seset: address: input:	E, new input value is loaded in each cycle new input value is loaded on rising edge if TRUE, all outputs are set to 0 address of output (range 1 to 16) input value to be demultiplexed	(BOOL) (BOOL) (BOOL) (INT) (TMR)
Return params:	out1out16: aerr	outputs address error: set if address <0 or >16	(TMR) (BOOL)
Prototype:	DEMUX_T (fs o1 := DEMUX err := DEMUX	, fl, fr, addr, in); _T.out1; _T.aerr;	

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

SHIFTP_T

Short description:	Bidirectional timer shift register with 8 parallel inputs and outputs			
Description:	 Except that it is of fixed length and has parallel inputs and outputs, the functioning of this block is similar to that of SHIFT_T block. Initially (after power-up) and during reset, the whole register contains only zeros. Inputs in2in7 are parallel inputs only, while inputs in1 and in8 are both parallel and serial inputs. See also SHIFTP_A, SHIFTP_B and SHIFTP_R function blocks. 			
Call parameters:	load: on risi fwd_bwd: clk: reset: when ' in1: in2: 	ng edge, register is loaded from parallel inputs shift direction: forwards (TRUE)/backwards shifts one place on rising edge TRUE, clears register to 0 parallel input 1 and forward shift data input parallel input 2	(BOOL) (BOOL) (BOOL) (BOOL) (TMR) (TMR)	
	in7: in8:	parallel input 7 parallel input 8 and backward shift data input	(TMR) (TMR)	
Return params:	q1:	output 1	(TMR)	
	q8:	output 8	(TMR)	
Prototype:	SHIFTP_T (FALSE, TRUE, TRUE, FALSE, 2s, 15h30m, 5m20s, 120ms); o1 := SHIFTP_T.q1;			

... o8 := SHIFTP_T.q8;

EXDR [°] Tech-note						
PN# tn145-0.doc	: - 04/04/00	- Ver. 1.00				
SWITCH_	SWITCH_T					
act — a1 — a2 — a7 — a8 —	SWITCH_T BOOL TMR TMR TMR TMR TMR TMR TMR TMR	$ \begin{array}{c} act \\ at $	q1			
Short description:	8 single	e switches for timer data				
Description:	-					
Call parameters:	act: a1: 	TRUE: inputs connected to outputs FALSE: zero output on all outputs input to switch 1	(BOOL) (TMR) (TMR)			
Return params:	q1:	output of switch 1	(TMR) (TMR)			
Prototype:	 q8: SWITC out1 := out8 :=	output of switch 8 CH_T (TRUE, 1s, 22m, 17h, 4m30s, 5s12, 90n SWITCH_T.q1; SWITCH T.q8;	(TMR) ms, 1s20, 1h20m);			
Remarks:	a) See a	also SWITCH_A, SWITCH_B and SWITCH	_R function blocks.			

EXDR[®] <u>Tech-note</u> PN# tn145-0.doc - 04/04/00 - Ver. 1.00

SWITCC_T		
act — BOOL a1 — TMR b1 — TMR · a8 — TMR b8 — TMR	TCC_T TMR q1 $\frac{1}{2}$ TMR q8 $\frac{1}{2}$	q1
Short description:	8 changeover switches for timer data	
Description: -		
Call parameters:	 act: TRUE: A inputs connected to outputs FALSE: B inputs connected to outputs a1: switch 1, input A b1: switch 1, input B a8: switch 8 input A 	(BOOL) (TMR) (TMR) (TMR)
Return params:	 b8: switch 8, input B q1: output of switch 1 	(TMR) (TMR)
Prototype:	<pre>q8: output of switch 8 SWITCC_T (TRUE, 1s, 220ms, 17h, 4m30s, 100ms, out1 := SWITCC_T.q1; out8 := SWITCC_T.q8;</pre>	(TMR) 0s20);
Remarks:	a) See also SWITCH_A, SWITCH_B and SWITCH_R f	function blocks.

3.4 Analog (Integer) Data Manipulation FBs

Standard Analog (INTEGER) Data Manipulation Function Blocks delivered by CJ International are not described in this document. For their full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these function blocks, containing the function block name and short description::

CMP Full comparison STACKINT Stack of INTEGERs

AVRG_A

Short description:	Running average over N integer (analog) samples	
Description:	This is the "analog" equivalent of the standard AVERAGE func Except for changed input and output types, its functioning is exa as the original block. For further details, please refer to the desc original block in the ISaGRAF User's Manual.	tion block. actly the same ription of the
Call parameters:	RUN:enable command, reset average if FALSEXIN:input sampleN:number of samples for averaging	(BOOL) (INT) (INT)
Return params: Prototype:	XOUT: running average AVRG_A (average_enable, sample_value, 4); clean_value := AVRG_A.XOUT;	(INT)

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

DERIV_A

Short description: Differentiation with respect to time

Description:	 This is the "analog" equivalent of the standard DERIVATE function block. Except for changed input and output types, its functioning is exactly the same as the original block. Derivation is output in units of 1/10ms, i.e. the output numerical quantity represents the change of the input signal in the interval of 10ms. The value applied to the CYCLE input does not influence the output value, but is only used to execute calculation and output updating not more often than it states. For further details, please refer to the description of the original block in the ISaGRAF User's Manual. 			
Call parameters:				
Return params: Prototype:	XOUT: output = differentiated input (INT) DERIV_A (TRUE, temp_5, period_5); speed_5 := DERIV_A.XOUT;			
Example:	If the rate of change of input is 200 units per second (200/s), the value that will be output is 2 (200/s = $200/(100*10ms) = (200/100)*(1/10ms) = 2*(1/10ms))$. ATTENTION! For an input with rate of change less than 100 units per second (100/s), output will be 0 (99/s = $99/(100*10ms) = (99/100)*(1/10ms) = INTEGER ARITHMETIC!! = 0*(1/10ms) = 0)$.			

HYSTER_A

Short description: Boolean hysteresis on the difference of analog inputs

Description: This is the "analog" equivalent of the standard HYSTER function block. Except for changed input and output types, its functioning is exactly the same as the original block. For details, please refer to the above drawing and to the description of the original block in the ISaGRAF User's Manual.

Call parameters:	XIN1:	input signal	(INT)		
-	XIN2:	hysteresis centerpoint	(INT)		
	EPS:	hysteresis halfwidth	(INT)		
Return params:	Q:	output	(BOOL)		
Prototype:	HYSTER_A (pressure, press_limit, 21);				
too_high := HYSTER_A.Q;					

EXDR[®] *Tech-note* PN# tn145-0.doc - 04/04/00 - Ver. 1.00

DEADB_A

Short description:	Deadband for analog (integer) input		
Description:	The deadband of total width 2*bw is positioned symetrically around the center point. If the value of "in" input falls within the deadband, "set_p value is output, otherwise "in" value is output. See also DEADB_R and DEADBH_A function blocks.		
Call parameters:	in: input signal set_pt: center point	(INT) (INT)	
Return params: out:	bw: halfwidth of deadband output signal (INT)	(INT)	
Prototype:	DEADB_A (input, 10, 2); out := DEADB_A.out;		

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

DEADBH_A

Short description:	Deadband with hysteresis for analog (integer) input
Description:	To reduce the frequency of switching operations, it is usual to provide final control elements with a hysteresis or differential gap. This hysteresis prevents minor deviations of input signal from the center point from being forwarded to the output. If the system deviation exceeds the switching differential, the input value is passed unchanged to the output. The deadband of width 2*bw is positioned symetrically around the center point and flanked on both sides by hysteresis regions of width eps. Width of deadband bw is measured from the origin of the coordinate system to the center of any hysteresis region.

