SUNX

LIGHT CURTAIN Type4
New
CE

The SUNX' light curtain uses new concepts and combines even greater safety with higher productivity

 $\phi 45 \mathrm{~mm}$ (1.772 in) trim $/$ Hoot sensing

New concepts in design driving toward greater safety and higher productivity

The high level of resistance to disturbance from extraneous light that was a basic feature of the SF4-A series has been maintained in this new series, but a variety of new concepts have been incorporated into the new series, including more compact machine tool size due to a reduction in the safety distance, muting control circuits which have been built into the light curtain, and an override function that allows the manufacturing line to restart operation after the line has stopped even while muting control was active. These functions all contribute to a light curtain that provides greatly improved safety with no losses in productivity.

Contributes to miniaturization of machinery Minimum sensing object size is $\phi 14 \mathrm{~mm}$ (0.551 in) Finger protection type appear Safety distance greatly shortened to improve productivity

Greater maintenance efficiency! Supports both PNP and NPN polarities

The single model is universally compatible to improve maintenance efficiency.

Less setup time for safety circuits
Adoption of a special control unit
Safety circuits can be designed and constructed easily.

Finger protection type

Hand protection type

Arm / Foot protection type

Safety distance greatly shortened to improve productivity!

A finger protection type model improves productivity and reduced on-floor costs in line with more compact machinery.
The finger protection type can detect very small objects with diameters of as small as 14 mm 0.551 in, so that the safety distance based on the ISO 13855 international standard has been shortened from previous models to a maximum of 122 mm 4.803 in .
With production machinery becoming more compact, this helps contribute to improved productivity and

Same response time of 14 ms and constant safety distance! A fast response time of 14 ms has been achieved regardless of the number of beam channels, the beam axis pitches and the number of units connected in series. This reduces calculation work required for the safety distances.

Safety distance

- Finger protection
type: 28 mm* 1.102 in
- Hand protection
type: $116 \mathrm{~mm}^{*} 4.567 \mathrm{in}$

Characteristic distance for the machinery's maximum stopping time
※This is the characteristic safety distance for the light curtain as defined by ISO 13855. Calculate the safety distance by including the machinery's maximum stopping time.

Furthermore refer to the relevant standards of the region where this device is to be used, and then install this device.

Maximum 1,910 mm
Up to a maximum 3 sets can be connected in series with same 14 ms response time
A wide range of variations are available with protective heights of 230 to $1,910 \mathrm{~mm} 9.055$ to 75.197 in $(1,270 \mathrm{~mm} 50.000$ in for the finger protection type). Optional cable for series connection can be used to connect up to a maximum of 3 sets (maximum 192 light beams) in series. The reduced amount of wiring needed lowers costs and also helps to prevent interference.

Minimum 230 mm 9.055 in

- Cables for series connection are available in lengths of up to 5 m 16.404 ft !
- Series connection of different types is possible.

Hand protection type

(Presence sensing)

Unit length = protective height, so mounting is possible with no dead zone.

 'ZERO' dead zone New conceptUnit length = protective height, so that no dead zone can occur in the interfaces between light curtains when units are connected in series.
The equipment can be used with confidence because there are no dangerous openings resulting from dead zone.

Mounting brackets that support
'ZERO' dead zone
Special brackets are available to mount the units in order to create 'ZERO' dead zone. Workability is excellent because mounting and beam axis alignment are possible from the front of the light curtain.

Muting unit function is built into light curtain

Productivity maintained by muting control function

Is the circuit designed to suspend the light curtain from responding when a workpiece passes through it?

A muting control function is provided to increase both safety and productivity.
The light curtain is equipped with a muting control function that causes the line to stop only when a human body passes through the light curtain, and does not stop the line when a workpiece passes through. The muting sensors and muting indicators can be connected directly to the light curtain, so that a special controller is not required for muting. This both reduces costs and increases safety and productivity.

- Avoiding line stoppages when a workpiece passes through

The light curtain has a built-in muting function that causes the light curtain to ignore workpiece when two or more of the four muting sensors are interrupted simultaneously as a result of a workpiece passing by. This prevents the line from stopping when a workpiece passes through the light curtain, thereby maintaining productivity. When a person passes through the light curtain, two or more of the muting sensors are not interrupted, and so the muting function is not activated.

Equipped with a safety circuit that does not require a exclusive safety relay unit New conceent

The safety relay unit capability is built into the light curtain, so component costs can be reduced.
The light curtain has a built-in external device monitoring function (such as for fused relay monitoring) and an interlock function. The safety circuit is constructed so that a separate safety relay unit is not needed, and the control board is also more compact, which both help contribute to lower costs.

External device
(Force-guided relay, etc.)
Motor, etc.

External device
(Force-guided relay, etc.)
Motor, etc.

Separate muting control function for each beam channel improves safety

The SFB-HC* Handy-Controller (optional refer to p. 11) can be used to carry out muting control for specified beam channels only. Because individual beam channels can be specified to suit the workpiece, separate guards to prevent entry do not need to be set up.

* A Handy-controller cannot be used with the SF4B- \square-01.

For example, depending on the height of the workpiece, the muting function can be activated for 10 beam channels starting from the bottom, so that if the 11th or subsequent beam channels are interrupted, it is judged that a person has entered the area and the line stops.

Override function allows the line to be restarted smoothly after it has stopped while muting control was active

In case the power turns off while the light curtain has been interrupted by a workpiece or in case the line stops before the muting conditions have been established (if only one muting sensor has been interrupted), the machinery can be restarted. With the special units used previously, muting control was not allowed after a workpiece had interrupted the light curtain. So, the workpiece needed to be removed before the line could be restarted. However, the override function allows the line to be restarted smoothly without having to remove the workpiece that is interrupting the light curtain.

SF4B

Removal operation unnecessary
When line stopped before muting conditions were established (2 sensors interrupted)

In case of using muting control function \cdots

Incorporates advanced ELCA function

The advanced ELCA function used in the SF4A that has been widely acclaimed by the marketplace has also been adopted into the SF4B in order to suppress mutual interference and the effects of extraneous light.

Stops line operating losses before they happen

- Mutual interference is reduced without need for interference prevention lines The light curtain is equipped with the ELCA (Ėxtraneous Light Ċheck \& Àvoid) function which has already gained strong approval in the marketplace for its powerful suppression of mutual interference between sensors. Because it automatically shifts the scan timing of the light curtain in order to avoid interference, it is not necessary to wire interference prevention lines between machineries, so that the sensors can be positioned with much greater flexibility.
- Reducing the number of malfunctions caused by extraneous light
A double scanning method and retry processing are two new functions exclusive to SUNX that have been established in the workplace as being effective in eliminating the effects of momentary extraneous light from peripheral equipment. The reduction in operating errors caused by extraneous light reduces frequent stopping of machinery and helps to prevent losses in line operating
 efficiency.

Supports resolution of electrical problems when starting up lines

Equipped with a digital error indicator so that error details can be understood at a glance!
The system constantly checks the light curtain for problems such as incorrect cable wiring, disconnection and short-circuits, and also for internal circuit problems and incoming light problems. If a problem should occur, the same output (OFF signal) as when the object was detected is maintained in order to ensure safety, and the details of the error appear on the digital display.
The error details can be checked at a glance without the inconvenience of the previous method of counting the number of LED blinks, so that smooth support is possible if problems occur at startup and during maintenance operations, even if assistance is given via telephone.

Convenient tool facilitates easy beam alignment Reduces installation time significantly

The beam-axis alignment indicators that incident light position can be seen at a glance
Beam-axis alignment indicators display the beam channels of the light curtain in four blocks. When the beam channel at the bottom edge (or top edge) that is used as a reference for beam-axis alignments correctly aligned, the LED blinks red. After this, each block lights red as the beam channels successively become aligned, and when all beam channels are aligned, all LEDs light green. The display also has a stability indicator (STB) added so that setup can be carried out with greater stability too.

Beam channels are
displayed in 4 blocks

The bottommost channel beam axis is aligned

The bottommost LED 'D' is blinking red

Only the beam axes of the two lower blocks are aligned

All beam axes are aligned

The bottom two LEDs ' C , D ' light up in red

All LED 'A to D' light up in green

Furthermore, STB display allows the most stable incident light status\% to be confirmed. $※ 140 \%$ or more incident light intensity of control output operation level

Greatly improving ease of installation working

The hexagon-socket head bolts on the mounting brackets for aligning the beam axis can be tightened from in front of the light curtain, so that work can be carried out easily while checking the hexagon-socket head bolt positions. This makes it much easier to adjust the sensor angles when carrying out beam-axis alignment and greatly improves ease of installation work.

Alignment of beam axes can be accurately performed prior to power-up SF-LAT-2N
With SF-LAT-2N Laser Alignment Tool, the beam axes alignment can be quickly and easily performed using the easy-to-see laser beam spot, even when light curtain units are installed long distances apart. In addition, as the SF-LAT-2N Laser Alignment Tool is batteryoperated; beam axes alignment can be performed before actual powering on of the light

Supports both PNP and NPN polarities

Conforming to Machine Directive \& EMC Directiv	Approved Listing	Conforming to OSHA / ANSI	JIS

The single model is universally compatible to improve maintenance efficiency.

Use anywhere in the world

Universal design that can be used anywhere in the world

Supports both PNP and NPN polarities in a single model

- A single model has universal applicability The SF4B series combines PNP transistor output and NPN transistor output in a single model. Overseas equipment that uses PNP, replacement with NPN sensors, factories that are positively grounded, and transfer of equipment overseas are all situations where the control circuits for a single model are suitable for use worldwide.

Industry first:

As of October 2004 and based on research conducted by SUNX.

Previous model

SF4B

Switch between PNP / NPN by changing wiring ,

- Polarity can be changed easily by changing wiring

When the output polarity setting wire (shielded) is connected to 0 V , PNP output is selected, and when it is connected to 24 V , it switches to NPN output.

Adapter cables and adapter brackets are available to make it much easier to replace the wiring when changing over from SF4-A series and SF2-EH series to a new series. Mounting holes and control circuit connector cables do not need to be changed, and replacement with SF4B series components can be carried out smoothly and there is no need to use replacement parts for previous models, so registration can be only SF4B series (components).

* For details, please contact our office.

Handy-controller SFB-HC* that enables the user to select a variety of settings

Separate muting control function for each beam channel

The SFB-HC* Handy-Controller can be used to carry out muting control for specified beam channels only. Because individual beam channels can be specified, additional guards to prevent entry do not need to be set up. (refer to p. 6.)

Any valid beam channels can be selected! The SF4B series incorporates a fixed blanking function.

The SF4B series is equipped with a fixed blanking function that allows specific beam channels to be selectively blocked, without causing the control output (OSSD) to output the OFF signal. This function is convenient for use with applications in which certain fixed obstacles always block specific beam channels.
Furthermore, this function provides greater safety, as the control output (OSSD) will automatically output the OFF signal if the fixed obstacles are subsequently removed from the sensing area.

Auxiliary output has selectable output configuration

The output configuration of the auxiliary output can be changed.

Mode No.	Description
0	Negative logic of the control output (OSSD 1, OSSD 2) (factory setting)
1	Positive logic of the control output (OSSD 1, OSSD 2)
2	For emission: output ON, For non-emission: output OFF
3	For emission: output OFF, For non-emission: output ON
4	For unstable incident beam: OFF (Note 1)
5	For unstable incident beam: ON (Note 1)
6	For muting: ON
7	For muting: OFF
8	For beam received: ON, For beam interrupted: OFF (Note 2)
9	For beam received: OFF, For beam interrupted: ON (Note 2)

Notes: 1) The output cannot be used while the fix blanking function, floating blanking function or the muting function is activated.
2) This device outputs the beam received / interrupted state under activating the auxiliary output switching function using the handy controller irrespective of activating other functions, fixed blanking function, floating blanking function, and muting function.

