5-Phase Stepping Motor and Driver Package

CSK Series

Features .. B-118
List of Motor and Driver Combinations B-120
Standard Type ... B-121
TH Geared Type .. B-125
Dimensions ... B-129
Wiring Diagram .. B-132
Description of Input/Output Signals B-134
Switching and Setting Functions B-136
Adjusting the Output Current B-137
5-Phase Stepping Motor and Driver Package

CSK Series

1. High torque
 The PK high torque motor was designed to produce high-torque in a compact frame size.

2. Low vibration
 Because there is no noticeable resonance, smooth rotation is achieved. These packages keep vibration and noise levels low.

3. Compact package
 Both the motor and driver are designed to be compact, making them perfect for reducing the size and weight of machines.

4. High resolution
 The 5-phase stepping motors have 0.72° per step in full-step mode and 0.36° per step in half-step mode—2.5 times the resolution of a 2-phase stepping motor. This makes it possible for extremely accurate positioning.

5. TH geared type
 The backlash-proof geared stepping motor features the compact body: What's more, these motors allow high permissible torque. They are optimal for applications in which large torque is required in tight spaces.

※PK54□ type motor dose not comply with CSA standards.
CSK59□ types are not recognized by UL and CSA.
CSK Series System Configuration

Combines a high torque 5-phase stepping motor with a compact driver for high-accuracy positioning control with open loop.

Accessories (Sold separately)

- Motor Mounting Brackets: Page B-248
- Clean Dampers: Page B-251
- Flexible Couplings: Page B-252

Note: Flexible Couplings can not be fitted to TH geared motor types.

Note: Mounting brackets can not be fitted to TH geared motor types.

Effective at suppressing motor vibration and improving performance.
CSK Series Standard Type Page B-121

Three sizes are available: **CSK54□** with a frame size of 42mm square; **CSK56□** 60mm square; and **CSK59□** 85mm square.

Standards / CE Marking

<table>
<thead>
<tr>
<th>Products</th>
<th>Applicable Standards</th>
<th>Certification body</th>
<th>File. No.</th>
<th>CE Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stepping Motor</td>
<td>UL1004, UL519</td>
<td>UL</td>
<td>E64199</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSA C22.2 No.100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSA C22.2 No.77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driver</td>
<td>UL508C</td>
<td>UL</td>
<td>E171462</td>
<td>EMC Directive</td>
</tr>
<tr>
<td></td>
<td>CSA C22.2 No.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UL1950</td>
<td>UL</td>
<td>E208200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSA C22.2 No.950</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PK54□ type does not comply with CSA standards. **CSK59□** types are not recognized by UL and CSA.

UL Approval Conditions

- The product is be used as a component within other equipment.
- Overvoltage Category : I
- Pollution Degree : 2
- Class II

CSK Series TH Geared Type Page B-125

Four gear ratio are available: 1:7,2, 1:10, 1:20 and 1:30. The low ratios allows output shaft speed to be reduced without reducing the input pulse frequency, thus enabling more precise resolution and smoother rotation as low speed.

Refer to page B-18 for the details of **TH** gear.

Use Conditions

Surroundings The case of the driver of this product is not recognized as the enclosure. Protecting with the enclosure, please use.

Power Supply The driver power supply to be used should be a DC power supply where the primary and secondary sides are provided with reinforced insulation.

EMC The EMC value changes according to the wiring and layout. Therefore, the final EMC level must be checked with the motor/driver incorporated in the user's equipment.

- EMI Emission Tests: EN50081-2
- Radiated Emission Test: EN55011
- Immunity Tests: EN61000-6-2
- Radiation Field Immunity Tests: IEC61000-4-3
- Electro Static Discharge Immunity Test: IEC61000-4-2 ※ 1
- Fast Transient/Burst Immunity Test: IEC61000-4-4
- Conductive Noise Immunity Test: IEC61000-4-6
- ※ 1 Except for **CSK54□** type, **CSK56□** type

List of Motor and Driver Combinations

Model numbers for motor and driver combinations are shown below.