Call parameters:	in: set_pt: eps: bw:	input signal center point width of hysteresis width of deadband	(INT) (INT) (INT) (INT)
Return params:	out:	output signal	(INT)
Prototype:	DEADBH_A (input, cpt, hyst, bw); out := DEADBH_A.out;		

DELAY A

Short description:

	DELAY_A		
val — delay —	· INT IN · TMR	IT delayed_val	
Time delay of an	alog value		

Description: If delay is smaller than the duration of one program execution cycle, DELAY A block just passes the unmodified input value to the output. The maximum delay value is limited only by ISaGRAF limit on variables of TMR type, i.e. it is 24 hours. If the specified delay is shorter than 100 cycles, val measured in each cycle is put into FIFO and is output after the delay elapses. However, if this is not the case, max. delayed val update period is delay/100, otherwise the FIFO through which the input values pass before being output would be too long. Inside one update period, the values of val input in all cycles belonging to it are averaged to produce the value that is eventually put into FIFO and output later. Averaging is correct for up to 10 cycles per update period, but for longer update periods, certain values are weighted with varying weights in order to keep the needed memory space limited. value to delay Call parameters: val: (INT) delay: delay time (TMR)

delayed value

(INT)

delayed val: Return params: Prototype: DELAY A (value, deltat); d val := DELAY A.delayed val

EXDR[®] *Tech-note* PN# tn145-0.doc - 04/04/00 - Ver. 1.00

DEMUX_A			
		DEMUX_A	
	S	et BOOL INT out1	
	loa	ad - BOOL INT - out2	
	res	et — BOOL	
	addres	ss - INT INT out16	
	inp	ut INT BOOL aerr	
Short description:	Integer demulti	plexer with memory	
Description:	RESET overrid SET overrides I If ADDRESS is See also DEMU	es SET and LOAD inputs. LOAD input. s 0, all outputs are set to 0, just as if RESET input JX_R, DEMUX_B and DEMUX_T blocks.	was active.
Call parameters:	set if TRU load reset address address input	E, new input value is loaded in each cycle new input value is loaded on rising edge if TRUE, all outputs are set to 0 of output (range 1 to 16) input value to be demultiplexed	(BOOL) (BOOL) (BOOL) (INT) (INT)
Return params:	out1out16 aerr	outputs address error: set if address <0 or >16	(INT) (BOOL)
Prototype:	DEMUX_A (fs o1 := DEMUX_ err := DEMUX_	, fl, fr, addr, in); _A.out1; _A.aerr;	

DIVIDE_A

		DIVIDE		
	dividend -	- INT INT	- quotient	
	divisor -	INT INT	modulo	
Short description:	Full integer divide	er (quotient and	remainder)	
Description:	Returns -1 on both	n outputs if divi	sor is less than	or equal to 0.
Call parameters:	dividend: nu divisor: nu	umber to be div umber to divide	ided with	(INT) (INT)
Return params:	quotient: re modulo: re	sult of division mainder value		(INT) (INT)
Prototype:	DIVIDE_A (dend res := DIVIDE_A rem := DIVIDE_A	, sor); .quotient; A.modulo;		

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

DSEL_A

Short description:	Double independently operated analog switch with two inputs		
Description:	Please refer to the above relay diagram which should be clear end	ough.	
Call parameters:	sel_in:Selects in_1 (FALSE) or in_2 (TRUE)sel_out:Selects out_1 (FALSE) or out_2 (TRUE)in_1:Analog input 1in_2:Analog input 2default_out:Value to be placed at non-selected output	(BOOL) (BOOL) (INT) (INT) (INT)	
Return params:	out_1: Analog output 1 out_2: Analog output 2	(INT) (INT)	
Prototype:	DSEL_A (selin, selout, inval1, inval2, defout); outval1 := DSEL_A.out_1; outval2 := DSEL_A.out_2;		

EXDR[®] *Tech-note* PN# tn145-0.doc - 04/04/00 - Ver. 1.00

LIM_AL_A

Short description:	Alarm detection for an analog (integer) variable
Description:	-

Call parameters:	H:	High limit	(INT)
_	X:	Variable value	(INT)
	L:	Lower limit	(INT)
	EPS: Hystere	esis around limits(INT)	
Return params:	QH:	High alarm	(BOOL)
	Q:	Any alarm (QH or QL)	(BOOL)
	QL:	Low alarm	(BOOL)
Prototype:	LIM_AL_A (21	5.0, temp_5, 120.5, 30);	
	hot $:= LIM_A$	LRM.QH;	
	alarm := LIM_A	ALRM.Q;	
	cold := LIM_A	LRM.QL;	

a) This is the "analog" equivalent of the standard LIM_ALRM function Remarks: block.

EXDR[®] *Tech-note* PN# tn145-0.doc - 04/04/00 - Ver. 1.00

LIMMON_A

	LIMMON_A			
INPUT -	INT			
HH_Limit	INT	BOOL	— нн	ł
H Limit —	INT	BOOL	— н	
L Limit —	INT	BOOL	— г	
LL Limit	INIT	BOOL	— LL	

Short description:	Extended limit monitor of integer value

Description:	This function block implements the standard industrial 4-level limit monitor, supporting high alarm (HH), high prealarm (H), low prealarm (L) and low alarm (LL) levels. The 4 outputs indicate in which of the 5 regions the input value currently is:			
	above HH		HH output TRUE	
	between HH and H		H output TRUE	
	between L and H (inside	e "normal" band)	all outputs FALSE	
	between LL and L		L output TRUE	
	below LL		LL output TRUE	
	At most one of the outputs will be TRUE at any time, except when the limit			
	values are not in increasing order, i.e. when the inequality			
	LL_Limit <= L_Limit < H_Limit <= HH_Limit			
	is not satisfied, in which	n case all 4 outpu	ts will be set to TRUE.	
Call parameters:	INPUT	(INT)		
1	HH Limit	(INT)		
	H Limit	(INT)		
	L Limit	(INT)		
	LL_Limit	(INT)		

Return params:	HH	(BOOL)
	Н	(BOOL)
	L	(BOOL)
	LL	(BOOL)

Prototype:	LIMMON_A (in, hh_l, h_l, l_l, ll_l);
	hh_alarm := LIMMON_A.HH;
	$h_alarm := LIMMON_A.H;$
	l alarm := LIMMON A.L;
	ll_alarm := LIMMON_A.LL;

MAJOR_A					
	MA	JOR_A			
dev —	INT				
in1 —	INT	INT		out	
in2 —	INT	BOOL		err	
in3 —	INT				
in4 —	INT				

Short description:	Majority selector for integer inputs		
Description:	The majority selector calculates the mean value of all input differs from the calculated mean value by more calculated once more, but that input is excluded from If more than one input deviates by more than dev, the input values is calculated and the output err is set. See also MAJOR_R function block.	inputs. If exactly one than dev, mean value is the calculation. e mean value of all of the	
Call parameters:	dev: Max. permissible deviation between any input and the calculated mean value in1: Input 1	(INT) (INT)	
	in4: Input 4	(INT)	
Return params:	out: Mean value of inputs not deviating by more than dev from itself	(INT)	
	err: set when majority selection is impossible	(BOOL)	
Prototype:	MAJOR_A (deviation, i1, i2, i3, i4); error := MAJOR_A.err; mean := MAJOR_A.out;		

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

PID_A

Short description: PID Controller with analog (integer) inputs and output

Description: This is the "analog" version of the standard PID_REX function block: all inputs and the output which are of type REAL in the original block are here of type ANALOG (INTEGER).

AUTO: Auto (TRUE)/Manual (FALSE) mode (BOOL)			
PV:	Process variable (X)		(INT)
SP:	Setpoint (W)		(INT)
X0:	Value to be output in Manual mo	ode	(INT)
KP:	Proportional gain		(INT)
TR:	Integral time		(INT)
TD:	Derivative time		(INT)
CYCLE :	Calculation and output updating	period	(TMR)
XMIN: Min. va	lue of output quantity (Y)		(INT)
XMAX:	Max. value of output quantity (Y	<i>(</i>)	(INT)
XOUT: Output	quantity (Y)	(INT)	
PID_A (TRUE, heater := PID_A	temp_5, 1200, manual_temp, kp A.XOUT;	, tr, td, 0	s40, 0, 10000);
Algorithm implemented in this block is the so-called "independent" PID algorithm. Kp multiplies all three terms (proportional, integral and derivative) in the following way:			
error = SP - PV XOUT = KP * ((error + (1/TR)*integral(error) + 7	TD*deri	vative(error))
	AUTO: Auto (T PV: SP: X0: KP: TR: TD: CYCLE : XMIN: Min. va XMAX: XOUT: Output PID_A (TRUE, heater := PID_A Algorithm impl algorithm. Kp n in the following error = SP - PV XOUT = KP * (AUTO: Auto (TRUE)/Manual (FALSE) modePV:Process variable (X)SP:Setpoint (W)X0:Value to be output in Manual modeKP:Proportional gainTR:Integral timeTD:Derivative timeCYCLE :Calculation and output updatingXMIN: Min. value of output quantity (Y)XMAX:Max. value of output quantity (Y)XOUT: Output quantity (Y)PID_A (TRUE, temp_5, 1200, manual_temp, kpheater := PID_A.XOUT;Algorithm implemented in this block is the so-caalgorithm. Kp multiplies all three terms (proportion in the following way:error = SP - PVXOUT = KP * (error + (1/TR)*integral(error) + Transformed in the so-ca	AUTO: Auto (TRUE)/Manual (FALSE) mode (BOOL)PV:Process variable (X)SP:Setpoint (W)X0:Value to be output in Manual modeKP:Proportional gainTR:Integral timeTD:Derivative timeCYCLE :Calculation and output updating periodXMIN: Min. value of output quantity (Y)XMAX:Max. value of output quantity (Y)XOUT: Output quantity (Y)(INT)PID_A (TRUE, temp_5, 1200, manual_temp, kp, tr, td, 0heater := PID_A.XOUT;Algorithm implemented in this block is the so-called "incalgorithm. Kp multiplies all three terms (proportional, intin the following way:error = SP - PVXOUT = KP * (error + (1/TR)*integral(error) + TD*deri