Non-specified beam channels can be deactivated!

 The SF4B series incorporates a floating blanking function.1, 2 or 3 non-specified beam channels can be deactivated. If the number of beam channels that are blocked is less than or equal to the set number of beam channels, then the control output (OSSD) will not output the OFF signal. This function is useful in the event that the positions of obstacles within the sensing area must be changed during workpiece rearrangement, or when workpiece go through the light curtain's sensing area.

Note: When the floating blanking function is used, the size of the min. sensing object is changed. Refer to 'PRECAUTIONS FOR PROPER USE' (P.23) for details.

A variety of other functions can be selected

-Emission intensity control function

This function reduces the amount of emitting light. The two modes, normal mode and short mode, can be selected. The factory setting is set to the normal mode for the emission intensity control function.

- Setting monitoring This function allows the user to confirm the function details of each sensor setting.

Unless the password is not input, any setting
\bullet Protection function change of the sensor cannot be allowed. The factory setting is set to invalid for the protect function.

Allows settings details to be copied into other light curtains. In the event that the same setting must be input into several different light curtains, this function will reduce the time required for the input of settings.

Exclusive control unit is available for easy design and construction of safety circuits All models Supports both PNP and NPN polarities Industry first *
A single unit can be used for PNP / NPN input switching, reducing the number of parts that need to be registered.
※ As of October 2004 and based on

Plug-in type control unit SF-C11

Quick-connection

Connecting to the light curtain is done using plug-in connections, which shortens setup and replacement time.

Easy setup requiring no torque control

A spring method is used for the terminal blocks for connections other than to the light curtain. There is no need to control tightening torques for these terminal blocks.

Removable terminal blocks

 reduce maintenance timeRemovable terminal blocks are used. This reduces the work required for reconnecting wiring during maintenance.

Robust type control unit SF-C12

Metal enclosure with a IP65 protective structure Robust
The strong metal enclosure has a built-in safety relay. It has an IP65 protective structure, so that it can be set up individually without needing to be inserted into a control panel.

Slim type control unit SF-C13

Slim design Slim

22.5 mm 0.886 in thickness, so can be inserted even into narrow spaces inside panels.

ORDER GUIDE

Type		Appearance	Operating range (Note 1)	Model No. (Note 2)	Number of beam channels	Protective height (mm in)
				SF4B-F23	23	2309.055
				SF4B-F31	31	31012.205
				SF4B-F39	39	39015.354
				SF4B-F47	47	47018.504
				SF4B-F55	55	55021.654
				SF4B-F63	63	63024.803
			0.3 to 7 m	SF4B-F71	71	71027.953
			0.984 to 22.966 ft	SF4B-F79	79	79031.102
				SF4B-F95	95	95037.402
				SF4B-F111	111	1,110 43.701
				SF4B-F127	127	1,270 50.000
				SF4B-H12	12	2309.055
				SF4B-H16	16	31012.205
				SF4B-H20	20	39015.354
				SF4B-H24	24	47018.504
				SF4B-H28	28	55021.654
				SF4B-H32	32	63024.803
			0.3 to 9 m	SF4B-H36	36	71027.953
			$0.984 \text { to } 29.528 \mathrm{ft}$	SF4B-H40	40	79031.102
				SF4B-H48	48	95037.402
				SF4B-H56	56	1,110 43.701
				SF4B-H64	64	1,270 50.000
				SF4B-H72	72	1,430 56.299
				SF4B-H80	80	1,590 62.598
			$0.3 \text { to } 7 \mathrm{~m}$	SF4B-H88	88	1,750 68.898
			0.984 to 22.966 ft	SF4B-H96	96	1,910 75.197
				SF4B-A6	6	2309.055
				SF4B-A8	8	31012.205
				SF4B-A10	10	39015.354
				SF4B-A12	12	47018.504
				SF4B-A14	14	55021.654
				SF4B-A16	16	63024.803
				SF4B-A18	18	71027.953
			0.984 to 29.528 ft	SF4B-A20	20	79031.102
				SF4B-A24	24	95037.402
				SF4B-A28	28	1,110 43.701
				SF4B-A32	32	1,270 50.000
				SF4B-A36	36	1,430 56.299
				SF4B-A40	40	1,590 62.598
			0.3 to 7 m	SF4B-A44	44	1,750 68.898
			0.984 to 22.966 ft	SF4B-A48	48	1,910 75.197

Note: The 'operating range' is the possible setting distance between the emitter and the receiver. The sensor can detect less than 0.3 m 0.984 ft away.
Handy-controller non-compatible types
Some models that cannot use the SFB-HC Handy-controller (optional) are also available. Order models with ' -01 ' at the end of the model No. (Ex.) SF4B-F23 handy-controller non-compatible type: SF4B-F23-01

ORDER GUIDE

Type		Appearance	Model No.		Description
			SFB-CCB3	Length: 3 m 9.843 ft Net weight 370 g approx. (2 cables) Length: 7 m 22.966 ft Net weight 820 g approx. (2 cables)	Used for connecting to the light curtain and to other cables or the SF-C13 control unit. Two cables per set for emitter and receiver, Cable outer diameter: $\phi 6 \mathrm{~mm} \phi 0.236$ in Cable color: Gray (for emitter), Gray with black line (for receiver) The min. bending radius: R 6 mm R0. 236 in
	$\begin{aligned} & \text { 흥 } \\ & \stackrel{0}{\check{L}} \\ & \text { O} \end{aligned}$		SFB-CB05	Length: 0.5 m 1.640 ft Net weight 95 g approx. (2 cables)	Used for connecting to the light curtain and to an extension cable or the SF-C11 control unit. Two cables per set for emitter and receiver, Cable outer diameter: $\phi 6 \mathrm{~mm} \phi 0.236$ in Connector outer diameter: $\phi 14 \mathrm{~mm} \phi 0.551$ in max. Cable color: Gray (for emitter), Gray with black line (for receiver) The min. bending radius: R 6 mm R0. 236 in
			SFB-CB5	Length: 5 m 16.404 ft Net weight 620 g approx. (2 cables)	
			SFB-CB10	Length: 10 m 32.808 ft Net weight $1,200 \mathrm{~g}$ approx. (2 cables)	
			SFB-CC3	Length: 3 m 9.843 ft Net weight 380 g approx. (2 cables)	Used for connecting to an extension cable or the SF-C13 control unit. Two cables per set for emitter and receiver, Cable outer diameter: $\$ 6 \mathrm{~mm} \phi 0.236$ in Connector outer diameter: $\phi 14 \mathrm{~mm} \phi 0.551$ in max.
			SFB-CC10	Length: 10 m 32.808 ft Net weight $1,200 \mathrm{~g}$ approx. (2 cables)	Cable color: Gray (for emitter), Gray with black line (for receiver) The min. bending radius: R 6 mm R0. 236 in
			SFB-CCJ10E	Length: 10 m 32.808 ft Net weight 580 g approx. (1 cable)	Used for connecting to an extension cable or the SF-C11 control unit. One each for emitter and receiver, Cable outer diameter: $\phi 6 \mathrm{~mm} \phi 0.236$ in Connector outer diameter: $\phi 14 \mathrm{~mm} \phi 0.551$ in max.
			SFB-CCJ10D	Length: 10 m 32.808 ft Net weight 600 g approx. (1 cable)	Cable color: Gray (for emitter), Gray with black line (for receiver) Connector color: Gray (for emitter), Black (for receiver) The min. bending radius: R 6 mm R0. 236 in
	$\stackrel{0}{0}$ $\stackrel{0}{0}$ $\stackrel{0}{0}$ 0		SFB-CCB3-MU	Length: 3 m 9.843 ft Net weight 420 g approx. (2 cables)	Used for connecting to the light curtain and to other cables or the SF-C13 control unit. Two cables per set for emitter and receiver, Cable outer diameter: $\phi 6 \mathrm{~mm} \phi 0.236$ in Cable color: Gray (for emitter), Gray with black line (for receiver) The min. bending radius: R 6 mm R0. 236 in
			SFB-CCB7-MU	Length: 7 m 22.966 ft Net weight 930 g approx. (2 cables)	
		-	SFB-CB05-MU	Length: 0.5 m 1.640 ft Net weight 110 g approx. (2 cables)	Used for connecting to the light curtain and to an extension cable or the SF-C12 control unit. Two cables per set for emitter and receiver, Cable outer diameter: $\phi 6 \mathrm{~mm} \phi 0.236$ in Connector outer diameter: $\phi 16 \mathrm{~mm} \phi 0.630$ in max. Cable color: Gray (for emitter), Gray with black line (for receiver) The min. bending radius: R 6 mm R 0.236 in
			SFB-CC3-MU	Length: 3 m 9.843 ft Net weight 430 g approx. (2 cables)	Used for connecting to an extension cable or the SF-C13 control unit. Two cables per set for emitter and receiver, Cable outer diameter: $\phi 6 \mathrm{~mm} \phi 0.236$ in Connector outer diameter: $\phi 16 \mathrm{~mm} \phi 0.630$ in max. Cable color: Gray (for emitter), Gray with black line (for receiver) The min. bending radius: R 6 mm R0.236 in
				Length: 10 m 32.808 ft Net weight $1,300 \mathrm{~g}$ approx. (2 cables)	
			SFB-CCJ10E-MU	Length: 10 m 32.808 ft Net weight 660 g approx. (1 cable)	Used for connecting to an extension cable or the SF-C12 control unit. One each for emitter and receiver, Cable outer diameter: $\phi 6 \mathrm{~mm} \phi 0.236$ in Connector outer diameter: $\phi 16 \mathrm{~mm} \phi 0.630$ in max. Cable color: Gray (for emitter), Gray with black line (for receiver) Connector color: Gray (for emitter), Black (for receiver) The min. bending radius: R 6 mm R0. 236 in
			SFB-CCJ10D-MU	Length: 10 m 32.808 ft Net weight 680 g approx. (1 cable)	
			SFB-CSL01	Length: 0.1 m 0.328 ft Net weight 45 g approx. (2 cables)	Used to connect light curtains in series Two cables per set for emitter and receiver (common for emitter and receiver) Cable outer diameter: $\phi 6 \mathrm{~mm} \phi 0.236$ in Cable color: Gray (common for emitter and receiver) The min. bending radius: R 6 mm R0. 236 in
			SFB-CSL05	Length: 0.5 m 1.640 ft Net weight 95 g approx. (2 cables)	
			SFB-CSL1	Length: 1 m 3.281 ft Net weight 150 g approx. (2 cables)	
			SFB-CSL5	Length: 5 m 16.404 ft Net weight 630 g approx. (2 cables)	
			SFB-CB05-A-P	Length: 0.5 m 1.640 ft Net weight 110 g approx. (2 cables)	12-core bottom cap cable specifications. Used to allow connector cables connected to previous light curtains (at the control circuit side) to be smoothly adapted to the SF4B series. Two cables per set for emitter and receiver, Cable outer diameter: $\phi 6 \mathrm{~mm} \phi 0.236$ in Connector outer diameter: $\phi 16 \mathrm{~mm} \phi 0.630$ in max. Cable color: Gray (for emitter), Gray with black line (for receiver) The min. bending radius: R6 mm R0. 236 in
			SFB-CB05-A-N		
			SFB-CB05-B-P		
			SFB-CB05-B-N		

