DMP Position finder

For accurate positioning in warehouse and conveying areas
The DMP position finders are opto-electronic sensors used for fine positioning with millimetre precision, for example in warehouse and conveying areas.

At transfer and storage locations, movement in the steelwork caused by temperature and load variations make reliable positioning impossible. The DMP position finder has been developed in order to solve this problem. The sensors are specifically used for fine positioning in x- and y-directions.

Industries and applications

> The DMP position finders are designed for applications reliant on extremely accurate transfer operations.

- For precise positioning of storage and retrieval units in high-bay warehouses,
- for automatic rail installation machines,
- for positioning of car elevators in automated car parks,
- for transfer stations between static and mobile handling transport systems,
- for the docking of driverless transport systems with pinpoint accuracy,
- many other applications.

> High-bay warehouses/ Storage and retrieval units

> Automated truck unloading
DMP3

The reflector-less DMP3 is recommended for working ranges from 200 to 350 mm. The device is a camera-based sensor for fine positioning on holes or coloured dots.

DMP2

The DMP2 is used for greater working ranges up to 2000 mm. This sensor works with reflectors. Both devices always adapt to the current, actual conditions on site and thus enable secure entry and exit operations or even docking operations, with pinpoint accuracy.

> Automated parking systems
Direct target approach by fixed reference point or reflector.

The DMP3 orients itself onto pre-taught holes or coloured dots in the storage system, identified by the camera-based sensor. The DMP2 uses reflectors attached to each storage bay.

Compensation for tolerances in steel construction allow accurate positioning.

In high-bay storage bins, there can be tolerance-dependent storage measurements due to uneven warehouse floors in addition to material-dependent tolerances in the construction. These tolerances do not influence the accuracy of the DMP sensors.

Temperature-dependent tolerances do not have any influence on the positioning accuracy.

Temperature fluctuations can lead to changes in storage area dimensions, with loading and unloading operations becoming a non-calculable risk. The DMP sensors ensure reliable loading and unloading always based on the actual conditions.
Compensation is made for inconsistencies in the travel of the storage and retrieval unit caused by acceleration and deceleration.

Acceleration and deceleration of high-bay stackers involves variations of the mast which require compensation in the case of automatic positioning. The DMP sensors take these variations into account, thus ensuring reliable positioning of the goods.

Changing location measurements caused by weight are compensated for.

The loading and unloading of pallets etc. generates weight-related tolerances in the storage area dimensions, which are rendered irrelevant when using the DMPs for positioning operations. The DMPs permit a space-saving and material-optimised bay construction.

Increasing the degree of automation by using the DMP3s and DMP2s.

Even for constantly changing ambient conditions, the DMPs facilitate the precise selection of storage bays, and similar, and thus permit automatic loading and unloading sequences.
DMP3 and DMP2 Position finder – Simple, in principle.

DMP3 and DMP2 operating principle

The DMP position finders are opto-electronic sensors with a two-dimensional receiver element and are used – following rough positioning – for optical, non-contact fine positioning of a handling unit or moving unit in x- and y-direction.

The basic principle – autocollimation

The DMP sensors operate according to the autocollimation principle: the light emitted by the sensor is reflected, in case of the DMP3, from the periphery of the hole, i.e. the internal diameter, by a sticker or, in the case of the DMP2, by a reflector and mapped to the receiver array of the sensor. From this image, the position of the hole, sticker or reflector is determined.

A position display with four LEDs simplifies alignment by providing a visual indication of the state of the switching outputs.
<table>
<thead>
<tr>
<th>Feature</th>
<th>DMP3</th>
<th>DMP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light source</td>
<td>LED, Infrared</td>
<td>Red light</td>
</tr>
<tr>
<td>Target/reference</td>
<td>Hole or coloured dot</td>
<td>Reflector</td>
</tr>
<tr>
<td>Range on hole/coloured dot</td>
<td>200 … 350 mm</td>
<td>-</td>
</tr>
<tr>
<td>Scanning range with reflector PL22</td>
<td>–</td>
<td>200 … 500 mm</td>
</tr>
<tr>
<td>Scanning range with reflector PL50A</td>
<td>–</td>
<td>500 … 1,200 mm</td>
</tr>
<tr>
<td>Scanning range with reflector PL80A</td>
<td>–</td>
<td>500 … 2,000 mm</td>
</tr>
<tr>
<td>Teach-in</td>
<td>Two different positions with Teach-in button</td>
<td>–</td>
</tr>
<tr>
<td>Scanning angle</td>
<td>± 10° in all axis</td>
<td>± 10° in all axis</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>18 … 30 V DC</td>
<td>18 … 30 V DC</td>
</tr>
<tr>
<td>Outputs</td>
<td>4 x Q (Qx, Qy, Q+, Q-)</td>
<td>2 x Q(AX, Qy), 1 x Qz /</td>
</tr>
<tr>
<td>M12 8-pin</td>
<td>M12 8-pin (DMP2-compatible)</td>
<td></td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>-40 … +50 °C with heating</td>
<td>-25 … +55 °C</td>
</tr>
<tr>
<td>Enclosure rating</td>
<td>IP 54</td>
<td>IP 67</td>
</tr>
</tbody>
</table>