For this type of algorithm, optimum KP, TR, TD parameters according to the Ziegler-Nichols method are:

for P controller:	KP = 0.5 * KPosc		
for PI controller:	KP = 0.45 * KPosc	TR = 0.83 * Tosc	
for PID controller:	KP = 0.6 * KPosc	TR = 0.5 * Tosc	TD = 0.125 * Tosc

where KPosc is that KP which causes constant-amplitude closed-loop oscillations with only P-action enabled and Tosc is the period of these oscillations.

WARNINGS FOR THE USER:

With respect to PID algorithm using real (floating-point) arithmetic, PID algorithm using integer arithmetic suffers from the following additional problems:

1. Overflow

Overflow is a major problem in integer PID algorithms using 16-bit variables for internal data storage. However, since here variables are of the type "signed long integer", which are 32-bit entities in C-compilers for 80x86 processors, the problem is much less pronounced.

Having the range of -2 147 483 648 to +2 147 483 647, with reasonable values for process value (X), set-point (W) and output value (Y), as well as proportional gain (Kp), integral (Ti) and derivative (Td) times, the probability of exceeding the "signed long" range is extremely low. For this reason, no range checking is done, which makes the algorithm faster.

2. Rounding noise

Integer arithmetic rounds off all division results. Obviously, accuracy is lost in this way. Divisions cannot be avoided, but it is important to make sure that:

- a) the ratio between the integer division result and the truncated decimal part is as large as possible and that
- b) rounding-off errors are not cumulative.

The problem of keeping the dividends much larger than divisors is in stand-alone PID controllers usually solved by appropriate scaling (normalization). This is easily done, since, although X, W and Y can each be expressed in its own physical units, they are usually represented by already normalized input or output signals (0-10V, 0-20mA, 4-20mA), transferred into digital domain also as normalized quantities (0-4095 for 12-bit A/D converters).

OUR CASE IS DIFFERENT. Our PID is a function block having numerical inputs and outputs for which no fixed range is defined in advance. For this reason, no reasonable normalization can be done and this step remains AT THE RESPONSIBILITY OF THE BLOCK USER.

In extreme cases, rounding errors can make an otherwise stable system become unstable. In less critical cases, permanent small oscillations of the output value (Y) in the stable state result. They can adversely affect the actuator, if not filtered out by an external dead-band block.

To avoid problems of this kind and worse, it is recommended to choose Y range to be at least 1-1000 and to scale X and W to values greater than 100 before applying them to the inputs of the analog PID block.

3. Input parameters resolution

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Since input parameters of an analog PID are also integer quantities, they too are subject to loss od resolution.

For example, Kp is often in the range 1-10. If Kp were input without scaling, with Kp = 1,5 we could only choose whether to apply 1 or 2 to the Kp input, with Kp = 1 probably giving too slow rise-time and Kp = 2 too high and too broad an overshoot.

Ti and Td are subject to similar resolution-related problems.

Standard "real" PID block supplied by CJ International already uses Ti and Td in 10ms units, which is equal to the basic resolution of the whole system. Therefore, 100 is applied to Ti input to indicate Ti = 1 second. This approach was not changed; on "analog" PID, the same units are used, so that no problems with Td and Ti resolution emerge.

Kp, however, was subject to input scaling: what is input is NOT the actual value od Kp, but the value Kp*100. Therefore, for Kp = 1,5, the value applied to the Kp input should be 150.

This is consistent with Ti and Td and helps improve resolution in the most useful range of Kp values.

See also PID_REX function block.

PLAUS_A			
in - INT INT - INT - INT	- out		
Short description:	Plausibility che	cking block for analog (i	integer) input
Description:	The block comp the "in" input w successive samp the output. If the difference mean value of " this one, "in" is plausible value, If the difference output is still at previous "in" va the output.	pares the difference betw with the value on the "diff ples is less than "diff", the e exceeds "diff", the valu 'in" samples in the 3 prec compared not to the pre i.e. one before it. e in the cycle following t pove "diff", this is taken alues are plausible and the	reen two succesive values sampled on f" input. If the difference of he actual "in" value is forwarded to he to be output is calculated as the ceding cycles. In the cycle following ceding value, but with the last he cycle in which the mean value was as the proof that both this and he "in" value is normally forwarded to
Call parameters:	in: diff:	input allowed difference	(INT) (INT)
Return params:	out:	output	(INT)
Prototype:	PLAUS_A (inp o := PLAUS_A	ut, difference); .out;	

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

SHIFTP_A

Short description:	Bidirectional analog (integer) shift register with 8 parallel inputs and outputs		
Description:	Except that it is of fixed length and has parallel inputs and outputs, the functioning of this block is similar to that of SHIFT_A block. Initially (after power-up) and during reset, the whole register contains only zeros. Inputs in2in7 are parallel inputs only, while inputs in1 and in8 are both parallel and serial inputs. See also SHIFTP_R, SHIFTP_B and SHIFTP_T function blocks.		
Call parameters:	load: on risin fwd_bwd: clk: reset: in1: in2:	g edge, register is loaded from parallel inputs shift direction: forwards (TRUE)/backwards shifts one place on rising edge when TRUE, clears register to 0 parallel input 1 and forward shift data input parallel input 2	(BOOL) (BOOL) (BOOL) (BOOL) (INT) (INT)
	in7: in8:	parallel input 7 parallel input 8 and backward shift data input	(INT) (INT)
Return params:	q1:	output 1	(INT)
	 q8:	output 8	(INT)
Prototype:	SHIFTP_A (FA o1 := SHIFTP_ 	LSE, TRUE, TRUE, FALSE, 2, 15, -4, 0, 100, 1 A.q1;	, 52, -12);

o8 := SHIFTP_A.q8;

EXDR[®] *Tech-note* PN# tn145-0.doc - 04/04/00 - Ver. 1.00

SWITCH	_A		
act — a1 — a2 — a7 — a8 —	SWITCH_A BOOL INT INT INT INT INT INT INT INT	$ \begin{array}{c} act \\ all \\ ql \\ ql \\ ql \\ ql \\ ql \\ ql \\ q$	q1
L Short description:	8 singl	e switches for analog (integer) data]
Description:	-		
Call parameters:	act: a1: 	TRUE: inputs connected to outputs FALSE: zero output on all outputs input to switch 1	(BOOL) (INT)
Return params:	að. q1:	output of switch 1	(INT) (INT)
Prototype:	q8: SWITC out1 := out8 :=	output of switch 8 CH_A (TRUE, 1, 22, -17, 4, 512, -93, 100, 0); SWITCH_A.q1; SWITCH_A.q8;	(INT)
Remarks:	a) See	also SWITCH_R, SWITCH_B and SWITCH_	T function blocks.