<table>
<thead>
<tr>
<th>Type</th>
<th>Package Model</th>
<th>Stepping Motor Model</th>
<th>Current A/phase</th>
<th>Driver Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Type</td>
<td>CSK543-N□-TE</td>
<td>PK543□-W</td>
<td>0.75</td>
<td>CSD5807N-T</td>
</tr>
<tr>
<td></td>
<td>CSK544-N□-TE</td>
<td>PK544□-W</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSK545-N□-TE</td>
<td>PK545□-W</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSK564-N□-TE</td>
<td>PK564□-WE</td>
<td>1.4</td>
<td>CSD5814N-T</td>
</tr>
<tr>
<td></td>
<td>CSK566-N□-TE</td>
<td>PK566□-WE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSK569-N□-TE</td>
<td>PK569□-WE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSK596-N□-TE</td>
<td>PK596-N□-E</td>
<td>2.8</td>
<td>CSD5828N-T</td>
</tr>
<tr>
<td></td>
<td>CSK599-N□-TE</td>
<td>PK599-N□-E</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSK5913-N□-TE</td>
<td>PK5913-N□-E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TH Geared Type

CSK543AE-TG7.2	PK543NAW-T7.2
CSK543AE-TG10	PK543NAW-T10
CSK543AE-TG20	PK543NAW-T20
CSK543AE-TG30	PK543NAW-T30

CSK564AE-TG7.2	PK564NAW-T7.2
CSK564AE-TG10	PK564NAW-T10
CSK564AE-TG20	PK564NAW-T20
CSK564AE-TG30	PK564NAW-T30

Enter A (single shaft) or B (double shaft) in the □ within the model numbers.

AUDIN - 8, avenue de la malle - 51370 Saint Brice Courcelles - Tel : 03.26.04.20.21 - Fax : 03.26.04.28.20 - Web : http: www.audin.fr - Email : info@audin.fr
Specifications: Standard Type

<table>
<thead>
<tr>
<th>Package Model</th>
<th>Single Shaft</th>
<th>Double Shaft</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSK 543-NATE</td>
<td>CSK543-NBTE</td>
<td>CSK544-NATE</td>
</tr>
<tr>
<td>Maximum Holding Torque</td>
<td>N·m</td>
<td>0.13</td>
</tr>
<tr>
<td>Rotor Inertia</td>
<td>kg·m²</td>
<td>35×10⁻³</td>
</tr>
<tr>
<td>Rated Current</td>
<td>A/phase</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Excitation Mode

- Full Step : 0.72°/step (4 phase excitation)
- Half Step : 0.36°/step (4-5 phase excitation)

- **Input Signal Circuit**
 - Pulse Signal
 - Step Command Pulse Signal
 - Pulse width: 5 µs minimum, Pulse rise/Pulse fall time 2 µs maximum
 - Motor moves when the photocoupler state changes from ON to OFF.

- Rotation Direction Signal
 - Rotation Direction Signal
 - Photocoupler ON : CW, Photocoupler OFF : CCW

- Step Angle Signal
 - Full Step (0.72°) at “Photocoupler ON”
 - Half Step (0.36°) at “Photocoupler ON”

- All Windings Off Signal
 - When in the “Photocoupler ON” state the current to the motor is cut off and the motor shaft can be rotated manually.
 - When in the “Photocoupler OFF” state the current level set by the RUN switch is supplied to the motor.

- Automatic Current Cutback Release Signal
 - When in the “Photocoupler ON” state the “Automatic Current Cutback” function at motor standstill is disabled.
 - When in the “Photocoupler OFF” state the “Automatic Current Cutback” function at motor standstill is activated.
 - (Approximately 100ms after motor motion stops)

- **Output Signal Circuit**
 - Photocoupler, Open-Collector Output
 - External use condition: 24V DC maximum, 10mA maximum

- Excitation Timing Signal
 - The signal is output every time the excitation sequence returns to the initial stage ‘0’.
 - (Photocoupler : ON)
 - Full step: signal output every 10 pulses,
 - Half step: signal is output every 20 pulses

- **Functions**
 - Automatic current cutback

<table>
<thead>
<tr>
<th>Mass</th>
<th>Motor kg</th>
<th>Driver kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.21</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>0.35</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>1.3</td>
</tr>
</tbody>
</table>

- **Cooling Method (Driver)**
 - Natural Ventilation

- **Insulation Resistance**
 - Motor: 100M Ω or more under normal ambient temperature and humidity when the megger reading between the windings and the frame is DC600V.

- **Dielectric Strength**
 - Motor, Driver: Under normal ambient temperature and humidity, sufficient to withstand 1.0kV at 50 Hz (0.5kV for driver) applied between the windings and the frame for one minute following a period of continuous operation.