The handling or transfer unit is moved until the centre point of the reflected light is in the middle of the receiver array. This operation leads to the fine positioning required, and the load handling can begin.
DMP3 and DMP2 Position finder – Connections made easy.

Switching output and crosshairs

The four LEDs in the crosshairs of the DMP3 significantly simplify positioning. Moreover, the corresponding switching behaviour of the switching outputs Q_x, Q_{+y}, Q_y and Q_{-y} can be easily read.
From rough to fine positioning

The handling or transfer unit is prepositioned by the central control system ensuring it is in the detection range of the DMP. Following this rough positioning, the DMP position finder takes over the fine control of the drives until the final position is reached.

DMP

- with switching output \((Q_{X}, Q_{Y}, Q_{X'}, Q_{Y'})\)
Two switching outputs for the \(x\)- and two for the \(y\)-axis continuously report the relative distance of the hole/sticker from the centre of the receiver array.

DMP2

- with analogue \((Q_{AX}, Q_{AY})\) and switching output \((Q, Q_{R})\)
One analogue output for the \(x\)- and one for the \(y\)-axis continuously reports the relative distance of the reflectors from the centre of the receiver array. The switching output \(Q\) switches as soon as the reflector is in the detection range of the DMP (reflector detected). The switching output \(Q_{R}\) switches when the reflector is mapped in the centre of the receiver array (“correct position”).

- with switching output \((Q_{X}, Q_{AX}, Q_{Y}, Q_{AY})\)
Two switching outputs for the \(x\)- and two for the \(y\)-axis continuously report the relative distance of the reflector from the centre of the receiver array. The switching output \(Q_{R}\) switches when the reflector is mapped in the centre of the receiver array (“correct position”).

DMP3 – Teach-in for two different target positions

The DMP3 offers an additional feature: two different positions can be taught within the detection range: thus, loading and unloading of the storage bay can be performed even more accurately.

DMP2 – with analogue \((Q_{RX}, Q_{RY})\) and switching output \((Q, Q_{R})\)

The behaviour of the outputs \(Q\) (“correct position”) or \(Q_{R}\) (“reflector detected”) each for PNP or NPN.
DMP3 Position finder with switching outputs

- Scanning range: 200 ... 350 mm

- Four switching outputs
- Integrated evaluation
- Simple operation
- Teach-in: two different positions

Connection type

DMP3-xxxx

- Connection type: 8-pin, M12

Accessories

- Cable receptacle

Adapters

DMP3-xxxx

1. Connection plug M12, 8-pin
2. T-rail for mounting
3. Fixing hole
4. Optical axis
5. LED green, power indicator
6. Teach button
7. Four LEDs, position indicator

Accessories

- Cable receptacle

Scanning range

- 200 ... 350 mm

Dimensions

- 64.5 mm
- 31.5 mm (4x)
- 5.5 mm (4x)

Connections

- Bank Select Input
- L+ (+18 ... 30 V)
- Q-X
- Q+X
- Q-Y
- M (OV)
- Teach-in Input
- Teach button

Components

- Teach-in: two different positions
- Connection plug M12, 8-pin
- T-rail for mounting
- Fixing hole
- Optical axis
- LED green, power indicator
- Teach button
- Four LEDs, position indicator