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Short description:

8 changeover switches for analog (integer) data

Description:

Call parameters	act:	TRUE: A inputs connected to outputs FALSE: B inputs connected to outputs	(BOOL)
	a1:	switch 1, input A	(INT)
	b1:	switch 1, input B	(INT)
	 a8:	switch 8, input A	(INT)
	b8:	switch 8, input B	(INT)
Return params:	q1:	output of switch 1	(INT)
	 q8:	output of switch 8	(INT)
Prototype:	SWITCC_A (out1 := SWIT	TRUE, 1, 22, -17, 4, 100, 0); CC_A.q1;	

Remarks: a) See also SWITCH_R, SWITCH_B and SWITCH_T function blocks.

out8 := SWITCC_A.q8;

RAMP_A

Short description: Ramp limiter for analog signals

Description:Output (OUT) follows the input signal (IN) as long as the absolute value of its rate
of change is below the value applied to the SLOPE input. When the absolute value
of rate of change of input exceeds SLOPE, the rate of change of output il limited
to +SLOPE or -SLOPE until the moment when OUT again becomes equal to IN. At
that moment, tracking continues.
SLOPE is expressed in units of 1/10ms, i.e. the numerical value applied to this
input represents the maximum allowed change of the IN signal in the interval of
10ms. This makes the block compatible with blocks delivered by CJ International
(e.g. derivator). However, care should be taken to appropriately scale the IN
signal, since due to integer arithmetic, the least SLOPE supported is 100 units per
second (100/s = 1/10ms).Call parameters:IN:input(INT)

Call parameters:	IN:	input	(INT)
	SLOPE:	allowed input change	(INT)
Return params:	OUT:	output	(INT)
Prototype:	RAMP_A (inp, slope);	
	outp := RA	MP_A.out;	

3.5 Real Data Manipulation FBs

Standard Real Data Manipulation Function Blocks delivered by CJ International are not described in this document. For their full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these function blocks, containing the function block name and short description::

AVERAGE	Running average of REAL samples
HYSTER	Boolean hysteresis on the difference of REALs
LIM_ALRM	High/low limit alarm with hysteresis
INTEGRAL	Integration over time
DERIVATE	Differentiation with respect to time
	*

CMP_R

Short description:	Full comparison of	Full comparison of two real numbers		
Description:	-			
Call parameters:	VAL1, VAL2:	numbers to be compared	(REAL)	
Return params:	LT: EQ: GT:	TRUE if VAL1 is lower than VAL2 TRUE if VAL1 is equal to VAL2 TRUE if VAL1 is greater than VAL2	(BOOL) (BOOL) (BOOL)	
Prototype:	CMP_R (value, reference); is_lower = CMP_R.LT; is_equal = CMP_R.EQ; is_greater = CMP_R.GT;			

REALATCH

	f	data — REALATCH REAL REAL ollow — BOOL — output	
Short description:	Real data la	tch	
Description:	For follow = For follow = moment of	= TRUE, output follows data. = FALSE, output holds the value the TRUE-to-FALSE transition.	e present at the data input at the
Call parameters:	data: follow:	real data input enable input following	(REAL) (INT)
Return params:	output:		(REAL)
Prototype:	REALATC: flow_max :=	H (flow, pass); = REALATCH.OUTPUT;	

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

DEADB_R

Short description:	Deadbanc	l for real input		
Description:	The deadl center poi value is o See also I	The deadband of total width 2*bw is positioned symetrically around the center point. If the value of "in" input falls within the deadband, "set_pt" value is output, otherwise "in" value is output. See also DEADB_A and DEADBH_R function blocks.		
Call parameters:	in: set_pt: co bw:	input signal enter point halfwidth of deadband	(REAL) (REAL) (REAL)	
Return params:	out:	output signal	(REAL)	
Prototype:	DEADB_ out := DE	R (input, 10., 2.); ADB_R.out;		

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

DEADBH_R

Short description:	Deadband with hysteresis for real input
Description:	To reduce the frequency of switching operations, it is usual to provide final control elements with a hysteresis or differential gap. This hysteresis prevents minor deviations of input signal from the center point from being forwarded to the output. If the system deviation exceeds the switching differential, the input value is passed unchanged to the output. The deadband of width 2*bw is positioned symetrically around the center point and flanked on both sides by hysteresis regions of width eps. Width of deadband bw is measured from the origin of the coordinate system to the center of any hysteresis region.

Call parameters:	in:	input signal	(REAL)
	set_pt: ce	nter point	(REAL)
	eps:	width of hysteresis	(REAL)
	bw:	width of deadband	(REAL)
Return params:	out:	output signal	(REAL)
Prototype:	DEADBH out := DEA	_R (input, cpt, hyst, bw); ADBH_R.out;	

DELAY_R		
	val — REAL REAL delay delay — TMR	/ed_val
Short description:	Time delay of real value	
Description:	If delay is smaller than the duration of DELAY_R block just passes the unmo maximum delay value is limited only be type, i.e. it is 24 hours. If the specified delay is shorter than 10 put into FIFO and is output after the de However, if this is not the case, max. d otherwise the FIFO through which the would be too long. Inside one update period, the values of are averaged to produce the value that later. Averaging is correct for up to 10 cycler update periods, certain values are weig keep the needed memory space limited	one program execution cycle, dified input value to the output. The by ISaGRAF limit on variables of TMR 0 cycles, val measured in each cycle is elay elapses. elayed_val update period is delay/100, input values pass before being output val input in all cycles belonging to it is eventually put into FIFO and output s per update period, but for longer hted with varying weights in order to
Call parameters:	val: value to delay delay: delay time	(REAL) (TMR)
Return params:	delayed_val: delayed value	(REAL)
Prototype:	DELAY_R (value, deltat); d_val := DELAY_R.delayed_val	

EXDR[®] *Tech-note* PN# tn145-0.doc - 04/04/00 - Ver. 1.00

DEMUX_R			
	e	DEMUX_R	
	loa	ad - BOOL REAL - out2	
	res	et - BOOL	
	addres	ss - INT REAL - out16	
	inp	ut — REAL BOOL — aerr	
Short description:	Real demultiple	exer with memory	
Description:	RESET overrid SET overrides I If ADDRESS is See also DEMU	es SET and LOAD inputs. LOAD input. s 0, all outputs are set to 0, just as if RESET input JX_A, DEMUX_B and DEMUX_T blocks.	was active.
Call parameters:	set: if TRU load reset address: input	E, new input value is loaded in each cycle new input value is loaded on rising edge if TRUE, all outputs are set to 0 address of output (range 1 to 16) input value to be demultiplexed	(BOOL) (BOOL) (BOOL) (INT) (REAL)
Return params:	out1out16 aerr	outputs address error: set if address <0 or >16	(REAL) (BOOL)
Prototype:	DEMUX_R (fs o1 := DEMUX err := DEMUX	, fl, fr, addr, in); R.out1; R.aerr;	(2002)

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

DSEL_R

Short description:	Double independently operated real switch with two inputs			
Description:	Please refer to the above relay diagram which should be	clear enough.		
Call parameters:	sel_in:Selects in_1 (FALSE) or in_2 (TRUE)sel_out:Selects out_1 (FALSE) or out_2 (TRUE)in_1:Real input 1in_2:Real input 2default_out:Value to be placed at non-selected output	(BOOL) (BOOL) (REAL) (REAL) at (REAL)		
Return params:	out_1: Real output 1 out_2: Real output 2	(REAL) (REAL)		
Prototype:	DSEL_R (selin, selout, inval1, inval2, defout); outval1 := DSEL_R.out_1; outval2 := DSEL_R.out_2;			

LIMMON_R

Short description: Extended limit monitor of real value

Description:	This function block supporting high ala alarm (LL) levels. value currently is:	timplements the standard industrial 4-level limit monitor, rm (HH), high prealarm (H), low prealarm (L) and low The 4 outputs indicate in which of the 5 regions the input			
	above HH	HH output TRUE			
	between HH and H	H output TRUE			
	between L and H (i	between L and H (inside "normal" band)all outputs FALSE			
	between LL and L	L output TRUE			
	below LL	LL output TRUE			
	At most one of the outputs will be TRUE at any time, except when the limit values are not in increasing order, i.e. when the inequality LL_Limit <= L_Limit < H_Limit <= HH_Limit				
	is not satisfied, in v	which case all 4 outputs will be set to TRUE.			
Call parameters:	INPUT	(REAL)			
	HH_Limit	(REAL)			
	H_Limit	(REAL)			
	L_Limit	(REAL)			

(REAL)

Return params:	HH	(BOOL)
ŕ	Н	(BOOL)
	L	(BOOL)
	LL	(BOOL)

LL_Limit

Prototype:	LIMMON_R (in, hh_l, h_l, l_l, ll_l);
	hh_alarm := LIMMON_R.HH;
	$h_alarm := LIMMON_R.H;$
	1 alarm := LIMMON R.L;
	ll_alarm := LIMMON_R.LL;