- **Ambient temperature**
 - Motor: −10°C ~ +50°C
 - Driver: 0°C ~ +40°C

- **Maximum holding torque** refers to the holding torque at motor standstill when the rated current is supplied to the motor (5 phase excitation). Use this value to compare motor torque performance. When using the motor with the included driver, the driver’s “Automatic Current Cutback” function at motor standstill reduces maximum holding torque by approximately 50%.

- **The power source input current value represents the maximum current. (The input current varies according to the pulse frequency.)**
Package Model

<table>
<thead>
<tr>
<th>Package Model</th>
<th>Single Shaft</th>
<th>Double Shaft</th>
<th>Double Shaft</th>
<th>Double Shaft</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CSK596-NATE</td>
<td>CSK596-NBTE</td>
<td>CSK599-NATE</td>
<td>CSK599-NBTE</td>
</tr>
<tr>
<td>Maximum Holding Torque N·m</td>
<td>2.1</td>
<td>4.1</td>
<td>6.3</td>
<td></td>
</tr>
<tr>
<td>Rotor Inertia kg·m²</td>
<td>1400×10⁻⁷</td>
<td>2700×10⁻⁷</td>
<td>4000×10⁻⁷</td>
<td></td>
</tr>
<tr>
<td>Basic Rated Current A/phase</td>
<td></td>
<td></td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>Step Angle</td>
<td></td>
<td></td>
<td>0.72°</td>
<td></td>
</tr>
<tr>
<td>Insulation Class</td>
<td>Class B (130°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Source</td>
<td>Motor Driving: DC24V ±10% 4A maximum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Current A/phase</td>
<td></td>
<td></td>
<td>2.8</td>
<td></td>
</tr>
</tbody>
</table>

Input Signals

- **Pulse Signal** (CW Pulse Signal)
 - Step Command Pulse signal (CW Direction Command Pulse Signal at 2-pulse input mode)
 - Pulse width: 5 μs minimum, Pulse rise/Pulse fall time 2 μs maximum
 - Motor moves when the photocoupler state changes from ON to OFF.
- **Rotation Direction Signal** (CCW Pulse Signal)
 - Rotation Direction Signal
 - Photocoupler ON: CCW
 - Photocoupler OFF: CCW
 - Pulse width: 5 μs minimum, Pulse rise/Pulse fall time 2 μs maximum
 - Motor moves when the photocoupler state changes from ON to OFF.
- **Step Angle Signal**
 - Full Step (0.72°) at "Photocoupler OFF"
 - Half Step (0.36°) at "Photocoupler ON"
- **All Windings Off Signal**
 - When in the "Photocoupler ON" state the current to the motor is cut off and the motor shaft can be rotated manually.
 - When in the "Photocoupler OFF" state the current level set by the RUN switch is supplied to the motor.
- **Automatic Current Cutback Release Signal**
 - When in the "Photocoupler ON" state the "Automatic Current Cutback" function at motor standstill is disabled.
 - When in the "Photocoupler OFF" state the "Automatic Current Cutback" function at motor standstill is activated.
 - (Approximately 100ms after motor motion stops)

Output Signals

- **Input Signal Circuit**
 - Photocoupler input, input resistance 220Ω, input current 20mA maximum
- **Exitation Timing Signal**
 - The signal is output every time the excitation sequence returns to the initial stage "0".
 - (Photocoupler : ON)
 - Full step: signal output every 10 pulses
 - Half step: signal output every 20 pulses
- **Overheat Signal**
 - Signal is output when the temperature of the driver radiation plate becomes 90°C.
 - (Photocoupler ON, Automatic return.)
 - The motor comes to a natural stop by "Automatic Current Off" function.

Functions

- Automatic current cutback, Automatic current off, Pulse signal mode switch

Cooling Method (Driver)

<table>
<thead>
<tr>
<th>Mass</th>
<th>Motor kg</th>
<th>Driver kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.7</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Insulation Resistance

| Motor | 100M Ω or more under normal ambient temperature and humidity when the meger reading between the windings and the frame is DC500V. |

Dielectric Strength

| Motor | Under normal ambient temperature and humidity, sufficient to withstand 1.0kV at 50 Hz applied between the windings and the frame for one minute following a period of continuous operation. |

Ambient temperature

| Motor | −10°C ~ +50°C |
| Driver | 0°C ~ +40°C |

- Maximum holding torque refers to the holding torque at motor standstill when the rated current is supplied to the motor (5 phase excitation). Use this value to compare motor torque performance. When using the motor with the included driver, the driver’s "Automatic Current Cutback" function at motor standstill reduces maximum holding torque by approximately 50%.
- The power source input current value represents the maximum current. (The input current varies according to the pulse frequency.)
5 Phase with AC Driver

When using the motor with the dedicated driver, the driver “Automatic Current Cutback” function at motor standstill reduces maximum holding torque by approximately 50%.