Scanning range

- 200 ... 350 mm

Position finder

- Simple operation
- Teach-in: two different positions

Accessories

- Cable receptacle

Connection type

- DMP3-xxxx

Adjustments possible

- DMP3-xxxx

Connections

- Bank Select Input
- L+ (+18 ... 30 V)
- Q-X
- Q+X
- Q-Y
- M (OV)
- Teach-in Input
Technical data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scanning range</td>
<td>200 ... 350 mm</td>
</tr>
<tr>
<td>(Hole diameter 10 ... 20 mm)</td>
<td></td>
</tr>
<tr>
<td>Repetition accuracy RW</td>
<td>0.15 mm (at 300 mm RW)</td>
</tr>
<tr>
<td>Scanning angle</td>
<td>± 10°</td>
</tr>
<tr>
<td>Light sender, light source</td>
<td>LED, infrared, Class 1M</td>
</tr>
<tr>
<td>Supply voltage V_S 2)</td>
<td>18 ... 30 V DC</td>
</tr>
<tr>
<td>Ripple 2)</td>
<td>< 5 V_{PP}</td>
</tr>
<tr>
<td>Current consumption 3)</td>
<td>< 250 mA</td>
</tr>
<tr>
<td>Current consumption with heating</td>
<td>< 1.3 A</td>
</tr>
<tr>
<td>Switching outputs</td>
<td>HIGH = V_s – ≤ 2 V/LOW ≤ 2 V</td>
</tr>
<tr>
<td>Operating mode</td>
<td>Permanent</td>
</tr>
<tr>
<td>Teach-In Input</td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>> 7 V ... < V_s, max</td>
</tr>
<tr>
<td>Inactive</td>
<td>0 V ... < 2 V or unconnected</td>
</tr>
<tr>
<td>Bank Select Input</td>
<td></td>
</tr>
<tr>
<td>Bank 1</td>
<td>0 V ... < 2 V or unconnected</td>
</tr>
<tr>
<td>Bank 2</td>
<td>> 7 V ... < V_s, max</td>
</tr>
<tr>
<td>Output current I_max.</td>
<td>100 mA total</td>
</tr>
<tr>
<td>Switching frequency</td>
<td>20/s</td>
</tr>
<tr>
<td>Connection type</td>
<td>M12 plug, 8-pin</td>
</tr>
<tr>
<td>VDE protection class</td>
<td>IP 54</td>
</tr>
<tr>
<td>Enclosure rating</td>
<td></td>
</tr>
<tr>
<td>Ambient temperature 4)</td>
<td>Operation: 0 ... +50 °C without heating</td>
</tr>
<tr>
<td></td>
<td>Operation: -40 ... +50 °C with heating</td>
</tr>
<tr>
<td></td>
<td>Storage: -40 ... +70 °C</td>
</tr>
<tr>
<td>Shock resistance</td>
<td>According to IEC 68</td>
</tr>
<tr>
<td>Weight</td>
<td>Approx. 450 g</td>
</tr>
<tr>
<td>Housing material</td>
<td>Aluminium/zinc die-cast</td>
</tr>
</tbody>
</table>

1) Limit values, reverse-polarity protected
2) Must be within V_s tolerances
3) Without load
4) Do not bend cable below 0 °C

Switching states

<table>
<thead>
<tr>
<th>Switching states</th>
<th>View area [mm] y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>120 x 120</td>
</tr>
<tr>
<td></td>
<td>100 x 100</td>
</tr>
<tr>
<td></td>
<td>70 x 70</td>
</tr>
</tbody>
</table>

Viewing area

<table>
<thead>
<tr>
<th>Viewing area [mm] x</th>
<th>Distance [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>300</td>
<td>350</td>
</tr>
</tbody>
</table>

Order information

<table>
<thead>
<tr>
<th>Type</th>
<th>Order no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMP3-8111</td>
<td>1042918</td>
</tr>
<tr>
<td>DMP3-8121</td>
<td>1042919</td>
</tr>
</tbody>
</table>
DMP2 Position finder with switching outputs

Scanning range
200 ... 2000 mm

- Five switching outputs
- Integrated software
- Simple operation

Dimensional drawing

Adjustments possible

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Middle of the optic axis</td>
</tr>
<tr>
<td>2</td>
<td>Receiver</td>
</tr>
<tr>
<td>3</td>
<td>Threaded mounting hole M6, 8 mm deep</td>
</tr>
<tr>
<td>4</td>
<td>Connection plug M12, 8-pin, 90° rotatable</td>
</tr>
<tr>
<td>5</td>
<td>Power indicator</td>
</tr>
<tr>
<td>6</td>
<td>Alignment aid</td>
</tr>
</tbody>
</table>

Connection type

DMP2-P21111
DMP2-N21111

Accessories

- Cable receptacle
- Reflectors

8-pin, M12

- red
- yellow
- green
- brown
- M
- Q_R
- Q_Y
- Q_X
- Q_R
- L+
- AT
Technical data