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

MAJOR_R

Short description:	Majority selector for real inputs			
Description:	The majority selector calculates the mean value of all inputs. If exactly one input differs from the calculated mean value by more than dev, mean value is calculated once more, but that input is excluded from the calculation. If more than one input deviates by more than dev, the mean value of all of the input values is calculated and the output err is set. See also MAJOR_A function block.			
Call parameters:	dev: Max. permissible deviation between any input and the calculated mean value in1: Input 1	(REAL) (REAL)		
	in4: Input 4	(REAL)		
Return params:	out: Mean value of inputs not deviating by more than dev from itself	(REAL)		
	err: set when majority selection is impossible	(BOOL)		
Prototype:	MAJOR_R (deviation, i1, i2, i3, i4); error := MAJOR_R.err; mean := MAJOR_R.out;			

PLAUS_R

Short description:	ir dif Plausibility che	F PLAUS_R REAL REAL REAL REAL	t
Short description.	r lausionity che	cking block for fear nipu	it
Description:	The block comp the "in" input w successive samp the output. If the difference mean value of ' this one, "in" is plausible value, If the difference output is still ab previous "in" va the output.	pares the difference betw vith the value on the "diff ples is less than "diff", the e exceeds "diff", the valu 'in" samples in the 3 prec compared not to the pre , i.e. one before it. e in the cycle following t pove "diff", this is taken alues are plausible and th	reen two succesive values sampled on f" input. If the difference of he actual "in" value is forwarded to he to be output is calculated as the ceding cycles. In the cycle following ceding value, but with the last he cycle in which the mean value was as the proof that both this and he "in" value is normally forwarded to
Call parameters:	in:	input	(REAL)
I	diff:	allowed difference	(REAL)
Return params:	out:	output	(REAL)
Prototype:	PLAUS_R (inp o := PLAUS_R	ut, difference); out;	

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

SHIFTP_R

Short description:	Bidirectional real shift register with 8 parallel inputs and outputs			
Description:	Except that it functioning of Initially (after zeros. Inputs in2in parallel and se See also SHIF	t is of fixed length and has parallel inputs and outputs, the of this block is similar to that of SHIFT_R block. r power-up) and during reset, the whole register contains only n7 are parallel inputs only, while inputs in1 and in8 are both serial inputs. FTP_A, SHIFTP_B and SHIFTP_T function blocks.		
Call parameters:	load: on ris fwd_bwd: clk: reset: when in1: in2: 	ing edge, register is loaded from parallel inputs shift direction: forwards (TRUE)/backwards shifts one place on rising edge TRUE, clears register to 0 parallel input 1 and forward shift data input parallel input 2	(BOOL) (BOOL) (BOOL) (BOOL) (REAL) (REAL)	
	in7: in8:	parallel input 7 parallel input 8 and backward shift data input	(REAL) (REAL)	
Return params:	q1:	output 1	(REAL)	
	q8:	output 8	(REAL)	
Prototype:	SHIFTP_R (F 5.2,7); o1 := SHIFTP	ALSE, TRUE, TRUE, FALSE, 2.1, 15., -4.11, 0., 2_R.q1;	100., 1.5,	

... o8 := SHIFTP_R.q8;

STACKR

Short description:	Stack of real values	
Description:	-	
Call parameters:	PUSH:pushes IN value on rising edgePOP:pops value on rising edgeR1:TRUE resets stack to the "Empty" stateIN:value to be pushedN:maximum stack depth	(BOOL) (BOOL) (BOOL) (REAL) (INT)
Return params:	EMPTY: TRUE indicates that the stack is empty OFLO: TRUE indicates stack overflow OUT: value at the top of stack	(BOOL) (BOOL) (REAL)
Prototype:	STACKR (push_cmd, pop_cmd, reset_cmd, push_value stackempty := STACKR.EMPTY; overflow := STACKR.OFLO; top_value := STACKR.OUT;	e, max_stack);

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

SWITCH_R

Short description:

8 single switches for real data

Description:

-

Call parameters:		act: TRUE: inputs connected to outputs FALSE: zero output on all outputs		(BOOL)
		a1:	input to switch 1	(REAL)
		a8:	input to switch 8	(REAL)
Return params:		q1:	output of switch 1	(REAL)
		 q8:	output of switch 8	(REAL)
Prototype:		SWITC out1 :=	H_R (TRUE, 1., 22.2, -17.11, 4., 512., -93.745, 1 SWITCH_R.q1;	100., 0.);
		 out8 :=	SWITCH_R.q8;	
Remarks:	a) See al	lso SWI	TCH_A, SWITCH_B and SWITCH_T function	blocks.

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

_

SWITCC_R

Short description:

8 changeover switches for real data

Description:

Call parameters:	act: TRUE: A inputs connected to outputs FALSE: B inputs connected to outputs		(BOOL)
	a1:	switch 1, input A	(REAL)
	b1:	switch 1, input B	(REAL)
	 28.	switch 8 input A	(REAL)
	b8:	switch 8, input B	(REAL)
Return params:	q1:	output of switch 1	(REAL)
	 q8:	output of switch 8	(REAL)
Prototype:	SWITC out1 :=	C_R (TRUE, 1., 22.6, -17.11, 4., 100., 0.52); SWITCC_R.q1;	
	 out8 :=	SWITCC_R.q8;	
Remarks:	a) See a	llso SWITCH_A, SWITCH_B and SWITCH_T f	function blocks.

EXDR[°] <u>Tech-note</u>

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

LAG

		LAG		
	I	N - REAL		
	-	ti — real re	AL - OUT	
	CYCL	E - TMR		
Short description:	First order filter	r		
Description:	The transfer fur has the dimensi In the time dom certain lag. The OUT. If a step function output, accordin In this case, but reasonable amo considered to be Many natural pl simulated using	nction implement on of time, and hain, output OU' erate of output of on is applied to the ng to the following to the following also in any other ount of time, for e equal to the in henomena (for each of the block	ted by this block is: $1/(T p)$ is the Laplace transform f will follow the value of hange is proportional to the input, an exponential ng formula: OUT = IN* er case in which the IN v practical purposes, the o put after an interval of 3 example common heating	[I*p + 1), where TI m (p-plane) operator. f input IN with a the difference IN - waveform will be (1 - exp(-t/TI)). value is stable for a output can be 5*TI. g processes) can be
Call parameters:	IN: TI: CYCLE:	value to be filto integral time (i input sampling	ered n units of 0,01s) interval	(REAL) (REAL) (TMR)
Return parameter:	OUT: filtered	value		(REAL)
Prototype:	LAG (in, 10., 1s); filtered = LAG.OUT;			
Remarks:	a) TI input is of has a dimensior this awkward ty blocks, delivere release of ISaG ALL inputs/out REAL use a un 100. must be ap	E type REAL alt of time, so typ ping is in keepi ed by CJ Interna RAF! puts in ALL fur it of 10ms . For oplied to such ar	nough it is used for input e TMR would be approp ng the block compatible tional. This may change action blocks with dimen example, to denote a tim- input.	tting a quantity that riate. The reason for with similar standard with the following asion of time and type he interval of 1s, value

TWO_ST		
	TWO_ST REAL DT TMR BOOL OUT PD TMR DB REAL	
Short description:	Two state regulator	
Description:	 This block is used for switching the output load ON and OFF according t the value of the input signal. Two mechanisms for protecting both the contactor and the load from too frequent switching are provided: deadband minimum times for ON and OFF output states. If IN exceeds DB and if the time elapsed since last ON-to-OFF transition OUT exceeds DT, OUT is set to ON. If IN falls below the negative value of DB and if the time elapsed since la OFF-to-ON transition of OUT exceeds PD, OUT is set to OFF. 	o of ast
Call parameters:	IN:input value(REAL)DT:min. output non-activation time (dead time)(TMR)PD:minimum output ON pulse duration(TMR)DB:dead band(REAL))
Return params:	OUT: ON (TRUE)/OFF output (BOOL)
Prototype:	TWO_ST (in, 5s, 20s, 1.5); on_off := TWO_ST.OUT;	

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

STEP_REG

Short description: 3-state controller with PID velocity algorithm

Description: Internally, the block can be conceived as being composed ot two sub-blocks: PID and 3-state Controller, connected in series. Input to the PID sub-block is the deviation value : SP - PV, and its output is the internal variable Y. The difference of PID output values in the current and previous calculation cycles, Y[k] - Y[k-1], is fed to the input of the 3-state Controller sub-block. If this value exceeds the positive value of the dead band, output OPEN is set to TRUE (ON) and output CLOSE is set to FALSE (OFF). If it exceeds the negative value of dead band, OPEN is set to FALSE and CLOSE is set to TRUE, providing that minimum output ON and OFF times have elapsed. The minimum duration of TRUE (ON) state on any output is equal to PD and the minimum duration of FALSE (OFF) state is equal to DT. Input sampling period (CYCLE) depends on the process that is controlled. Since PID parameters also depend on the process, a good rule of the thumb is to choose CYCLE to be approximately equal to Tmin/10, where Tmin is defined as min(KD,KP).