Notes:
1. Pay attention to heat dissipation from the motor and driver. The motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C.
2. When using the motor with the dedicated driver, the driver ‘Automatic Current Cutback’ function at motor standstill reduces maximum holding torque by approximately 50%.
Notes:
1. Pay attention to heat dissipation from the motor and driver. The motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C.
2. When using the motor with the dedicated driver, the driver ‘Automatic Current Cutback’ function at motor standstill reduces maximum holding torque by approximately 50%.
Specifications: TH Geared Type

<table>
<thead>
<tr>
<th>Package Model</th>
<th>Single Shaft</th>
<th>CSK543AE-TG7.2</th>
<th>CSK543AE-TG10</th>
<th>CSK543AE-TG20</th>
<th>CSK543AE-TG30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Holding Torque</td>
<td>N ⋅ m</td>
<td>0.7</td>
<td>1.0</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Rotor Inertia</td>
<td>kg ⋅ m²</td>
<td>35 × 10⁻²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated Current</td>
<td>A/phase</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Step Angle</td>
<td>°</td>
<td>0.1°</td>
<td>0.072°</td>
<td>0.036°</td>
<td>0.024°</td>
</tr>
<tr>
<td>Reduction Gear Ratio</td>
<td>1:7.2</td>
<td>1:10</td>
<td>1:20</td>
<td>1:30</td>
<td></td>
</tr>
<tr>
<td>Permissible Torque</td>
<td>N ⋅ m</td>
<td>0.7</td>
<td>1.0</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Permissible Thrust Load</td>
<td>N</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permissible Overhung Load</td>
<td>N</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backlash</td>
<td>Minute</td>
<td>25 (0.417°)</td>
<td>25 (0.417°)</td>
<td>15 (0.25°)</td>
<td>15 (0.25°)</td>
</tr>
<tr>
<td>Permissible Speed Range (Output Shaft Rotation Speed)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full Step</td>
<td>0〜15000Hz (0〜250/min)</td>
<td>0〜15000Hz (0〜180/min)</td>
<td>0〜15000Hz (0〜90/min)</td>
<td>0〜15000Hz (0〜60/min)</td>
<td></td>
</tr>
<tr>
<td>Half Step</td>
<td>0〜30000Hz (0〜250/min)</td>
<td>0〜30000Hz (0〜180/min)</td>
<td>0〜30000Hz (0〜90/min)</td>
<td>0〜30000Hz (0〜60/min)</td>
<td></td>
</tr>
<tr>
<td>Insulation Class</td>
<td>Class B (130°C) [Recognized as Class A (105°C) by UL and CSA standards]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Source</td>
<td>DC24V ±10% 1.3A Maximum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Current</td>
<td>A/phase</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excitation Mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full Step</td>
<td>0.1°/step</td>
<td>0.072°/step</td>
<td>0.036°/step</td>
<td>0.024°/step</td>
<td></td>
</tr>
<tr>
<td>Half Step</td>
<td>0.05°/step</td>
<td>0.036°/step</td>
<td>0.018°/step</td>
<td>0.012°/step</td>
<td></td>
</tr>
<tr>
<td>Input Signal</td>
<td>Photocoupler input, input resistance 220Ω, input current 20mA maximum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Pulse Signal</td>
<td>Step Command Pulse Signal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Rotation Direction Signal</td>
<td>Photocoupler ON : CW, Photocoupler OFF : CCW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Step Angle Signal</td>
<td>Full Step (0.72°) at "Photocoupler OFF"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* All Windings Off Signal</td>
<td>Full Step (0.36°) at "Photocoupler ON"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Automatic Current Cutback Release Signal</td>
<td>When in the "Photocoupler ON" state, the current to the motor is cut off and the motor shaft can be rotated manually.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Excitation Timing Signal</td>
<td>The signal is output every time the excitation sequence returns to the initial stage "0" (Photocoupler : ON)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functions</td>
<td>Automatic current cutback</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driver Cooling Method (Driver)</td>
<td>Natural Ventilation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor</td>
<td>kg</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driver</td>
<td>kg</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation Resistance</td>
<td>Motor</td>
<td>100MΩ or more under normal ambient temperature and humidity when the megger reading between the windings and the frame is DC500V.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dielectric Strength</td>
<td>Motor, Driver</td>
<td>Under normal ambient temperature and humidity, sufficient to withstand 0.5kV 50 Hz applied between the windings and the frame for one minute following a period of continuous operation.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>Motor</td>
<td>−10 °C ~ +50 °C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driver</td>
<td>0 °C ~ +70 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Maximum holding torque refers to the holding torque at motor standstill when the rated current is supplied to the motor (5-phase excitation), with consideration given to the permissible strength of the gear. Use this value to compare motor torque performance. When using the motor with the included driver, the driver’s “Automatic Current Cutback” function at motor standstill reduces maximum holding torque by approximately 50%.
- The current indicated in power input is the driver’s maximum input current when a load is applied to the motor. (The value varies according to the pulse speed.)