<table>
<thead>
<tr>
<th>Scanning range</th>
<th>DMP2-P</th>
<th>21111</th>
<th>DMP2-N</th>
<th>21111</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeatability RW (depending on reflector)</td>
<td>0.15 mm (at 300 mm RW)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scanning angle</td>
<td>± 10° in all axes vertical to the reflector (PL22, PL50A, PL80A)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light source</td>
<td>LED, red light</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply voltage V_S</td>
<td>18 ... 30 V DC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ripple V_S</td>
<td>< 5 V_{pp}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current consumption</td>
<td>< 250 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching outputs</td>
<td>PNP: HIGH = $V_S - \leq 2 V$, LOW = 0 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating mode</td>
<td>Permanent or synchronized can be selected</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blanking input AT</td>
<td>PNP: > 18 V ... < V_S max.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output current I_{P} max.</td>
<td>100 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching frequency f</td>
<td>250/s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response time t</td>
<td>3 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connection type</td>
<td>M12 plug, 8-pin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VDE protection class</td>
<td>A, B, C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enclosure rating</td>
<td>IP 67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>Operation –25 ... +55 °C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock resistance</td>
<td>According to IEC 68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>Approx. 990 g</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Housing material</td>
<td>Zinc</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Average service life 100,000 h (at $T_A = 25 °C$)
2) Limit values, reverse-polarity protected
3) Must be within V_S tolerances
4) Without load
5) With light/dark ratio 1:1, no time delay
6) With resistive load
7) Reference voltage 50 V DC
8) Do not bend cable below 0 °C

Scanning range

- **0 (mm)**
 - 400
 - 800
 - 1200
 - 1600
 - 2000

- **1000 x 1000**
 - 900 x 900
 - 800 x 800
 - 700 x 700
 - 600 x 600
 - 500 x 500
 - 400 x 400
 - 300 x 300
 - 200 x 200
 - 100 x 100

- **2000 x 2000**
 - 1800 x 1800
 - 1600 x 1600
 - 1200 x 1200
 - 800 x 800
 - 400 x 400

Order information

<table>
<thead>
<tr>
<th>Type</th>
<th>Order no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMP2-P21111</td>
<td>1016237</td>
</tr>
<tr>
<td>DMP2-N21111</td>
<td>1016238</td>
</tr>
</tbody>
</table>
DMP2 Position finder with analogue/switching outputs

Scanning range
200 ... 2000 mm

Position finder

- Two analogue outputs (for x- and y-direction)
- Two switching outputs
- Integrated software
- Simple operation

Dimensional drawing

Adjustments possible

1. Middle of the optic axis
2. Receiver
3. Threaded mounting hole M6, 8 mm deep
4. Connection plug M12, 8-pin, 90° rotatable
5. Power indicator
6. Alignment aid

Connection type

DMP2-P11111
DMP2-N11111

Accessories

Cable receptacle
Reflectors

8-pin, M12
Technical data

<table>
<thead>
<tr>
<th>Scanning range</th>
<th>200 ... 2,000 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>(depending on reflector)</td>
<td></td>
</tr>
<tr>
<td>Repetition accuracy RW</td>
<td>0.15 mm (at 300 mm RW)</td>
</tr>
<tr>
<td>Scanning angle</td>
<td>± 10° in all axis vertical to the reflector (PL22, PL50A, PL80A)</td>
</tr>
<tr>
<td>Light sender</td>
<td>LED, red light</td>
</tr>
<tr>
<td>Light source</td>
<td>1), light source LED, red light</td>
</tr>
<tr>
<td>Supply voltage V_s</td>
<td>18 ... 30 V DC</td>
</tr>
<tr>
<td>Ripple</td>
<td>< 5 Vpp</td>
</tr>
<tr>
<td>Current consumption</td>
<td>< 250 mA</td>
</tr>
<tr>
<td>Switching outputs</td>
<td>PNP: HIGH = V_s – ≤ 2 V/LOW = 0 V</td>
</tr>
<tr>
<td></td>
<td>NPN: HIGH = V_s (\geq) 2 V/LOW ≤ 2 V</td>
</tr>
<tr>
<td>Operating mode</td>
<td>Permanent or synchronised can be selected</td>
</tr>
<tr>
<td>Blanking input AT</td>
<td>Blanked (triggered) PNP: > 18 V ... < V_s max.</td>
</tr>
<tr>
<td></td>
<td>NPN: 0 V ... V_s (≥ 18 V)</td>
</tr>
<tr>
<td>Free-running</td>
<td>PNP: < 2 V or unconnected</td>
</tr>
<tr>
<td></td>
<td>NPN: V_s – (≤ 2 V) or unconnected</td>
</tr>
<tr>
<td>Output current I_{max}</td>
<td>100 mA</td>
</tr>
<tr>
<td>Analogausgang</td>
<td>4 mA ... 20 mA (within catchment area)</td>
</tr>
<tr>
<td></td>
<td>3 mA (external to the catchment area)</td>
</tr>
<tr>
<td>Switching frequency</td>
<td>250/s</td>
</tr>
<tr>
<td>Response time</td>
<td>3 ms</td>
</tr>
<tr>
<td>Connection type</td>
<td>M12 plug, 8-pin</td>
</tr>
<tr>
<td>VDE protection class</td>
<td>E</td>
</tr>
<tr>
<td>Circuit protection</td>
<td>A, B, C</td>
</tr>
<tr>
<td>Enclosure rating</td>
<td>IP 67</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>Operation: -25 ... +55 °C</td>
</tr>
<tr>
<td></td>
<td>Storage: -25 ... +75 °C</td>
</tr>
<tr>
<td>Shock resistance</td>
<td>According to IEC 68</td>
</tr>
<tr>
<td>Weight</td>
<td>Approx. 990 g</td>
</tr>
<tr>
<td>Housing material</td>
<td>Zinc</td>
</tr>
</tbody>
</table>