EXDR[®] *Tech-note* PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Call parameters:	SP:	setpoint	(REAL)	
-	PV:	process variable	(REAL)	
	DB:	dead band	(REAL)	
	KD:	derivative time	(REAL)	
	KI:	integral time	(REAL)	
	KP:	proportional gain	(REAL)	
	NORMA:	maximum setpoint or process variable value	(REAL)	
	PD:	minimum output ON time	(TMR)	
	DT:	minimum output OFF time (dead time)	(TMR)	
	CYCLE:	inputs sampling period	(TMR)	
	OT:	time needed for fully opening/closing the valve	(TMR)	
Return params:	OPEN: when T	RUE (ON), valve is opening	(BOOL)	
*	CLOSE:	when TRUE (ON), valve is closing	(BOOL)	
Prototype:	<pre>STEP_REG (in_real, db_real, kd_real, ki_real, kp_real, norma_real, pd_tmr, dt_tmr, cycle_tmr, ot_tmr); op_out := STEP_REG.OPEN; cl_out := STEP_REG.CLOSE;</pre>			
Remarks:	or an external automatic control specialist b) KD and KI inputs are of type REAL although they are used for inputting quantites that have a dimension of time, so type TMR would be appropriate. The reason for this awkward typing is in keeping the block compatible with similar standard blocks, delivered by CJ International. This may change with the following release of ISaGRAF! ALL inputs/outputs in ALL function blocks with dimension of time and type REAL use a unit of 10ms . For example, to denote a time interval of 1s, value 100. must be applied to such an input.			

RAMP_R

		RAMP_R	
	SLC	IN - REAL REAL OUT	
Short description:	Ramp limiter	for real signals	
Description:	Output (OUT) its rate of char absolute value of output il li again become SLOPE is exp this input repr interval of 10 CJ Internation) follows the input signal (IN nge is below the value applie e of rate of change of input ex- mited to +SLOPE or -SLOPI s equal to IN. At that momen- ressed in units of 1/10ms, i.e esents the maximum allowed ns. This makes the block con- nal (e.g. derivator).	as long as the absolute value of d to the SLOPE input. When the exceeds SLOPE, the rate of change E until the moment when OUT at, tracking continues. e. the numerical value applied to d change of the IN signal in the mpatible with blocks delivered by
Call parameters:	IN: SLOPE:	input allowed input change	(REAL) (REAL)
Return params:	OUT: outpu	t	(REAL)
Prototype:	RAMP_R (inp outp := RAM	o, slope); P R.out;	

Short description: PID controller with real I/O, EXOR version

Description: This PID Controller block implements the same algorithm as the standard PID_CJ function block delivered by CJI with the following differences: - current time is not read from the static variable LAST_DATE, since this doesn't work; a call to sys_readtim() function is done instead - when calculated output is outside the XMIN-XMAX interval, the appropriate limit value is output just as in PID_CJ; but, integral term is not reset to zero - it is recalculated so that the equation PTERM + ITERM + DTERM = XOUT remains satisfied.

Call parameters:	AUTO:	Auto (TRUE)/Manual (FALSE) mode	(BOOL)	
-	PV:	Process variable (X)	(REAL)	
	SP:	Setpoint (W)	(REAL)	
	X0:	Value to be output in Manual mode	(REAL)	
	KP:	Proportional gain	(REAL)	
	TR:	Integral time	(REAL)	
	TD:	Derivative time	(REAL)	
	CYCLE :	Calculation and output updating period	(TMR)	
	XMIN: Min	XMIN: Min. value of output quantity (Y) (R		
	XMAX:	Max. value of output quantity (Y)	(REAL)	
Return params:	XOUT: Out	XOUT: Output quantity (Y)		
Prototype:	PID_REX (1	IRUE, temp_5, 120.5, manual_temp, kp, tr, td, 0)s40, 0., 1000.)	

: PID_REX (TRUE, temp_5, 120.5, manual_temp, kp, tr, td, 0s40, 0., 1000.); heater := PID_REX.XOUT;

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

Remarks: Algorithm implemented in this block is the so-called "independent" PID algorithm. Kp multiplies all three terms (proportional, integral and derivative) in the following way:

error = SP - PV XOUT = KP * (error + (1/TR)*integral(error) + TD*derivative(error))

For this type of algorithm, optimum KP, TR, TD parameters according to the Ziegler-Nichols method are:

for Pcontroller:KP = 0.5 * KPoscfor PI controller:KP = 0.45 * KPoscTR = 0.83 * Toscfor PID controller:KP = 0.6 * KPoscTR = 0.5 * Tosc0.125*ToscTD = 0.125 * ToscTD = 0.125 * Tosc

where KPosc is that KP which causes constant-amplitude closed-loop oscillations with only P-action enabled and Tosc is the period of these oscillations.

IMPORTANT! Integral time (TR) and derivative time (TD) MUST be input in units of 10ms, e.g. 100 should be applied to TR to indicate that integral time is 1 second.

See also PID_A function block.

Short description:	Reservoir (integrator) with input and output flow				
Description:	This block simulates a prismatic (cylindrical) reservoir with input and output pipe and upper (full) and lower (empty) limit level as depicted above.				
Call parameters:	qin: qout: basearea: minlevel: maxlevel:	flow in input pipe flow in output pipe area of the prismatic reservoir base minimum level (reservoir empty) maximum level (reservoir spilling over)	(REAL) (REAL) (REAL) (REAL) (REAL)		
Return params:	level: curre	level: current level in the reservoir (REAL)			
Prototype:	RESERV (0. lvl = RESER	RESERV (0.5, 0.4, 1., 0., 5.); lvl = RESERV.level;			
Remarks:	Reasonable of in U units, the basearea must U ³ /s units.	Reasonable care about units must be taken: if one wants level to be expressed in U units, then minlevel and maxlevel must also be expressed in U units, basearea must be expressed in U^2 units and qin and qout must be expressed in U^3/s units.			
Example:	For level in meters, minlevel could be 0, maxlevel 5m, basearea $1m^2$, qin could be $0.5m^3$ /s and qout $0.4m^3$ /s. In this case, level would steadily rise at the rate of $0.1m$ /s until it reaches 5m, then it would remain at that value until qout becomes greater then qin.				

LINTRANS

Short description:	Linear tran	Linear transformation of real input		
Description:	out = a * in + b			
Call parameters:	in: a: b:	input signal multiplication factor offset	(REAL) (REAL) (REAL)	
Return params:	out:	output signal	(REAL)	
Prototype: LIN out	TRANS (input := LINTRANS	t, 10., 2.); .out;		

3.6 Signal Generation FBs

Standard Signal Generation Function Blocks delivered by CJ International are not described in this document. For their full description, please refer to the ISaGRAF User's Manual.

For quick reference, here is just a brief listing of these function blocks, containing the function block name and short description::

BLINK Blinking BOOLEAN signal

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

BLINK_A

Short description:Alternating analog (integer) signal generationDescription:Based on standard boolean BLINK function block. Once enabled, the output
will toggle continuously between high_val and low_val values with the
period equivalent to cycle. When disabled, low_val will be output.

Call parameters:	run:	Bink enable	(BOOL)
1	cycle: Blinking period		(TMR)
	high val:	1st level to be output	(INT)
	low_val:	2nd level to be output	(INT)
Return params:	out_a:	Output signal	(INT)
Prototype:	BLINK_A (enab, period, hilev, lolev); signal = BLINK A.out a;		

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

BLINK_R

Short description: Alternating real signal generation

Description: Based on standard boolean BLINK function block. Once enabled, the output will toggle continuously between high_val and low_val values with the period equivalent to cycle. When disabled, low_val will be output.