- Permissible torque is the maximum value of the mechanical strength of the gear unit. Use the product with a total torque (load and acceleration) less than the permissible torque.
- Permissible overhung load indicates the maximum value measured at 10mm from the tip of the gear output shaft.
- Direction of rotation of the motor and that of the gear output shaft are the same for the gear ratio 1:7.2 and 1:10. It is opposite for 1:20 or 1:30 ratio type.
<table>
<thead>
<tr>
<th>Package Model</th>
<th>Single Shaft</th>
<th>CSK564AE-TG7.2</th>
<th>CSK564AE-TG10</th>
<th>CSK564AE-TG20</th>
<th>CSK564AE-TG30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotor Inertia</td>
<td>kg · m²</td>
<td>2.5</td>
<td>3.0</td>
<td>3.5</td>
<td>4.0</td>
</tr>
<tr>
<td>Rated Current</td>
<td>A/phase</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Step Angle</td>
<td>°</td>
<td>0.1’</td>
<td>0.072’</td>
<td>0.036’</td>
<td>0.024’</td>
</tr>
<tr>
<td>Reduction Gear Ratio</td>
<td></td>
<td>1:2</td>
<td>1:10</td>
<td>1:20</td>
<td>1:30</td>
</tr>
<tr>
<td>Permissible Torque</td>
<td>N · m</td>
<td>2.5</td>
<td>3.0</td>
<td>3.5</td>
<td>4.0</td>
</tr>
<tr>
<td>Permissible Thrust Load</td>
<td>N</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permissible Overhung Load</td>
<td>N</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backlash</td>
<td>Minute</td>
<td>15 (0.25°)</td>
<td>15 (0.25°)</td>
<td>10 (0.167°)</td>
<td>10 (0.167°)</td>
</tr>
<tr>
<td>Permissible Speed Range</td>
<td>(Output Shaft Rotation Speed)</td>
<td>Full Step</td>
<td>015000Hz (0250r/min)</td>
<td>015000Hz (0180r/min)</td>
<td>015000Hz (090r/min)</td>
</tr>
<tr>
<td></td>
<td>Half Step</td>
<td>030000Hz (0250r/min)</td>
<td>030000Hz (0180r/min)</td>
<td>030000Hz (090r/min)</td>
<td>030000Hz (060r/min)</td>
</tr>
<tr>
<td>Insulation Class</td>
<td>Class B (130°C)</td>
<td>[Recognized as Class A (105°C) by UL and CSA standards]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Source</td>
<td>DC24V ± 10% ± 2A Maximum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Current</td>
<td>A/phase</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excitation Mode</td>
<td>Full Step</td>
<td>0.1’/step</td>
<td>0.072’/step</td>
<td>0.036’/step</td>
<td>0.024’/step</td>
</tr>
<tr>
<td></td>
<td>Half Step</td>
<td>0.05’/step</td>
<td>0.036’/step</td>
<td>0.018’/step</td>
<td>0.012’/step</td>
</tr>
<tr>
<td>Input Signal Circuit</td>
<td>Photocoupler input, input resistance 220Ω2, input current 20mA maximum</td>
<td>Signal voltage Photocoupler ON : +4~+5V, Photocoupler OFF: 0~+0.5V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse Signal</td>
<td>Step Command Pulse Signal</td>
<td>Pulse width: 5 μs minimum, Pulse rise/Pulse fall time 2 μs maximum</td>
<td>Motor moves when the photocoupler state changes from ON to OFF.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotation Direction Signal</td>
<td>Rotation Direction Signal</td>
<td>Photocoupler ON : CW, Photocoupler OFF : CCW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step Angle Signal</td>
<td>Full Step (0.72°) at “Photocoupler OFF”</td>
<td>Half Step (0.36°) at “Photocoupler ON”</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Windings Off Signal</td>
<td>When in the “Photocoupler ON” state the current to the motor is cut off and the motor shaft can be rotated manually. When in the “Photocoupler OFF” state the current level set by the RUN switch is supplied to the motor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automatic Current Cutback Release Signal</td>
<td>When in the “Photocoupler ON” state the “Automatic Current Cutback” function at motor standby is disabled. When in the “Photocoupler OFF” state the “Automatic Current Cutback” function at motor standby is activated. (Approximately 100ms after motor motion stops)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Signal Circuit</td>
<td>Photocoupler, Open-Collector Output</td>
<td>External use condition: 24V DC maximum, 10mA maximum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excitation Timing Signal</td>
<td>The signal is output every time the excitation sequence returns to the initial stage “0”. (Photocoupler : ON)</td>
<td>Full step: signal output every 10 pulses, Half step: signal is output every 20 pulses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functions</td>
<td>Automatic current cutback</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Maximum holding torque refers to the holding torque at motor standby when the rated current is supplied to the motor (5-phase excitation), with consideration given to the permissible strength of the gear. Use this value to compare motor torque performance. When using the motor with the included driver, the driver's “Automatic Current Cutback” function at motor standby reduces maximum holding torque by approximately 50%.
- The current indicated in power input is the driver’s maximum input current when a load is applied to the motor. (The value varies according to the pulse speed.)
- Permissible torque is the maximum value of the mechanical strength of the gear unit. Use the product with a total torque (load and acceleration) less than the permissible torque.
- Permissible overhung load indicates the maximum value measured at 10mm from the tip of the gear output shaft.
- Direction of rotation of the motor and that of the gear output shaft are the same for the gear ratio 1:7.2 and 1:10. It is opposite for 1:20 or 1:30 ratio type.