SF4B

ORDER GUIDE

Designation	Model No.	Description
Standard mounting bracket	MS-SFB-1	Used to mount the light curtain on the rear surface and side surface (4 pcs. per set for emitter and receiver)
Pitch adapter bracket	MS-SFB-4	Used as the mounting bracket when changing over a previous light curtain with a protective height of 200 to 750 mm 7.874 to 29.528 in to the SF4B series. It is installed using two M5 hexagon-socket-head bolts. (4 pcs. per set for emitter and receiver)
M8 mounting bracket	MS-SFB-1-T	Allows the light curtain to be mounted at the rear and side with one M8 hexagon-sockethead bolt. (4 pcs. per set for emitter and receiver)
M8 pitch adapter bracket	MS-SFB-4-T	Used as the mounting bracket when changing over a previous light curtain with a protective height of 200 to 750 mm 7.874 to 29.528 in to the SF4B series. It is installed using two M8 hexagon-socket-head bolts. (4 pcs. per set for emitter and receiver)
Dead zoneless mounting bracket	MS-SFB-3	Mounting with no dead zone is possible so that the mounting bracket does not project past the sensing height. (4 pcs. per set for emitter and receiver)

Standard mounting brackets

- MS-SFB-1

Pitch adapter bracket

- MS-SFB-4

Four bracket set

M8 mounting bracket

- MS-SFB-1-T

Four bracket set

M8 pitch adapter bracket

- MS-SFB-4-T

Four bracket set

Dead zoneless mounting bracket

- MS-SFB-3

Exclusive control units

Designation	Appearance	Model No.	Description
Connector connection type control unit	SF-C11	Applicable to 8-core cable with connector. Up to control category 4	
Solid type control unit	SF-C12	Applicable to 12-core cable with connector. Up to control category 4	
Thin type control unit		SF-C13	Applicable to discrete wire connector. Up to control category 4

SF-C12 spare relay set
A set of spare relays (2 safety relays and 1 removal tool) is available for the safety relay that is built into the SF-C12. Model No.: SF-C12-RY

ORDER GUIDE

Handy-controller

Designation	Appearance	Model No.
Handy-controller		
		SFB-HC

Note: A handy-controller cannot be used with the SF4B- \square-01.

Note: If using a bottom cap cable with discrete wire, please order the SFB-CC3/CC10 separately. Refer to the instruction manual for the light curtain for details on the wiring.

Designation	Model No.	Description
Intermediate supporting bracket (Note)	MS-SFB-2	Used to mount the light curtain on the intermediate position. Mounting is possible behind or at the side of the light curtain.
Test rod $\phi 14$	SF4B-TR14	Min. sensing object for regular checking ($\phi 14 \mathrm{~mm} \phi 0.551 \mathrm{in}$), with finger protection type (min. sensing object $\phi 14 \mathrm{~mm} \phi 0.551 \mathrm{in})$
Test rod $\phi 25$	SF4B-TR25	Min. sensing object for regular checking ($\phi 25 \mathrm{~mm} \phi 0.984 \mathrm{in}$), with hand protection type (min. sensing object $\phi 25 \mathrm{~mm} \phi 0.984 \mathrm{in})$

Note: The number of sets required varies depending on the product. Refer to 'DIMENSIONS' on p. 30 for further details.

Intermediate supporting bracket

- MS-SFB-2

OPTIONS

Applicable Designation beam channels			Front protection cover
Finger	Hand	Arm/Foot	
23	12	6	FC-SFBH-12
31	16	8	FC-SFBH-16
39	20	10	FC-SFBH-20
47	24	12	FC-SFBH-24
55	28	14	FC-SFBH-28
63	32	16	FC-SFBH-32
71	36	18	FC-SFBH-36
79	40	20	FC-SFBH-40
95	48	24	FC-SFBH-48
111	56	28	FC-SFBH-56
127	64	32	FC-SFBH-64
-	72	36	FC-SFBH-72
-	80	40	FC-SFBH-80
-	88	44	FC-SFBH-88
-	96	48	FC-SFBH-96

Front protection cover

- FC-SFBH- \square

It protects sensing surface.
The operating range reduces when the front protection cover is used.

Sensing range

	SF4B-F \square	SF4B-H \square		SF4B-A \square	
		12 to 64 beam channels type	72 to 96 beam channels type	6 to 32 beam channels type	36 to 48 beam channels type
Only emitter installed	$\begin{array}{\|c\|} \hline 0.3 \text { to } 6 \mathrm{~m} \\ 0.984 \text { to } 19.685 \mathrm{ft} \end{array}$	$\begin{aligned} & 0.3 \text { to } 7.5 \mathrm{~m} \\ & 0.984 \text { to } 24.606 \mathrm{ft} \end{aligned}$	$\begin{gathered} 0.3 \text { to } 6 \mathrm{~m} \\ 0.984 \text { to } 19.685 \mathrm{ft} \end{gathered}$	$\begin{aligned} & 0.3 \text { to } 7.5 \mathrm{~m} \\ & 0.984 \text { to } 24.606 \text { tt } \end{aligned}$	$\begin{gathered} 0.3 \text { to } 6 \mathrm{~m} \\ 0.984 \text { to } 19.685 \mathrm{tt} \end{gathered}$
Only receiver installed	$\begin{gathered} 0.3 \text { to } 6 \mathrm{~m} \\ 0.984 \text { to } 19.685 \mathrm{ft} \end{gathered}$	0.3 to 7.5 m 0.984 to 24.606 ft	$\begin{gathered} 0.3 \text { to } 6 \mathrm{~m} \\ 0.984 \text { to } 19.685 \mathrm{ft} \end{gathered}$	0.3 to 7.5 m 0.984 to 24.606 th	$\begin{gathered} 0.3 \text { to } 6 \mathrm{~m} \\ 0.984 \text { to } 19.685 \mathrm{tt} \end{gathered}$
Both emitter and receiver installed	0.3 to 5.5 m 0.984 to 18.045 tt	$\begin{gathered} 0.3 \text { to } 7 \mathrm{~m} \\ 0.984 \text { to } 22.966 \text { tt } \end{gathered}$	0.3 to 5.5 m 0.984 to 18.045 t	$\begin{gathered} 0.3 \text { to } 7 \mathrm{~m} \\ 0.984 \text { to } 22.966 \text { tt } \end{gathered}$	0.3 to 5.5 m 0.984 to 18.045 f

Note: The model Nos. given above denote a single unit, not a pair of units. 2 units are required for use in mounting to the emitter / receiver.

SF4B

SPECIFICATIONS

Individual specifications
SF4B-F \square

Type	Min. sensing object $\phi 14 \mathrm{~mm} \phi 0.551$ in type					
Item Model No.	SF4B-F23	SF4B-F31	SF4B-F39	SF4B-F47	SF4B-F55	SF4B-F63
No. of beam channels	23	31	39	47	55	63
Beam pitch	10 mm 0.394 in					
Protective height	230 mm 9.055 in	310 mm 12.205 in	390 mm 15.354 in	470 mm 18.504 in	550 mm 21.654 in	630 mm 24.803 in
Current consumption	Emitter: 80 mA or less, Receiver: 120 mA or less			Emitter: 100 mA or less, Receiver: 160 mA or less		
Net weight (total of emitter and receiver)	570 g approx.	680 g approx.	800 g approx.	920 g approx.	1,030 g approx.	1,150 g approx.
Type	Min. sensing object $\phi 14 \mathrm{~mm} \phi 0.551$ in type					
Item Model No.	SF4B-F71	SF4B-F79	SF4B-F95	SF4B-F111	SF4B-F127	
No. of beam channels	71	79	95	111	127	
Beam pitch	10 mm 0.394 in					
Protective height	710 mm 27.953 in	790 mm 31.102 in	950 mm 37.402 in	1,110 mm 43.701 in	$1,270 \mathrm{~mm} 50.000 \mathrm{in}$	
Current consumption	Eniter:10 mAorless, Rexierer:160 MAdarless	Emitter: 115 mA or less, Receiver: 190 mA or less		Emitter: 135 mA or less, Receiver: 230 mA or less		
Net weight (total of emitter and receiver)	1,260 g approx.	1,380 g approx.	1,620 g approx.	1,850 g approx.	$2,090 \mathrm{~g}$ approx.	

SF4B-H \square

(Type	Min. sensing object $\phi 25 \mathrm{~mm} \phi 0.984$ in type					
Item \triangle Model No.	SF4B-H12	SF4B-H16	SF4B-H20	SF4B-H24	SF4B-H28	SF4B-H32
No. of beam channels	12	16	20	24	28	32
Beam pitch	20 mm 0.787 in					
Protective height	230 mm 9.055 in	310 mm 12.205 in	390 mm 15.354 in	470 mm 18.504 in	550 mm 21.654 in	630 mm 24.803 in
Current consumption	Emitter: 70 mA or less, Receiver: 95 mA or less			Emitter: 80 mA or less, Receiver: 115 mA or less		
Net weight (total of emitter and receiver)	570 g approx.	680 g approx.	800 g approx.	920 g approx.	1,030 g approx.	1,150 g approx.
Type	Min. sensing object $\phi 25 \mathrm{~mm} \phi 0.984$ in type					
Item \times Model No.	SF4B-H36	SF4B-H40	SF4B-H48	SF4B-H56	SF4B-H64	SF4B-H72
No. of beam channels	36	40	48	56	64	72
Beam pitch	20 mm 0.787 in					
Protective height	710 mm 27.953 in	790 mm 31.102 in	950 mm 37.402 in	1,110 mm 43.701 in	$1,270 \mathrm{~mm} 50.000 \mathrm{in}$	$1,430 \mathrm{~mm} 56.299 \mathrm{in}$
Current consumption	Eniter:80mAdates, Receierer: 115mAorless	Emitter: 90 mA or less, Receiver: 140 mA or less		Emitter: 100 mA or less, Receiver: 160 mA or less		Emiter: $110 \mathrm{mAocless}, \mathrm{Receier:} 880 \mathrm{mAorless}$
Net weight (total of emitter and receiver)	1,260 g approx.	1,380 g approx.	1,620 g approx.	1,850 g approx.	2,090 g approx.	2,320 g approx.
S Type	Min. sensing object $\phi 25 \mathrm{~mm} \phi 0.984$ in type					
Item \triangle Model No.	SF4B-H80	SF4B-H88	SF4B-H96			
No. of beam channels	80	88	96			
Beam pitch	20 mm 0.787 in					
Protective height	1,590 mm 62.598 in	1,750 mm 68.898 in	$1,910 \mathrm{~mm} 75.197 \mathrm{in}$			
Current consumption	Eniter:10mAor ress, Receicer:1800mAorless	Emitter: 120 mA or less, Receiver: 200 mA or less				
Net weight (total of emitter and receiver)	2,540 g approx.	2,780 g approx.	$3,010 \mathrm{~g}$ approx.			