Call parameters:	run:	Bink enable	(BOOL)
-	cycle: Blinking period		(TMR)
	high_val:	1st level to be output	(REAL)
	low_val:	2nd level to be output	(REAL)
Return params:	out_r: Outp	ut signal	(REAL)
Prototype:	BLINK_A (e. signal = BLI	nab, period, hilev, lolev); NK_A.out_r;	

MONO

		MONO		
	retriggerable - start - pulse_time -	BOOL BOOL BOOL TMR	— Q — time_elapsed	
Short description:	Monostable elem	ent		
Description:	-			
Call parameters:	retriggerable: in start: pulse_time:	f TRUE, monos positive duration	table can be retriggered edge triggers monostable of monostable pulse	(BOOL) (BOOL) (TMR)
Return params:	Q: time_elapsed: ti	monosta ime elapsed fror	ble output n last pos. edge of start	(BOOL) (TMR)
Prototype:	MONO (TRUE, 7 out := MONO.Q; rest := MONO.tir	TRUE, 5s); me_elapsed;		

OSC_SIN

		OSC_SIN		
	enal	ole - BOOL		
	peri	od - TMR REAL	sine	
	amplitu	de REAL BOOL	err	
Short description:	Sine wave oscil	lator		
Description:	The sine wave i period. If enable is FAI The period shou cycle, otherwise	s created from a tab LSE, output is set to Ild be minimally 20 e the err output is set	e containing 256 am 0. times longer than the and zero is output of	plitude values per duration of one PLC n the sine output.
Call parameters:	enable: period: amplitude:	oscillator enable period of oscillation amplitude of sine w	15 'ave	(BOOL) (TMR) (REAL)
Return params:	sine: err:	sine wave set to TRUE if peri-	od is too short	(REAL) (BOOL)
Prototype:	OSC_SIN (TRU osc := OSC_SIN error := OSC_S	JE, per, amp); N.sine; IN.err;		

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

OSC_SQW

		-
	OSC_SQW	
enable —	BOOL	
amp1 —	REAL	
amp2 —	REAL	
amp3 —	REAL	
amp4 —	REAL REAL	— square
t1 —	TMR	
t2 —	TMR	
t3 —	TMR	
t4 —	TMR	

Short description:	Four-level s	quare wave oscillator	
Description:	One full per different du period indep If enable is	iod of the square wave is composed of ration and with the output amplitude se pendently. FALSE, output is set to 0.	² 4 parts with potentially electable for each sub-
Call parameters:	enable: amp1: amp amp2: amp amp3: amp amp4: amp t1: t2: t3: t4:	oscillator enable blitude during time T1 blitude during time T2 blitude during time T3 blitude during time T4 time T1 time T2 time T3 time T4	(BOOL) (REAL) (REAL) (REAL) (REAL) (TMR) (TMR) (TMR) (TMR)
Return params:	square:	square wave output	(REAL)

Prototype: OSC_SQW (start, 0., 1., 0., -1., 1s, 1s, 1s, 1s); sqw := OSC_SQW.square;

DUTYCYC			
	cyc duty	le	
Short description:	Digital oscillato	or with variable duty-cycle	
Description:	Within each cyc duration and FA The first cycle a dutyc is less tha If dutyc is less to If dutyc is great output.	cle, the out signal will be TRUE for duty ALSE for (100 - dutyc) percent of the cyc after power-up will begin with out set to an or equal to zero. than or equal to zero, a steady FALSE signer than or equal to 100%, a steady TRUE	te percent of the cycle cle duration. TRUE, except if gnal will be output. E signal will be
REMARK:	One should take target: 55ms (or interval. Theref DUTYCYC and As a reasonable for CYCLE is 1 CYCLE input of the cycle and th accepted in mos If CYCLE is sh of the resolution	e into account the limited time resolution ne BIOS tick). No regular pulse can be sl ore, some lower limit on the CYCLE inp d DUTYCYCM blocks must be respected e value, 10 seconds for this limit is propo loms, 10 seconds are represented by num of the block.) In this case, 55ms will be a his amount of error introduced by the fini st applications. Horter than this, one must be aware of the n-related error, rising with the decreasing	n of the PC-based horter than this but variable to d. sed. (Since the unit her 1000 applied to pproximately 0,5% of te resolution can be increased influence g CYCLE value.
Call parameters:	cycle: dutyc:	Cycle time Duty-cycle percentage (0100%)	(TMR) (REAL)
Return params:	out:	Output waveform	(BOOL)
Prototype:	DUTYCYC (1r wave := DUTY	n30s, 20.5); CYC.out;	

Tech-note

tn145-0.doc - 04/04/00 - Ver. 1.00

DUTYCYCM

Short description: Multiple digital oscillator with variable duty-cycle

Description:

Within each cycle, on each channel the outX signal will be TRUE for dutycX percent of the cycle duration and FALSE for (100 - dutycX) percent of cycle duration. The FALSE-to-TRUE transition on each two successive channels will be apart by 0.125*cycle. In this way, FALSE-to-TRUE (OFF-to-ON) transitions will be uniformly spaced over the cycle duration. This is very important since this function block is typically used as a pulsewidth modulator whose outputs drive electrical heaters, known to create current surges in a short interval following the switch-on. By spacing the OFF-to-ON transitions uniformly over the cycle duration, the power supply can be designed for just Isurge_{max} instead of 8*Isurge_{max}, which is the worst case for non-synchronized channels. If dutyc is less than or equal to zero for some channel, a steady FALSE signal will be output on that channel's output. If dutyc is greater than or equal to 100% for some channel, a steady TRUE signal will be output on that channel's output. **REMARK:** One should take into account the limited time resolution of the PC-based target: 55ms (one BIOS tick). No regular pulse can be shorter than this interval. Therefore, some lower limit on the CYCLE input variable to DUTYCYC and DUTYCYCM blocks must be respected.

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

As a reasonable value, 10 seconds for this limit is proposed. (Since the unit for CYCLE is 10ms, 10 seconds are represented by number 1000 applied to CYCLE input of the block.) In this case, 55ms will be approximately 0,5% of the cycle and this amount of error introduced by the finite resolution can be accepted in most applications. If CYCLE is shorter than this, one must be aware of the increased influence

of the resolution-related error, rising with the decreasing CYCLE value.

Call parameters:	cycle: dutyc1: dutyc2:	Cycle time Duty-cycle percentage, channel 1 (0100%) Duty-cycle percentage, channel 2 (0100%)	(TMR) (REAL) (REAL)
	dutyc8:	Duty-cycle percentage, channel 8 (0100%)	(REAL)
Return params:	out1: out2:	Output waveform, channel 1 Output waveform, channel 2	(BOOL) (BOOL)
	out8:	Output waveform, channel 8	(BOOL)
Prototype:	DUTYCYC wave1 := D	CM (1m30s, 10.7, 22.5, 30., 49.2, 55.5, 65., 78., 83.1 UTYCYCM.out1;	.);

wave8 := DUTYCYCM.out8;

3.7 Variable Access FBs

USR_RANA

	USR_R	ANA	
word_adr	 INT	INT	word_val

Short description:	Read one analog variable	
Description:	Read the analog value of a variable using the Network Address to select it If the variable is not found (Network Address is not defined) the returned value is 0 The returned value is always analog even if the variable is of different typ	
Call parameters:	WORD_ADR: network address	(INT)
Return params:	WORD_VAL: analog output	(INT)
Prototype:	USR_RANA (16#1000); value := USR RANA.WORD VAL;	

USR_WANA

	word_adr — USR_WANA INT INT word_val — INT	
Short description:	Write one analog variable	
Description:	Write a analog value to a variable using the Netw If the variable is not found (Network Address is value is FALSE The value is always written as analog even if the	vork Address to select it. not defined) the returned variable is of different type.
Call parameters:	WORD_ADR: network address WORD_VAL: analog output	(INT) (INT)
Return params:	WRITTEN: TRUE if successful	(BOO)
Prototype:	USR_WANA (16#1000,1234); isok := USR_WANA.WRITTEN;	

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

3.8 Hardware Specific FBs

CANSDORD

Short description:	Read one variable in CANopen node using SDO protocol		
Description:	Read an element of remote database using SDO protocol, as defined in CANopen standard document DS301.		
Call parameters:	ENABLE:start the read operation, must be reset by userNODEID:node number od the remote nodeIDX:index in remote databaseSUBIDX:subindex in databaseDATATYPEtype of data to be read (see table below)	(BOO) (INT) (INT) (INT) (INT)	
Return params:	EXECUTINGF: TRUE if operation is still in progress ERRCOD:state of the last execution (see table below) ABORTCOD: code answered by remote node (see table below INTEGERVALUE: value read represented as integer number FLOATVALUE: value read represented as float numbe	(BOO) (BOO) (BOO) (INT) (REAL)	
Prototype:	CANSDORD(TRUE, node, index, subindex, INT32); isrunning := CANSDORD.EXECUTINGF; error := CANSDORD.ERRCOD; answer:= CANSDORD.ABORTCOD; Value := CANSDORD.INTEGERVALUE;		
Remarks:	several SDO operations cannot be executed on the same node time.	at the same	

Data Type Table 1 BOOL

- 2 INT8
- INT16 3 4
- INT32 5 UINT8
- UINT16 6
- 7 UINT32
- FLOAT 8

Error Codes Table

Too many SDO/PDO 12

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

- 13 Invalid parameter/s
- 14 Invalid reply from remote SDO server
- 15 Returned size differs from requested size
- 16 No reply timeout

Abort code Description

0503 0000h Toggle bit not alternated.