1. Average service life 100,000 h (at T_a = 25 °C)
2. Limit values, reverse-polarity protected
3. Must be within V_s tolerances
4. Without load
5. With $R_{\text{load}} = 700 \Omega$
6. With light/dark ratio 1 : 1, no time delay
7. With resistive load
8. Reference voltage 50 V DC
9. Do not bend cable below 0 °C

Scanning range

Scanning range on reflector PL22	200 ... 500
Scanning range on reflector PL50A	500 ... 1200
Scanning range on reflector PL80A	500 ... 2000

Catchment area

- **0 (mm) 400 800 1200 1600 2000**
- **1000 x 1000 900 x 900 800 x 800 700 x 700 600 x 600 500 x 500 400 x 400 300 x 300 200 x 200 100 x 100**

Target area

- **0 (mm) 400 800 1200 1600 2000**
- **20 18 16 14 12 10 8 6 4 2 0**

Order information

<table>
<thead>
<tr>
<th>Type</th>
<th>Order no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMP2-P11111</td>
<td>1016235</td>
</tr>
<tr>
<td>DMP2-N11111</td>
<td>1016236</td>
</tr>
</tbody>
</table>
Australia
Phone +61 3 9497 4100
E-Mail sales@sick.com.au

Belgium/Luxembourg
Phone +32 (0)2 466 55 66
E-Mail info@sick.be

Brasil
Phone +55 11 3215-4900
E-Mail sac@sick.com.br

Česká Republika
Phone +420 2 57 91 18 50
E-Mail sick@sick.cz

China
Phone +852-2763 6966
E-Mail ghk@sick.com.hk

Danmark
Phone +45 45 82 64 00
E-Mail sick@sick.dk

Deutschland
Phone +49 211 5301-250
E-Mail info@sick.de

España
Phone +34 93 480 31 00
E-Mail info@sick.es

France
Phone +33 1 64 62 35 00
E-Mail info@sick.fr

Great Britain
Phone +44 (0)1727 831121
E-Mail info@sick.co.uk

India
Phone +91–22–4033 8333
E-Mail info@sick-india.com

Israel
Phone +972-4-999 0590
E-Mail info@sick-sensors.com

Italia
Phone +39 02 27 43 41
E-Mail info@sick.it

Japan
Phone +81 (0)3 3358 1341
E-Mail support@sick.jp

Nederlands
Phone +31 (0)30 229 25 44
E-Mail info@sick.nl

Norge
Phone +47 67 81 50 00
E-Mail austefjord@sick.no

Österreich
Phone +43 (0)22 36 62 28 8-0
E-Mail office@sick.at

Polska
Phone +48 22 837 40 50
E-Mail info@sick.pl

Republic of Korea
Phone +82-2 786 6321/4
E-Mail kang@sickkorea.net

Republika Slovenija
Phone +386 (0)1-47 69 990
E-Mail office@sick.si

România
Phone +40 356 171 120
E-Mail office@sick.ro

Russia
Phone +7 495 775 05 34
E-Mail info@sick-automation.ru

Schweiz
Phone +41 41 619 29 39
E-Mail contact@sick.ch

Singapour
Phone +65 6744 3732
E-Mail admin@sickapo.com.sg

Suomi
Phone +358-9-25 15 800
E-Mail sick@sick.fi

Sverige
Phone +46 10 110 10 00
E-Mail info@sick.se

Taiwan
Phone +886 2 2375-6288
E-Mail sickgrc@ms6.hinet.net

Türkiye
Phone +90 216 587 74 00
E-Mail info@sick.com.tr

USA/Canada/México
Phone +1(952) 941-6780
1 800-325-7425 – tollfree
E-Mail info@sickusa.com

More representatives and agencies in all major industrial nations at www.sick.com