SF4B-A \square

Type	Min. sensing object $\phi 45 \mathrm{~mm} \phi 1.772$ in type					
Item \triangle Model No.	SF4B-A6	SF4B-A8	SF4B-A10	SF4B-A12	SF4B-A14	SF4B-A16
No. of beam channels	6	8	10	12	14	16
Beam pitch	40 mm 1.575 in					
Protective height	230 mm 9.055 in	310 mm 12.205 in	390 mm 15.354 in	470 mm 18.504 in	550 mm 21.654 in	630 mm 24.803 in
Current consumption	Emitter: 65 mA or less, Receiver: 85 mA or less			Emitter: 70 mA or less, Receiver: 95 mA or less		
Net weight (total of emitter and receiver)	570 g approx.	680 g approx.	800 g approx.	920 g approx.	1,030 g approx.	1,150 g approx.
Type	Min. sensing object $\phi 45 \mathrm{~mm} \phi 1.772$ in type					
Item \triangle Model No.	SF4B-A18	SF4B-A20	SF4B-A24	SF4B-A28	SF4B-A32	SF4B-A36
No. of beam channels	18	20	24	28	32	36
Beam pitch	40 mm 1.575 in					
Protective height	710 mm 27.953 in	790 mm 31.102 in	950 mm 37.402 in	1,110 mm 43.701 in	$1,270 \mathrm{~mm} 50.000 \mathrm{in}$	1,430 mm 56.299 in
Current consumption	Eniter:70mA oreses, Receiver:55 maorless	Emitter: 75 mA or less, Receiver: 105 mA or less		Emitter: 80 mA or less, Receiver: 120 mA or less		Eniter:85mAorles, Receierer:130 MA or less
Net weight (total of emitter and receiver)	1,260 g approx.	1,380 g approx.	1,620 g approx.	1,850 g approx.	2,090 g approx.	2,320 g approx.
¢ Type	Min. sensing object $\phi 45 \mathrm{~mm} \phi 1.772$ in type					
Item $>$ Model No.	SF4B-A40	SF4B-A44	SF4B-A48			
No. of beam channels	40	44	48			
Beam pitch	40 mm 1.575 in					
Protective height	1,590 mm 62.598 in	1,750 mm 68.898 in	$1,910 \mathrm{~mm} 75.197 \mathrm{in}$			
Current consumption	Eniter:8mAdarles, Receierer:130 madriess	Emitter: 95 mA or less, Receiver: 140 mA or less				
Net weight (total of emitter and receiver)	2,540 g approx.	2,780 g approx.	$3,010 \mathrm{~g}$ approx.			

SPECIFICATIONS

Common specifications

Type Item Model No.		Min. sensing object $\phi 14 \mathrm{~mm} \phi 0.551$ in type	Min. sensing object $\phi 25 \mathrm{~mm} \phi 0.984$ in type	Min. sensing object $\phi 45 \mathrm{~mm} \phi 1.772$ in type
		SF4B-F \square	SF4B-H \square	SF4B-A \square
Applicable standards		JIS B 9704-1/2 (Type 4), JIS B 9705-1 / ISO 13849-1 (Category 4), EN 954-1 (Category 4) EN 61496-1 (Type 4), IEC 61496-1/2 (Type 4), UL 61496-1/2 (Type 4), UL 1998		
Operating range (Note 1)		0.3 to 7 m 0.984 to 22.966 ft	12 to 64 beam channels type: 0.3 to 9 m 0.984 to 29.528 ft 72 to 96 beam channels type: 0.3 to 7 m 0.984 to 22.966 ft	6 to 32 beam channels type: 0.3 to 9 m 0.984 to 29.528 ft 36 to 48 beam channels type: 0.3 to 7 m 0.984 to 22.966 ft
Min. sensing object (Note 2)		$\phi 14 \mathrm{~mm} \phi 0.551$ in in opaque object	$\phi 25 \mathrm{~mm} \phi 0.984$ in in opaque object	$\phi 45 \mathrm{~mm} \phi 1.772$ in in opaque object
Effective aperture angle		$\pm 2.5{ }^{\circ}$ or less [for an operating range exceeding 3 m 9.843 ft (conforming to IEC 61496-2 / UL 61496-2)]		
Supply voltage		24 V DC $\pm 10 \%$ Ripple P-P 10% or less		
Control output (OSSD1, OSSD2)		PNP open collector transistor / NPN open collector transistor (switching method) - When selecting PNP output: Max. source current 200 mA , When selecting NPN output: Max. sink current 200 mA - Applied voltage: same as supply voltage (When selecting PNP output: between the control output and +V ,) When selecting NPN output: between the control output and 0 V) - Residual voltage: 2.5 V or less (When selecting PNP output: source current 200 mA , when selecting NPN output: sink current 200 mA) (when using 20 m 65.617 ft length cable)		
	Operation mode	ON when all beam channels are received, OFF when one or more beam channels are interrupted (OFF also in case of any malfunction in the sensor or the synchronization signal)(Note 3, 4)		
	Protection circuit	Incorporated		
Response time		OFF response: 14 ms or less, ON response: 80 to 90 ms		
Auxiliary output (Non-safety output)		PNP open collector transistor / NPN open collector transistor (switching method) - When selecting PNP output: Max. source current 60 mA , When selecting NPN output: Max. sink current 60 mA - Applied voltage: same as supply voltage (When selecting PNP output: between the auxiliary output and +V , When selecting NPN output: between the auxiliary output and 0 V ,) - Residual voltage: 2.5 V or less (When selecting PNP output: source current 60 mA , when selecting NPN output: sink current 60 mA) (when using 20 m 65.617 ft length cable)		
	Operation mode	OFF when control outputs are ON, ON when control outputs are OFF (Default setting; operating mode can be changed using the SFB-HC handy controller). Refer to p. 11 for details.		
	Protection circuit	Incorporated		
Interference prevention function		Incorporated (Note 5)		
Emission halt function		Incorporated		
Interlock function		Incorporated [Manual reset / Auto reset (Note 6)]		
External device monitor function		Incorporated		
Override function		Incorporated (Note 5)		
Muting function		Incorporated (Note 5)		
Optional function (Note 7)		Fixed blanking function, floating blanking function, auxiliary output switching function, interlock setting changing function, external relay monitor setting changing function, muting setting changing function, protect function, emission intensity control function		
	Degree of protection	IP65 (IEC)		
	Ambient temperature	-10 to $+55^{\circ} \mathrm{C}+14$ to $+131^{\circ} \mathrm{F}$ (No dew condensation or icing allowed), Storage: -25 to $+70^{\circ} \mathrm{C}-13$ to $+158{ }^{\circ} \mathrm{F}$		
	Ambient humidity	30 to 85 \% RH, Storage: 30 to 95 \% RH		
	Ambient illuminance	Incandescent light: 3,500 ℓx or less at the light-receiving face		
	Dielectric strength voltage	1,000 V AC for one min. between all supply terminals connected together and enclosure		
	Insulation resistance	20 M , or more, with 500 V DC megger between all supply terminals connected together and enclosure		
	Vibration resistance	10 to 55 Hz frequency, 0.75 mm 0.030 in amplitude in X, Y and Z directions for two hours each		
	Shock resistance	$300 \mathrm{~m} / \mathrm{s}^{2}$ acceleration (30 G approx.) in X, Y and Z directions for three times each		
Emitting element		Infrared LED (Peak emission wavelength: 870 nm 0.034 mil)		
Material		Enclosure: Aluminium, Lens cover: Acrylic, Cap: Polycarbonate • ABS		
Connecting method		Connector		
Cable length		Extension up to total 50 m 164.042 ft is possible for both emitter and receiver, with optional mating cables (Note 8)		
Accessories		MS-SFB-2 (Intermediate supporting bracket): (Note 8) SF4B-TR14 (Test rod): 1 No.	MS-SFB-2 (Intermediate supporting bracket): (Note 8) SF4B-TR25 (Test rod): 1 No.	MS-SFB-2 (Intermediate supporting bracket): (Note 8)

Notes: 1) The operating range is the possible setting distance between the emitter and the receiver. The sensor can detect sensing object if less than 0.3 m 0.984 ft away.
2) When the floating blanking function is used, the size of the min. sensing object is changed. For details of the floating blanking function, refer to p. 11.
3) The outputs are not 'OFF' during muting function is active even if the beam channel is blocked.
4) In case the blanking function is valid, the operation mode is changed. For details of the floating blanking function, refer to p. 11.
5) Please use 12-core cable.
6) The manual reset and auto reset are possible to be switched depending on the wiring status.
7) In case of using optional function, the handy-controller (SFB-HC)(optional) is required. However, a handy-controller cannot be used with the SF4B- $\square-\mathbf{0 1}$.
8) The cable can be extended within 30 m 98.425 ft (for emitter / receiver) when two light curtains are connected with series connection, within 20 m 65.617 ft when three light curtains are connected with series connection. Furthermore, when the muting lamp is used, the cable can be extended within 40 m 131.234 ft (for emitter / receiver).
9) The intermediate supporting bracket (MS-SFB-2) is enclosed with the following models. The quantity of the enclosed bracket differs depending on the model as follows:
1 set: SF4B-F $\square \cdots$ Light curtain with 79 to 111 beam channels, SF4B-H $\square \cdots$ Light curtain with 40 to 56 beam channels,
SF4B-A \square... Light curtain with 20 to 28 beam channels
2 sets: SF4B-F127, SF4B-H $\square \cdots$ Light curtain with 64 to 80 beam channels, SF4B-A $\square \cdots$ Light curtain with 32 to 40 beam channels
3 sets: SF4B-H $\square \cdots$ Light curtain with 88 to 96 beam channels, SF4B-F $\square \cdots$ Light curtain with 44 to 48 beam channels