0504 0000h SDO protocol timed out.

0504 0001h Client/server command specifier not valid or unknown.

0504 0002h Invalid block size (block mode only).

0504 0003h Invalid sequence number (block mode only).

0504 0004h CRC error (block mode only).

0504 0005h Out of memory.

0601 0000h Unsupported access to an object.

0601 0001h Attempt to read a write only object.

0601 0002h Attempt to write a read only object.

0602 0000h Object does not exist in the object dictionary.

0604 0041h Object cannot be mapped to the PDO.

0604 0042h The number and length of the objects to be mapped would exceed PDO length.

0604 0043h General parameter incompatibility reason.

0604 0047h General internal incompatibility in the device.

0606 0000h Access failed due to an hardware error.

0607 0010h Data type does not match, length of service parameter does not match

0607 0012h Data type does not match, length of service parameter too high

0607 0013h Data type does not match, length of service parameter too low

0609 0011h Sub-index does not exist.

0609 0030h Value range of parameter exceeded (only for write access).

0609 0031h Value of parameter written too high.

0609 0032h Value of parameter written too low.

0609 0036h Maximum value is less than minimum value.

0800 0000h general error

0800 0020h Data cannot be transferred or stored to the application.

0800 0021h Data cannot be transferred or stored to the application because of local control.

0800 0022h Data cannot be transferred or stored to the application because of the present device state.

0800 0023h Object dictionary dynamic generation fails or no object dictionary is present (e.g. object

dictionary is generated from file and generation fails because of an file error).

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

CANSDOWR

	CANSDOWR
	Enable — BOOL BOOL — ExecutingF Nodeld — INT INT — ErrCod Idx — INT INT — AbortCod SubIdx — INT Datatype — INT IntegerValue — INT FloatValue — REAL
Short description:	Write one variable in CANopen node using SDO protocol
Description:	Write an element of remote database using SDO protocol, as defined in CANopen standard document DS301.
Call parameters:	ENABLE:start the read operation, must be reset by user(BOO)NODEID:node number od the remote node(INT)IDX:index in remote database(INT)SUBIDX:subindex in database(INT)DATATYPEtype of data to be read (see table below)(INT)INTEGERVALUE: value read represented as integer number(INT)FLOATVALUE: value read represented as float numbe(REAL)
Return params:	EXECUTINGF: TRUE if operation is still in progress(BOO)ERRCOD: state of the last execution (see table below)(BOO)ABORTCOD: code answered by remote node (see table below)(BOO)
Prototype:	CANSDORD(TRUE, node, index, subindex, INT32, 1234, 0.0); isrunning := CANSDORD.EXECUTINGF; error := CANSDORD.ERRCOD; answer:= CANSDORD.ABORTCOD;
Remarks:	several SDO operations cannot be executed on the same node at the same time.

Data Type Table

- BOOL 1
- 2 INT8
- 3 INT16
- 4 INT32
- 5 UINT8 6 UINT16
- 7 UINT32
- 8 FLOAT

Error Codes Table

- Too many SDO/PDO 12
- Invalid parameter/s 13
- Invalid reply from remote SDO server Returned size differs from requested size 14
- 15

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

16 No reply timeout

Abort code Description

0503 0000h Toggle bit not alternated. 0504 0000h SDO protocol timed out. 0504 0001h Client/server command specifier not valid or unknown. 0504 0002h Invalid block size (block mode only). 0504 0003h Invalid sequence number (block mode only). 0504 0004h CRC error (block mode only). 0504 0005h Out of memory. 0601 0000h Unsupported access to an object. 0601 0001h Attempt to read a write only object. 0601 0002h Attempt to write a read only object. 0602 0000h Object does not exist in the object dictionary. 0604 0041h Object cannot be mapped to the PDO. 0604 0042h The number and length of the objects to be mapped would exceed PDO length. 0604 0043h General parameter incompatibility reason. 0604 0047h General internal incompatibility in the device. 0606 0000h Access failed due to an hardware error. 0607 0010h Data type does not match, length of service parameter does not match 0607 0012h Data type does not match, length of service parameter too high 0607 0013h Data type does not match, length of service parameter too low 0609 0011h Sub-index does not exist. 0609 0030h Value range of parameter exceeded (only for write access). 0609 0031h Value of parameter written too high. 0609 0032h Value of parameter written too low. 0609 0036h Maximum value is less than minimum value. 0800 0000h general error 0800 0020h Data cannot be transferred or stored to the application. 0800 0021h Data cannot be transferred or stored to the application because of local control. 0800 0022h Data cannot be transferred or stored to the application because of the present device state. 0800 0023h Object dictionary dynamic generation fails or no object dictionary is present (e.g. object dictionary is generated from file and generation fails because of an file error).

PN# tn145-0.doc - 04/04/00 - Ver. 1.00

4. Index

А ABS A.6 ACCESS TO VARIABLE FBs, 115 ANALOG (INTEGER) DATA MANIPULATION FBs, 57 ARITHMETIC FUNCTIONS, 4 ARRAY MANIPULATION FUNCTIONS, 35 AVRG A, 58 В BIT, 13 BLINK A, 107 BLINK R, 108 **BOOLEAN DATA** MANIPULATION FBs, 40 **BOOLEAN FUNCTIONS,** 11 С CANONMT, 38 CANSDORD, 117 CANSDOWR, 119 CMP R, 81 COMPARISON FUNCTIONS, 17 COUNTING FBs, 49 D DATA CONVERSION FUNCTIONS, 28 DATA MANIPULATION FUNCTIONS, 20 DEADB A, 61 DEADB R, 83 DEADBH A, 62 DEADBH R, 84 DELAY A, 63 DELAY R, 85 DEMUX A, 64 DEMUX B, 41 DEMUX R, 86 DEMUX T, 51 DERIV A, 59 DIVIDE A, 65 DSEL A, 66 DSEL R, 87

DUTYCYC. 112 DUTYCYCM, 113 E EN CH, 46 EXP, 8 EXP R, 7 Η HARDWARE SPECIFIC FBs. 117 HARDWARE SPECIFIC FUNCTIONS, 37 HYSTER A, 60 L LAG, 97 LATCH, 47 LIM AL A, 67 LIMIT R, 27 LIMMON A, 68 LIMMON R, 88 LINTRANS, 105 LN. 9 LOGIC FUNCTIONS, 12 Μ MAJOR A, 69 MAJOR R, 89 MAX R, 21 MIN R. 22 MONO, 109 MUX4 R, 23 MUX8 B, 25 MUX8 R, 24 Ο OSC SIN, 110 OSC SQW, 111 Р PACKBOO, 16 PID A, 70 PID REX, 102 PLAUS A. 73 PLAUS R, 90 PT100, 31 R **RAMP A, 79** RAMP R, 101 **REAL DATA** MANIPULATION FBs, 80 REALATCH. 82 **REGISTER CONTROL** FUNCTIONS, 18 **RESERV**, 104 S SCALE A, 29

SCALE R, 30 SEL R, 26 SET, 14 SHIFT, 19 SHIFT A, 74 SHIFT B, 42 SHIFT R. 91 SHIFT T, 52 SHIFTP A, 75 SHIFTP B, 43 SHIFTP R, 92 SHIFTP T, 53 SIGNAL GENERATION FBs, 106 STACKR, 94 STEP REG, 99 STRING MANAGEMENT FUNCTIONS, 34 SWITCC A, 78 SWITCC B, 45 SWITCC_R, 96 SWITCC T, 56 SWITCH A, 77 SWITCH B, 44 SWITCH R, 95 SWITCH T, 55 SYSTEM ACCESS FUNCTIONS, 36 Т THRSHLD, 15 TIMER FBs, 50 TRIGONOMETRIC FUNCTIONS. 10 TRMCPL J, 32 TRMCPL K. 33 TWO ST, 98 U UNPACKBOO, 48 USR RANA. 115 USR_WANA, 116 W WDRESET, 37