SPECIFICATIONS

Exclusive control unit

		SF-C11	SF-C12	SF-C13
Connectable light curtains		SF4B series		Light curtain manufactured by SUNX
Applicable standard		IEC 61496-1, UL 61496-1, JIS B 9704-1		
Control category		ISO 13849-1 (EN 954-1, JIS B 9705-1) compliance up to Category 4 standards		
Supply voltage		24 V DC $\pm 10 \%$ Ripple P-P 10% or less		
Current consumption		100 mA or less (without light curtain)		
Fuse (power supply)		Built-in electronic fuse, Triggering current: 0.5 A or more, Reset after power down		
Enabling path		NO contact $\times 3$ (13-14, 23-24, 33-34)	NO contact $\times 2$ (13-14, 23-24)	NO contact $\times 3$ (13-14, 23-24, 33-34)
Application category Rated operation voltage (Ue) / Rated operation current (le)		AC-15, DC-13 (IEC 60947-5-1)		
		Minute current: 10 mA or more (at 24 V DC)(Note 1)	$24 \mathrm{VDC} / 1 \mathrm{~A}$, resisivive load (For induced load, during contact protection) Minimum applicable load: 15 mA or less (at 24 V DC)	Minute current: 10 mA or more (at 24 V DC)(Note 1)
	Contact material / contacts	AgSnO, self cleaning, positively driven	AgNiO $+0.2 \mu \mathrm{mAu}$, self cleaning, positively driven	AgSnO, self cleaning, positively driven
	Contact resistance	$100 \mathrm{~m} \Omega$ or less (initial value)	$50 \mathrm{~m} \Omega$ or less (initial value)	$100 \mathrm{~m} \Omega$ or less (initial value)
	Contact protection fuse rated	6 A (slow blow)	3 A (slow blow)	4 A (slow blow)
	Mechanical lifetime	10 million times or more (switching frequency 180 times/min.) (Note 2)		
	Electrical lifetime	100,000 times or more (switching frequency 20 times/min, $230 \mathrm{~V} \mathrm{AC} \mathrm{/} 3$ A resistive load)		
Pick-up delay (Auto reset/ Manual reset)		80 ms or less / 90 ms or less	30 ms or less / 30 ms or less	80 ms or less / 90 ms or less
Response time		10 ms or less	14 ms or less	10 ms or less
Auxiliary output		Saiety relay contact (NC contact) X1 (41-42) (Related to enabling path)	Saiety relay contact (NC contact) X1 (31-32) (Related to enabling path)	Saiety relay contact (NC contact) X1 (41-42) (Related to enabling path)
Rated operation voltage / current		$24 \mathrm{~V} \mathrm{DC} / 2 \mathrm{~A}$, Minute current: 10 mA or more (at 24 V DC)	$30 \mathrm{VDC} / 3 \mathrm{~A}$, Minute current: 15 mA or less (at 24 V DC)	$24 \mathrm{VDC} / 2 \mathrm{~A}$, Minute current: 10 mA or more (at 24 V DC)
Contact protection fuse rated		2 A (slow blow)	3 A (slow blow)	2 A (slow blow)
Semiconductor auxiliary output (AUX)		<Minus ground (Setting for PNP)> <Plus ground (Setting for NPN)> - Max. source current: $60 \mathrm{~mA} \cdot$ Max. sink current: 60 mA - Applied voltage: Same as supply voltage • Applied voltage: same as supply voltage $\binom{$ between the semiconductor }{ auxiliary output and +V}$\binom{$ between the semiconductor }{ auxiliary output and 0 V} - Residual voltage: 2.3 V or less - Residual voltage: 1.5 V or less (at source current 60 mA) (at sink current 60 mA) - Leakage current: 2 mA or less - Leakage current: 2 mA or less		PNP open collector transistor - Max. source current: 60 mA - Applied voltage: same as supply voltage $\binom{$ between the semiconductor }{ auxiliary output and +V} - Residual voltage: 2.3 V or less (at source current 60 mA) - Leakage current: 2 mA or less
	Output operation	Related to auxiliary output of light curtain		On when the light curtain is interrupted
Excess voltage category		III		
응\#읃	Power supply (Ui)	Green LED (lights up when current flowing)		
	Enabling path [OUT (Note 3)]	Green LED (lights up when enabling contacts are closed)		
	Interlock (INTERLOCK)	Yellow LED (lights up when enabling contacts are opened)		Yellow LED (lights up when enabling contacts are opened)
	Fault (FAULT)	Yellow LED (blinks when fault occurs)		Yellow LED (blinks when fault occurs)
External relay monitor function		Incorporated	Incorporated (Note 4)	Incorporated
Trailing edge function		Incorporated		
Pola	arity selection function	Incorporated (Sliding switch allows selection of plus / minus ground) Plus ground: Correspond to NPN output light curtain Minus ground: Correspond to PNP output light curtain		Incorporated (Cable connection alows selection of plus / minus ground) Plus ground: Correspond to NPN output light curtain Minus ground: Correspond to PNP output light curtain
Pollution level		2		
	Protection	Enclosure: IP40, Terminal: IP20	IP65	Enclosure: IP40, Terminal: IP20
	Ambient temperature	-10 to $+55^{\circ} \mathrm{C}+14$ to $+131{ }^{\circ} \mathrm{F}$ (No dew condensation or icing allowed), Storage: -25 to $+70^{\circ} \mathrm{C}-13$ to $+158{ }^{\circ} \mathrm{F}$		
	Ambient humidity	30 to 85% RH, Storage: 30 to 95% RH	35 to 85% RH, Storage: 35 to 85% RH	30 to 85% RH, Storage: 30 to 95% RH
	Vibration resistance			
Connection terminal		Detachable-type spring gauge terminal	European terminal	Spring gauge terminal
Enclosure material		ABS	Die-cast aluminium	ABS
Net weight		320 g approx.	1 kg approx.	200 g approx.

Notes: 1) If several SF-C11 or SF-C13 units are being used in line together, leave a space of 5 mm 0.197 in or more between each unit. If the units are touching each other, reduce the rated operating current for safety output in accordance with the ambient operating temperature as shown in the graphs at right.
2) Relay switching lifetime will vary depending on factors such as the type of load, the switching frequency, and ambient conditions.
3) The operation indicator is marked as 'Enabling' on the unit for SF-C12
4) Terminals for utilizing the functions of the SF4B series are available.
<Dilating when SF-C11 units are mounted dose together>

<Dilating when SF-C13 units are mounted dose together>

I/O CIRCUIT AND WIRING DIAGRAMS

I/O circuit diagram

<In case of using I/O circuit for PNP output>

Emitter

Note: The above diagram is when using a 12 -core cable. If an 8 -core cable is used, the red, yellow, gray, gray / black, light blue / white and light blue / black lead wires are absent.
※S1
Switch S 1 (connectable either to +V or 0 V)

- Emission halt input / Reset input
For manual reset
0 to +15 V (
0 to +1.5 V (source current 5 mA or less) or
Vs to Vs -2.5 V (sink current 5 mA or less): Emission halt (Note)
Open: Emission
For auto-reset:
0 to +1.5 V (source current 5 mA or less) or
Vs to Vs -2.5 V (sink current 5 mA or less): Emission (Note) Open: Emission halt
- Interlock setting input, Override input, Muting input A / B,

External device monitor input
0 to +1.5 V (source current 5 mA or less) or
Vs to $\mathrm{Vs}-2.5 \mathrm{~V}$ (sink current 5 mA or less): Valid (Note) Open: Invalid
<ln case of using I/O circuit for NPN output>
Emitter

Note: The above diagram is when using a 12-core cable. If an 8-core cable is used, the red, yellow, gray, gray / black, light blue / white and light blue / black lead wires are absent.

※S1

Switch S1 (connectable either to +V or 0 V)

- Emission halt input / Reset input

For manual reset
0 to +1.5 V (source current 5 mA or less) or
Vs to $\mathrm{Vs}-2.5 \mathrm{~V}$ (sink current 5 mA or less): Emission halt (Note)
Open: Emission
For auto-reset:
0 to +1.5 V (source current 5 mA or less) or
Vs to $\mathrm{Vs}-2.5 \mathrm{~V}$ (sink current 5 mA or less): Emission (Note)
Open: Emission halt

- Interlock setting input, Override input, Muting input A / B,

External device monitor input
0 to +1.5 V (source current 5 mA or less) or
Vs to $\mathrm{Vs}-2.5 \mathrm{~V}$ (sink current 5 mA or less): Valid (Note)
Open: Invalid
Note: Vs is the applying supply voltage.

Note: Vs is the applying supply voltage.

I/O CIRCUIT AND WIRING DIAGRAMS

SF-C11 Wiring diagram (Control category 4)
For PNP output (minus ground)

- Set the light curtain input polarity select switch to the PNP side and ground

Notes: 1) The above diagram is when using manual reset. If automatic reset is used connect the X2 lead to X3. In this case, a RESET switch is not needed

2) Use a momentary-type switch as the reset button.
3) Emission halt occurs when the test button is open, and emission occurs when
the test button is shorted. If not using the test button, short out T1 and T2.

For NPN output (plus ground)

- In the above diagram, set the light curtain input polarity select switch to the NPN side and ground the + side.

SF-C12 Wiring diagram (Control category 4)

For PNP output (minus ground)

- Set the two light curtain input polarity select switches to the PNP side and connect the FG terminal to the 0 V line.

Note: The above diagram is when using manual reset. If automatic reset is used, connect a normal close-type pushbutton switch between T1 and T2 and leave between X1 and X2 open.

For NPN output (plus ground)

- In the above diagram, set the two light curtain input polarity select switches to the NPN side and connect the FG terminal to the + side.

For NPN output (plus ground)

In the above diagram, connect the light curtain control outputs OSSD1 and OSSD2 to S2 and S4 respectively and ground the + side
If connecting a Type 2 light curtain, connect the light curtain control output (OSSD) to S4 and short S2 - S3

SF-C11 Terminal arrangement diagram

	Terminal	Function
	A1	+ 24 V DC
	A2	0 V
	13-14, 23-24, 33-34	Enabling output (NO contact $\times 3$)
	41-42	Auxiliary output (NC contact $\times 1$)
	X1	Reset output terminal
	X2	Reset input terminal (Manual)
	X3	Reset input terminal (Auto)
\square	A	
	B	Not used
	T1	Test output terminal
	T2	Test input terminal
	AUX	Semiconductor auxiliary output

SF-C12 Terminal arrangement diagram

Terminal	Function
FG	Frame ground (FG) terminal
A2	0 V
A1	+24 V DC
$13-14,23-24$	Enabling output (NO contact $\times 2$)
$31-32$	Auxiliary output (NC contact $\times 1$)
FB4	External relay monitor terminal 2
FB3	External relay monitor terminal 1
FB2	
FB1	

Terminal	Function
R +	Interfernce prevertion wire - (Receiver side)
R-	Intefrerence preverion wire + (Receiver side)
E+	Intererence prevertion wire - (Emiter side)
E-	Interference prevention wire + (Emiter side)
T2	Emission halt input terminal
T1	
X2	Auto reset / manual reset selection terminal Manual reset: X1 - X2 shorted
X1	

For PNP output (minus ground)

- Connect the light curtain control outputs OSSD1 and OSSD2 to S1 and S2 respectively.

Notes: 1) The above diagram is when using manual reset. If automatic reset is used connect the X2 lead to X3. In this case, a RESET switch is not needed.
) Use a momentary-type switch as the reset button.
3) Refer to the light curtain catalog or instruction manual for details on wiring at the light curtain.

- If connecting a Type 2 light curtain, connect the light curtain control
output (OSSD) to S1 and short S2 - S3

PRECAUTIONS FOR PROPER USE

Part description and function

Description		Function		
	A	When light curtain top receives light: lights up in red When light curtain top end receives light: blinks in red When control output is ON: lights up in green		
	Beam-axis alignment			
indicator (Red / Green)				
[RECEPTION]			B	When light curtain upper middle receives light: lights up in red
:---				
When control output is ON: lights up in green				

Description		Function
Beam-axis alignment indicator (Red / Green) [RECEPTION]	A	When light curtain top receives light: lights up in red When light curtain top end receives light: blinks in red When control output is ON: lights up in green
	B	When light curtain upper middle receives light: lights up in red When control output is ON: lights up in green
	C	When light curtain lower middle receives light: lights up in red When control output is ON: lights up in green
	D	When light curtain bottom receives light: lights up in red When light curtain bottom end receives light: blinks in red When control output is ON: lights up in green
OSSD indicator(Red / Green) [OSSD]		When control output is OFF: lights up in red When control output is ON: lights up in green
Incident light intensity indicator (Orange / Green) [STB]		When sufficient lightis rececived (incident light: 130% or move)/(Nite 2): IIghts up in green When stable light is received (incident light: 115 to 130%)(Note 2): OFF When unstabel lightis rececied (indident light: 100 to 115% \%/(Note 2): :Ights sp in orarge When light is interrupted: OFF (Note 3)
Fault indicator (Yellow) [FAULT] (Note 4)		When fault occurs in the light curtain: lights up or blink
Digital error indicator (Red) (Note 4)		When device is lockout: lights up for incident error content
PNP indicator (Orange) [PNP]		When PNP output is set: lights up
NPN indicator (Orange) [NPN]		When NPN output is set: lights up
Function setting indicator (Orange) [FUNCTION]		When blanking function is used: lights up (Note 5) When handy-controller is connected: blinks
Interlock indicator (Yellow) [INTERLOCK]		When device is interlocked: lights up Other cases: OFF

Notes: 1) Since the color of the operation indicator changes according to the ON / OFF status of the control output (OSSD1, OSSD2), the operation indicator is marked as 'OSSD' on the light curtain.
2) The threshold value where the control output (OSSD1, OSSD2) changes from OFF to ON is applied as ' 100% incident light intensity'.
3) The status 'when light is interrupted' refers to the status that the some obstacle is existed in the sensing area.
4) Refer to instruction manual enclosed with this product for details.
5) The blanking function is set by using the handy-controller (SFB-HC)(optional). Please order the handy-controller separately. However, a handy-controller cannot be used with the SF4B- $\square-01$.
6) The description given in [] is marked on the sensor.

Wiring

Refer to the applicable regulations for the region where this device is to be used when setting up the device. In addition, make sure that all necessary measures are taken to prevent possible dangerous operating errors resulting from earth faults.

- Make sure to carry out the wiring in the power supply off condition.
- Verify that the supply voltage variation is within the rating.
- If power is supplied from a commercial switching regulator, ensure that the frame ground (F.G.) terminal of the power supply is connected to an actual ground.
- In case noise generating equipment (switching regulator, inverter motor, etc.) is used in the vicinity of this sensor, connect the frame ground (F.G.) terminal of the equipment to an actual ground.
- Do not run the wires together with high-voltage lines or power lines or put them in the same raceway. This can cause malfunction due to induction.

Others

- Do not use during the initial transient time (2 sec.) after the power supply is switched on.
- Avoid dust, dirt and steam.
- Take care that the sensor does not come in direct contact with water, oil, grease, or organic solvents, such as, thinner, etc.
- Take care that the sensor is not directly exposed to fluorescent light from a rapid-starter lamp or a high frequency lighting device, as it may affect the sensing performance.
- When this device is used in the 'PSDI mode', an appropriate control circuit must be configured between this device and the machinery. For details, be sure to refer to the standards or regulations applicable in each region or country.
To use this product in the U.S.A., refer to OSHA 1910. 212 and OSHA 1910. 217 for installation, and in Europe, refer to EN 999 as well. Observe your national and local requirements before installing this product.
- This catalog is a guide to select a suitable product. Be sure to read instruction manual attached to the product prior to its use.
- Both emitter and receiver are combined adjusted on factory setting, please apply both emitter and receiver with the same serial No. The serial No. is indicated on the plates of both emitter and receiver. (The last 5 digits under the model represents the serial No.)
- Make sure to carry out the test run before regular operation.
- This safety system is for use only on machinery in which the dangerous parts can be stopped immediately, either by an emergency stop unit or by disconnecting the power supply. Do not use this system with machinery which cannot be stopped at any point in its operation cycle.

Sensing area

- Make sure to install this product such that any part of the human body must pass through its sensing area in order to reach the dangerous parts of the machinery. If the human body is not detected, there is a danger of serious injury or death.
- Do not use any reflective type or retroreflective type arrangement.

- Emitter and receiver that face each other should be from the same model No. (with same beam axis pitch and number of beam channels) and aligned in the vertical direction. If units from different sets are connected together, it may cause blind spots in the sensing area, and death or serious injury may result.
- Furthermore, facing several receivers towards one emitter, or vice versa, could produce a non-sensing area or cause mutual interference, which may result in serious injury or death.

Correct mounting method

Wrong mounting method

Safety distance

0The sizes of the minimum sensing objects for this device vary depending on whether or not the floating blanking function is being used. The equation differs depending on the case whether the minimum sensing object is larger than $\phi 40 \mathrm{~mm} \phi 1.575$ in or not. Calculate the safety distance with the proper size of the minimum sensing object and appropriate equation.
Size of minimum sensing object when applying floating blanking function

	Min. sensing object when applying floating blanking function			
	Invalid	Setting (Note)		
		1 beam channel	2 beam channels	3 beam channels
SF4B-F \square (Min. sensing object $\phi 14 \mathrm{~mm} \phi 0.551 \mathrm{in}$)	\$14 mm $\$ 0.551 \mathrm{in}$	\$24 mm 00.945 in	\$ $\$ 4 \mathrm{~mm}$ \$ 1.339 in	\$44mm $\phi 1.732 \mathrm{in}$
SF4B-H \square (Min. sensing object $\phi 25 \mathrm{~mm} \phi 0.984 \mathrm{in}$)	\$25mm $\downarrow 0.984 \mathrm{in}$	\$45 mm \$1.772in	\$65 mm $2^{2} .559$ in	\$85mm $\phi 3.346$ in
SF4B-A \square (Min. sensing object $\phi 45 \mathrm{~mm} \phi 1.772$ in)	\$45mm \$1.772 in	\$85 mm $\$ 3.346$ in	\$125mm 4.922 in	\$165mm 66.496 in

Note: Refer to p.11~ for details of the floating blanking function. In case of using optional function. However, a handy-controller cannot be used with the SF4B- $\square-01$.

- Safety distance is calculated based on the following equation when a person moves perpendicular (normal intrusion) to the sensing area of the sensor. In case the intrusion direction is not perpendicular to the sensing area, be sure to refer to the relevant standard (regional standard, specification of the machine, etc.) for details of the calculation. (Please check the latest standards for the equation.)
For use in Europe (EU) (as EN 999)] (Also applicable to ISO 13855)
For intrusion direction perpendicular to the sensing area
<ln case that the minimum sensing object is $\phi 40 \mathrm{~mm} \phi 1.575$ in or less>
- Equation 1

$$
S=K \times T+C
$$

S: Safety distance (mm)
Minimum required distance between the sensing area surface and the dangerous parts of the machine
K: Intrusion velocity of operator's body or object ($\mathrm{mm} / \mathrm{sec}$.)
Normally taken as 2,000 ($\mathrm{mm} / \mathrm{sec}$.) for calculation
T : Response time of total equipment (sec.)
$\mathrm{T}=\mathrm{T}_{\mathrm{m}}+\mathrm{TsF4B}$
Tm: Maximum halting time of machinery (sec.)
Tsf4B: Response time of the SF4B series 0.014 (sec.)
C : Additional distance calculated from the size of the minimum sensing object of the light curtain (mm) However, the value of C cannot be 0 or less.
$C=8 \times(d-14)$
d : Minimum sensing object diameter (mm)
For calculating the safety distance S , there are the following five cases.
First calculate by substituting the value $K=2,000(\mathrm{~mm} / \mathrm{sec}$.) in the equation above. Then, classify the obtained value of S into three cases, 1) $S<100,2) 100 \leqq S \leqq 500$, and 3) $S>500$. For Case 3) $S>500$, recalculate by substituting the value $K=1,600(\mathrm{~mm} / \mathrm{sec}$.) After that, classify the calculation result into two cases, 4) $S \leqq 500$ and 5) $S>500$. For details, refer to the instruction manual enclosed with this product. For calculating Tm (maximum halt time of the machinery), use a special device called a 'brake monitor'.
When this device is used in the 'PSDI mode', an appropriate safety distance S must be calculated. For details, be sure to refer to the standards or regulations applicable in each region or country.
<In the case that the minimum sensing object is $\phi 40 \mathrm{~mm} \phi 1.575$ in or more>

- Equation $\quad \mathrm{S}=\mathrm{K} \times \mathrm{T}+\mathrm{C}$

S: Safety distance (mm)
K: Intrusion velocity of operator's body or object ($\mathrm{mm} / \mathrm{sec}$.) Taken as $1,600(\mathrm{~mm} / \mathrm{sec}$.) for calculation
T : Response time of total equipment (sec.)
$\mathrm{T}=\mathrm{T}_{\mathrm{m}}+\mathrm{TsF4B}$
Tm : Maximum halting time of machinery (sec.)
TsF4B: Response time of the SF4B series 0.014 (sec.)
C : Additional distance calculated from the size of the minimum sensing object of the light curtain (mm) $C=850(\mathrm{~mm})$ (Constant)

PRECAUTIONS FOR PROPER USE

For use in the United States of America (as per ANSI B11.19)

- Equation (2) $\quad S=K \times(T s+T c+T s f 4 B+T b m)+D p f$

S : Safety distance (mm)
Minimum required distance between the sensing area surface and the dangerous parts of the machine
K: Intrusion velocity \{Recommended value in OSHA is 63 (inch/sec.) $[\fallingdotseq 1,600(\mathrm{~mm} / \mathrm{sec})]$.
ANSI B11.19 does not define the intrusion velocity ' K '. When determining K, consider possible factors including physical ability of operators.
Ts: Halting time calculated from the operation time of the control element (air valve, etc.) (sec.)
Tc: Maximum response time of the control circuit required for functioning the brake (sec.)
TsF4B: Response time of light curtain (sec.)
Tbm: Additional halting time tolerance for the brake monitor (sec.)
The following equation holds when the machine is equipped with a brake monitor.
$\mathrm{T}_{\mathrm{b}}=\mathrm{T}_{\mathrm{a}}-\left(\mathrm{T}_{\mathrm{s}}+\mathrm{T}_{\mathrm{c}}\right)$
Ta : Setting time of brake monitor (sec.)
When the machine is not equipped with a brake monitor, it is recommended that 20% or more of ($T_{s}+T_{c}$) is taken as additional halting time.
D_{pf} : Additional distance calculated from the size of the minimum sensing of the
SF4B-F $\square \mathrm{Dpf}_{\mathrm{pf}}=23.8 \mathrm{~mm} 0.937 \mathrm{in}$
SF4B-H $\square D_{\text {pf }}=61.2 \mathrm{~mm} 2.409$ in
SF4B-A $\square \mathrm{Dpf}_{\mathrm{pf}}=129.2 \mathrm{~mm} 5.087 \mathrm{in}$
$\mathrm{Dpf}_{\mathrm{pf}}=3.4 \times(\mathrm{d}-0.276)$ (inch) $\doteqdot 3.4 \times(\mathrm{d}-7)(\mathrm{mm})$
d: Minimum sensing object diameter 0.552 (inch) $\doteqdot 14$ (mm) SF4B-F \square Minimum sensing object diameter 0.985 (inch) $\rightleftharpoons 25$ (mm) SF4B-H \square Minimum sensing object diameter 1.772 (inch) $\fallingdotseq 45$ (mm) SF4B-A \square
However, the value of Dpf cannot be 0 or less.

Output waveform [Control output (OSSD1, OSSD2) ON]

- Since the receiver performs the self-diagnosis of the output circuit when the light curtain is in beam receiving status (ON status), the output transistor becomes OFF status periodically. (Refer to the figure below.)
When the OFF signal is fed back, the receiver judges the output circuit as normal. When the OFF signal is not fed back, the receiver judges either the output circuit or wiring as error, and the control output (OSSD1, OSSD2) maintains OFF status.

Since the OFF signal of this device might cause malfunction, perform the connecting paying attention to the input response time of the machine to be connected to this device.

Influence of reflective surfaces

Install the light curtain by considering the effect of nearby reflective surfaces, and take countermeasures such as painting, masking, or changing the material of the reflective surface, etc. Failure to do so may cause the light curtain not to detect, resulting in serious body injury or death.

- Install this device at a distance of at least $A(m)$ (given below) away from reflective surfaces such as metal walls, floors, ceilings, workpiece, covers, panels or glass surfaces.

Side view

Top view

Notes: 1) The setting distance L varies depending on the type of unit. Refer to 'ORDER GUIDE' on p . 13 for details.
2) The effective aperture angle for this device is $\pm 2.5^{\circ}$ or less (when L>3 m 9.843 ft) as required by IEC 61496-2 / UL 61496-2. However, install this device away from reflective surfaces considering an effective aperture angle of $\pm 3^{\circ}$ to take care of beam misalignment, etc. during installation.

Handy-controller

This device enables to set each function using the handy-controller (SFB-HC) (optional). However, a handy-controller cannot be used with the SF4B- $\square-01$. Among the functions, the contents related to the safety distance such as the size of the minimum sensing object and response time are varied depending on the setting condition. When setting each function, re-calculate the safety distance, and make enough space larger than the calculated safety distance. Failure to do so might cause the accident that the device cannot stop quickly before reaching the dangerous area of the machinery, resulting in the serious injury or death.

- Refer to the instruction manual enclosed with the handycontroller for details of the function settings for using handycontroller SFB-HC (optional).

Interlock function

- When the curtain light has been interrupted and control output (OSSD1, OSSD2) is OFF, the interlock function keeps the control output at OFF until a reset signal is input.
- You can select whether interlock is enabled (manual reset) or disabled (automatic reset) by the way in which the interlock setting input line (pale purple) is connected.

Interlock function	Reset operation	Interlock setting input (pale purple)

Enabled	Manual reset	Connected to 0 V or + V
Disabled	Auto reset	Open

Interlock enabled (manual reset)

- When the curtain light has been interrupted and control output (OSSD1, OSSD2) is OFF, the control output (OSSD1, OSSD2) is kept at OFF and does not automatically turn back ON even if the incoming light status is restored.
If a reset signal is input when incoming light is being received by the light curtain (emission halt input / reset input changes from 'open' to ' 0 V' or the +V side changes from 'shorted' to 'open'), control output (OSSD1, OSSD2) turns ON.

<Time chart>

Interlock disabled (automatic reset)

- When the curtain light has been interrupted and control output (OSSD1, OSSD2) is OFF, the control output turns ON automatically when the incoming light status is restored.

In case that this light curtain is used under auto reset mode, set the system not to be auto reset by the safety relay unit, etc. (conforming to EN 60204-1)

Auxiliary output (Non-safety output)
-This light curtain incorporates the auxiliary output for the non-safety output. The auxiliary output is incorporated with the emitter.

Auxiliary output setting	Normal mode			Lockout
	Emission halt	Control output (OSSD1, OSSD2) status	Beam received	

Do not use the auxiliary output for the purpose of stopping the device. Failure to do so could result in serious injury or death.

Emission halt function

- This function stops the emission process of the emitter.

You can select whether emission is on or halted by means of the connection status for the emission halt input / reset input line (pink).

Setting status of interlock function	Emission halt input / reset input	Emission status
Enabled (manual reset)	Open	Emission
	Connected to 0 V or +V	Emission halt
Disabled (auto reset)	Open	Emission halt
	Connected to 0 V or +V	Emission

- During emission halt, the control output (OSSD1, OSSD2) becomes OFF status.
- By using this function, malfunction due to extraneous noise or abnormality in the control output (OSSD1, OSSD2) and the auxiliary output can be determined even from the machinery side.
- Normal operation is restored when the emission halt input / reset input line (pink) is connected to 0 V or +V .
<Time chart [when interlock function is enabled (manual reset)]>

Note:This timing chart shows the operation in auto reset. In manual reset, the light curtain performs emission under open status and performs emission halt under short-circuit status.

External device monitor function

- This is the function for checking whether the external safety relay connected to the control output (OSSD1, OSSD2) performs normally in accordance with the control output (OSSD1, OSSD2) or not. Monitor the contacting point 'b' of the external safety relay, and if any abnormality such as deposit of the contacting point, etc. is detected, change the status of the light curtain into lockout one, and turn OFF the control output (OSSD1, OSSD2).

In case of setting the external device monitor function into valid

- Connect the external device monitor input (yellow-green) to the external safety relay connected the control output (OSSD1, OSSD2).

In case of not using the external device monitor function

- Connect the external device monitor input (yellow-green) to the auxiliary output (yellow-green / black). At this time, set the auxiliary output as [negative logic of control output (OSSD1, OSSD2)] (factory setting).
- It is also possible to set the external device monitor function into invalid by using the handy-controller SFB-HC (optional). However, a handy-controller cannot be used with the SF4B- \square-01.
<Time chart (normal)>

monitor input
- The setting time of external device monitor is 300 ms or less. Exceeding 300 ms turns the device into lockout status. It can be set within 100 to 600 ms (in units of 10 ms) by using the handycontroller (SFB-HC)(optional). However, a handy-controller cannot be used with the SF4B- \square-01.

<Time chart (Error (2))>

Muting function

- Incorrect using of the muting control may cause any accident. Please understand the muting control fully, and use it. As for the muting control, the following international standards define the requirements.
ISO 13849-1(EN 954-1 / JIS B 9705-1):
'Safety of machinery - Safety-related parts of control systems -Part 1: General principles for design, Article 5.9 Muting' IEC 61496-1 (UL 61496 / JIS B 9704-1): 'Safety of machinery - Electro sensitive protective equipment -Part 1: General requirements and tests' Annex A, A. 7 Muting IEC 60204-1 (JIS B 9960-1):
'Safety of machinery - Electrical equipment of machines Part 1: General requirements, 9.2.4 Overriding safeguards' EN 415-4:
'Safety of packaging machines part 4. Palletizers and depalletizers' Annex A, A2.2 Muting' ANSI B11.19-1990:

'for Machine Tools-Safeguarding When Referenced by the Other B11 Machine Tool Safety StandardsPerformance Criteria for the Design, Construction, Care, and Operation' 4.2.3 Presence-Sensing Devices: Electro-Optical and Radio Frequency (R.F.) ANSI/RIA R15.06-1999:
'for Industrial Robots and Robot Systems - Safety Requirements, 10.4.5 Muting'
- Use the muting control while the machine cycle is not in danger mode. Maintain safety with the other measure while the muting control is activated.
- For the application that the muting control is activated when a workpiece passes through the sensor, place the muting sensor so that the conditions for the muting control cannot be satisfied by intrusion of personnel when the workpiece is passing through the sensor or the workpiece is not passing through it.
- The muting lamp should be installed in a position where it can always be seen by operators who set or adjust the machine.
- Be sure to check the operation of the muting function before its use. Furthermore, check the state of the muting lamp (cleanliness or brightness etc.)
- This function turns the safety function of this light curtain into invalid temporarily. When the control output (OSSD1, OSSD2) is ON, this function is available for passing the workpiece through the sensing area of the light curtain without stopping the machinery. The muting function becomes valid when all the conditions listed below are satisfied:
(1)The control output (OSSD1, OSSD2) shall be ON.
(2)The incandescent lamp with 3 to 10 W shall be connected to the muting lamp output (red).
(3)The output of the muting sensors $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D shall be changed from OFF (open) to ON. At this time, the time difference occurred by changing the output of the muting sensors $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D into ON status shall be within 0.03 to 3 sec .
-The following devices, photoelectric sensor with semiconductor output, proximity sensor, position switch on N.O. (Normal Open) contact, etc. are available for applying to the muting sensor.
- In case of using the muting function, please order 12-core cable. SUNX

PRECAUTIONS FOR PROPER USE

- It is possible to set the muting function into invalid per beam channel respectively and to specify the output order of the muting sensor to be set into valid by using the handy-controller (SFB-HC)(optional). However, a handy-controller cannot be used with the SF4B- \square-01.
It is recommended that two muting lamp should be connected in parallel. However, take care not to exceed 10 W .

Note: If the muting lamp does not light within 1 sec., the muting function is disabled.

Override function

- This function sets the safety function of this light curtain invalid forcibly. When using the muting function, the override function can be used to start the machinery at times such as when the control outputs (OSSD1 and OSSD2) are OFF or when the muting sensors are ON when the line is to be started.
The override function becomes valid when all the conditions listed below are satisfied:
(1)The incandescent lamp with 3 to 10 W shall be connected to the muting lamp output (red).
(2) The signal shall be input to either muting sensor A or B .
(3)The override input (yellow) shall be short-circuited to 0 V or +V , and the emission halt input / reset input (pink) shall be opened. (3 sec. continuously)
If one of the three conditions above becomes invalid or timing exceeds 60 sec., the override function becomes invalid.
- The override function only operates when the interlock function is disabled (automatic reset)
- For using the override function, please order 12-core cable.

<Time chart>

Note: If the muting lamp does not light within 4 sec., the override function is disabled.

The emission halt input / reset input button and the override input button should be installed outside the danger area, and in a place where the danger area is clearly visible.

[^0]
Series connection

Connectable up to 3 sets of light curtains (however, 192 beam channels max.)

- This is the configuration for connecting multiple sets of emitters and receivers facing each other in series. It is used when the dangerous part can be entered from two or more directions. The control output (OSSD1, OSSD2) turns OFF if any of the light curtain is interrupted.

For series connection, connect the emitter and emitter, receiver and receiver respectively using the exclusive cable (SFB-CSL \square) for series connection. Wrong connection could generate the non-sensing area, resulting in serious injury or death.

Parallel connection

- This is the configuration for connecting multiple sets of emitter and receiver facing each other in parallel. It is used when there are two or three dangerous parts and each dangerous part can be entered from only one direction. By connecting the interference prevention line, up to three sets of the sensors can be connected For the control output (OSSD1, OSSD2), only the output of the sensor of which light is blocked turns OFF.

0For parallel connection, connect the one receiver to the other connection using the interference prevention wire as shown in the figure below. Wrong connection could generate the non-sensing area, resulting in serious injury or death.

Light curtain A (Master side) Emitter 1 Receiver 1

Light curtain B (Slave side)

$$
\begin{array}{ll}
\text { Emitter 2 } & \text { Receiver } 2
\end{array}
$$

Notes: 1) In case of using the interference prevention wire, please order 12-core cable.
2) If the interference prevention wire is extended, use a $\phi 0.2 \mathrm{~mm}^{2}$, or more, shielded twist pair-cable
Series and parallel mixed connection

- This is the configuration for connecting multiple sets of emitter and receiver facing each other in mixed series and parallel combination. It is used when there are two or more dangerous parts that can be entered from two or more directions. Up to three sets of sensors in total of the series connection and parallel connection can be connected in combination. However, the total number of beam axes is a maximum of 192. The control output (OSSD1, OSSD2) turns only its output to OFF if the light is blocked.

0
For parallel connection, connect the one receiver to the other connection using the interference prevention wire as shown in the figure below. Wrong connection could generate the non-sensing area, resulting in serious injury or death.

Light curtain A

Notes: 1) In case of using the interference prevention wire, please order 12-core cable.

SF4B \square
 Light curtain

Assembly dimensions

Mounting drawing for the light curtain on which the standard mounting brackets (MS-SFB-1) and the intermediate supporting brackets are mounted.

<Back mounting>

Emitter

Receiver

Model No.			A	B	C	D	E	F
SF4B-F23	SF4B-H12	SF4B-A6	9.055	$\begin{array}{\|c\|} \hline 270 \\ \hline 10.630 \\ \hline \end{array}$	$\left.\right\|_{11.266} ^{286}$	-	-	-
SF4B-F31	SF4B-H16	SF4B-A8	$\begin{array}{\|r} 310 \\ 12.205 \\ \hline \end{array}$	$\begin{array}{r} 350 \\ 13.780 \\ \hline \end{array}$	$\begin{array}{r} 366 \\ 14.406 \\ \hline \end{array}$	-	-	-
SF4B-F39	SF4B-H20	SF4B-A10	15950 15	$\begin{array}{\|c\|} \hline 430 \\ 16.929 \end{array}$	$\begin{array}{\|l\|l\|} \hline 4469 \\ \hline \end{array}$	-	-	-
SF4B-F47	SF4B-H24	SF4B-A12	$\begin{array}{\|r} 470 \\ 18.504 \\ \hline \end{array}$	$\begin{array}{r} 510 \\ 20.079 \\ \hline \end{array}$	20.709	-	-	
SF4B-F55	SF4B-H28	SF4B-A14	21.650	23.228	23.858	-	-	
SF4B-F63	SF4B-H32	SF4B-A16	$\begin{array}{r} 630 \\ 24.803 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 670 \\ \hline 26.378 \\ \hline \end{array}$	$\begin{array}{\|r\|r\|} \hline 686 \\ \hline 27.008 \\ \hline \end{array}$	-	-	
SF4B-F71	SF4B-H36	SF4B-A18	$\begin{array}{\|r} 710 \\ 27.953 \\ \hline \end{array}$	$\begin{array}{r} 750 \\ \hline 29.528 \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 766 \\ \hline \end{array}$	-	-	
SF4B-F79	SF4B-H40	SF4B-A20	$\begin{array}{r} 790 \\ 31.102 \\ \hline \end{array}$	$\begin{array}{r} 830 \\ 32.677 \\ \hline \end{array}$	$\begin{array}{r} 846 \\ 33.307 \\ \hline \end{array}$	$\begin{array}{r} 390 \\ 15.354 \\ \hline \end{array}$	-	
SF4B-F95	SF4B-H48	SF4B-A24	$\begin{array}{r} 950 \\ 37.402 \\ \hline \end{array}$	990	$\begin{array}{r} 1,006 \\ 39.606 \end{array}$	$\begin{array}{r} 470 \\ 18.504 \\ \hline \end{array}$	-	
SF4B-F111	SF4B-H56	SF4B-A28	$\begin{array}{\|r\|} 1,110 \\ 43.701 \\ \hline \end{array}$	$\begin{array}{r} 1,150 \\ 45.276 \\ \hline \end{array}$	$\begin{array}{r} 1,166 \\ 45.905 \end{array}$	$\begin{array}{r} 550 \\ 21.654 \\ \hline \end{array}$	-	
SF4B-F127	SF4B-H64	SF4B-A32	$\begin{array}{r} 1,270 \\ 50.000 \\ \hline \end{array}$	$\begin{array}{r} 1,310 \\ 51.575 \\ \hline \end{array}$	$\begin{array}{r} 1,326 \\ 52.505 \end{array}$	$\begin{array}{r} 418 \\ 16.457 \end{array}$	$\begin{array}{\|r} 842 \\ 33.150 \\ \hline \end{array}$	
-	SF4B-H72	SF4B-A36	$\begin{array}{r} 1,430 \\ 56.299 \\ \hline \end{array}$	$\begin{array}{r} 1,470 \\ 57.874 \end{array}$	$\begin{array}{r} 1,486 \\ 58.504 \\ \hline \end{array}$	$\begin{array}{\|r\|r\|} \hline 472 \\ \hline 1883 \\ \hline \end{array}$	$\begin{array}{\|r\|r\|} 948 \\ \hline 37.323 \\ \hline \end{array}$	
-	SF4B-H80	SF4B-A40	$\begin{array}{r} 1,590 \\ 62.598 \\ \hline \end{array}$	$\begin{array}{r} 1,630 \\ 64.173 \end{array}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|} \hline 64.803 \end{array}$	$\begin{array}{r} 525 \\ 20.669 \end{array}$	$\begin{array}{r} 1,055 \\ 41.535 \end{array}$	
-	SF4B-H88	SF4B-A44	$\begin{array}{r} 1,750 \\ 68.898 \\ \hline \end{array}$	$\begin{aligned} & 1,790 \\ & 70,472 \end{aligned}$	$\begin{aligned} & 1,806 \\ & 71: 102 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.043 \\ & \hline \end{aligned}$	$\begin{aligned} & 870 \\ & 34.252 \\ & \hline \end{aligned}$	51.498
-	SF4B-H96	SF4B-A48	1,910	76,772	17,966	18.673	37.402	- $\begin{array}{r}1,428 \\ \hline 1220 \\ \hline\end{array}$

Note: The SF4B- \square-01 has the same shape.

Emitter

Model No.	G	H
SF4B-F \square	0.394	0.15
SF4B-H \square	0.787	0.195
SF4B-A \square	1.575	0.591

SF4B

DIMENSIONS (Unit: mm in)
The CAD data in the dimensions can be downloaded from the SUNX website: http://www.sunx.co.jp/

SF4B

 Light curtain
Assembly dimensions

Mounting drawing for the light curtain on which the dead zoneless brackets (MS-SFB-3) and the intermediate supporting brackets are mounted.

Emitter

Model No.			A	J	K	L	M	N
SF4B-F23	SF4B-H12	SF4B-A6	$\begin{array}{r} 230 \\ 9.055 \\ \hline \end{array}$	$\begin{array}{r} 209 \\ 8.228 \\ \hline \end{array}$	$\begin{array}{r} 201 \\ 7.913 \\ \hline \end{array}$	-	-	-
SF4B-F31	SF4B-H16	SF4B-A8	$\begin{array}{r} 310 \\ 12.205 \\ \hline \end{array}$	$\begin{array}{r} 289 \\ 11.378 \\ \hline \end{array}$	$\begin{array}{r} 281 \\ 11.063 \\ \hline \end{array}$	-	-	-
SF4B-F39	SF4B-H20	SF4B-A10	$\begin{array}{r} 390 \\ 15.354 \\ \hline \end{array}$	$\begin{array}{r} 369 \\ 14.528 \\ \hline \end{array}$	$\begin{array}{r} 361 \\ 14.213 \end{array}$	-	-	-
SF4B-F47	SF4B-H24	SF4B-A12	$\begin{array}{\|r\|} \hline 470 \\ 18.504 \\ \hline \end{array}$	$\begin{array}{r} 449 \\ 17.677 \\ \hline \end{array}$	$\begin{array}{r} 441 \\ 17.362 \\ \hline \end{array}$	-	-	-
SF4B-F55	SF4B-H28	SF4B-A14	$\begin{array}{r} 550 \\ 21.654 \\ \hline \end{array}$	$\begin{array}{r} 529 \\ 20.827 \\ \hline \end{array}$	$\begin{array}{r} 521 \\ 20.512 \\ \hline \end{array}$	-	-	-
SF4B-F63	SF4B-H32	SF4B-A16	$\begin{array}{r} 630 \\ 24.803 \\ \hline \end{array}$	$\begin{array}{r} 609 \\ 23.976 \\ \hline \end{array}$	$\begin{array}{r} 601 \\ 23.661 \\ \hline \end{array}$	-	-	-
SF4B-F71	SF4B-H36	SF4B-A18	$\begin{array}{\|r\|} \hline 710 \\ 27.953 \\ \hline \end{array}$	$\begin{array}{r} 689 \\ 27.126 \\ \hline \end{array}$	$\begin{array}{r} 681 \\ 26.811 \\ \hline \end{array}$	-	-	-
SF4B-F79	SF4B-H40	SF4B-A20	$\begin{array}{r} 790 \\ 31.102 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 769 \\ 30.276 \\ \hline \end{array}$	$\begin{array}{r} 761 \\ 29.961 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 370 \\ 14.567 \\ \hline \end{array}$	-	-
SF4B-F95	SF4B-H48	SF4B-A24	$\begin{array}{r} 950 \\ 37.402 \\ \hline \end{array}$	$\begin{array}{r} 929 \\ 36.575 \\ \hline \end{array}$	$\begin{array}{r} 921 \\ 36.260 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 450 \\ \hline 17.717 \\ \hline \end{array}$	-	-
SF4B-F111	SF4B-H56	SF4B-A28	$\begin{array}{r} 1,110 \\ 43.701 \\ \hline \end{array}$	$\begin{array}{r} 1,089 \\ 42.874 \\ \hline \end{array}$	$\begin{array}{r} 1,081 \\ 42.559 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 530 \\ 20.866 \\ \hline \end{array}$	-	-
SF4B-F127	SF4B-H64	SF4B-A32	$\begin{array}{\|r\|} \hline 1,270 \\ 50.000 \\ \hline \end{array}$	$\begin{array}{r} 1,249 \\ 49.173 \\ \hline \end{array}$	$\begin{array}{r} 1,241 \\ 48.858 \end{array}$	$\begin{array}{r} 398 \\ 15.669 \\ \hline \end{array}$	$\begin{array}{r} 822 \\ 32.362 \\ \hline \end{array}$	-
-	SF4B-H72	SF4B-A36	$\begin{array}{\|r\|} \hline 1,430 \\ 56.299 \\ \hline \end{array}$	$\begin{array}{r} 1,409 \\ 55.472 \\ \hline \end{array}$	$\begin{array}{r} 1,401 \\ 55.157 \\ \hline \end{array}$	$\begin{array}{r} 452 \\ 17.795 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 928 \\ 36.535 \\ \hline \end{array}$	-
-	SF4B-H80	SF4B-A40	$\begin{array}{r} 1,590 \\ 62.598 \\ \hline \end{array}$	$\begin{array}{r} 1,569 \\ 61.772 \\ \hline \end{array}$	$\begin{array}{r} 1,561 \\ 61.457 \\ \hline \end{array}$	$\begin{array}{r} 505 \\ 19.882 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 1,035 \\ 40,748 \\ \hline \end{array}$	-
-	SF4B-H88	SF4B-A44	$\begin{array}{r} 1,750 \\ 68.898 \\ \hline \end{array}$	$\begin{array}{r} 1,729 \\ 68.071 \\ \hline \end{array}$	$\begin{array}{r} 1,721 \\ 67.756 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 413 \\ 16.260 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 850 \\ 33.465 \\ \hline \end{array}$	$\begin{array}{r} 1,288 \\ 50: 709 \\ \hline \end{array}$
-	SF4B-H96	SF4B-A48	$\begin{array}{r} 1,910 \\ 75.197 \\ \hline \end{array}$	$\begin{array}{r} 1,889 \\ 74.370 \\ \hline \end{array}$	$\begin{array}{r} 1,881 \\ 74.055 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 453 \\ 17.835 \\ \hline \end{array}$	$\begin{array}{r} 930 \\ 36.614 \\ \hline \end{array}$	$\begin{array}{r} 1,408 \\ 55.433 \\ \hline \end{array}$

Emitter

Model No.	G	H
SF4B-F \square	0.394	0.197
SF4B-H \square	0.787	0.197
SF4B-A \square	1.575	40.591

MS-SFB-1 Standard mounting bracket (Optional)

MS-SFB-2 Intermediate supporting bracket (Accessory for light curtain)

MS-SFB-3 Dead spaceless bracket (Optional)
Main body

Four bracket se
Four M5 (length 25 mm 0.984 in) hexagon-socket-head]
bolts and four spacers are attached.

L-shaped mounting

SF-C11

SF-C13

SF-C12

SFB-HC Handy-controller (Optional)

All information is subject to change without prior notice.

Sensing the Future

[^0]: - It is also possible to set the override function into invalid by using the handy-controller SFB-HC