AUDIN - 8, avenue de la malle - 51370 Saint Brice Courcelles - Tel : 03.26.04.20.21 - Fax : 03.26.04.28.20 - Web : http: www.audin.fr - Email : info@audin.fr
Speed-Torque Characteristics

TH Geared Type

CSK543AE-TG7.2
- Power Input: DC24V
- Current: 0.75A/Phase (4Phases ON)
- With Damper D4CL-5.0F: \(J_m = 34 \times 10^{-5} \text{ kgm}^2 \)

CSK564AE-TG7.2
- Power Input: DC24V
- Current: 1.4A/Phase (4Phases ON)
- With Damper D6CL-8.0F: \(J_m = 140 \times 10^{-5} \text{ kgm}^2 \)

CSK543AE-TG10
- Power Input: DC24V
- Current: 0.75A/Phase (4Phases ON)
- With Damper D4CL-5.0F: \(J_m = 34 \times 10^{-5} \text{ kgm}^2 \)

CSK564AE-TG10
- Power Input: DC24V
- Current: 1.4A/Phase (4Phases ON)
- With Damper D6CL-8.0F: \(J_m = 140 \times 10^{-5} \text{ kgm}^2 \)

CSK543AE-TG20
- Power Input: DC24V
- Current: 0.75A/Phase (4Phases ON)
- With Damper D4CL-5.0F: \(J_m = 34 \times 10^{-5} \text{ kgm}^2 \)

CSK564AE-TG20
- Power Input: DC24V
- Current: 1.4A/Phase (4Phases ON)
- With Damper D6CL-8.0F: \(J_m = 140 \times 10^{-5} \text{ kgm}^2 \)

CSK543AE-TG30
- Power Input: DC24V
- Current: 0.75A/Phase (4Phases ON)
- With Damper D4CL-5.0F: \(J_m = 34 \times 10^{-5} \text{ kgm}^2 \)

CSK564AE-TG30
- Power Input: DC24V
- Current: 1.4A/Phase (4Phases ON)
- With Damper D6CL-8.0F: \(J_m = 140 \times 10^{-5} \text{ kgm}^2 \)

Notes:
1. Pay attention to heat dissipation from the motor and driver. The motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C.
2. When using the motor with the dedicated driver, the driver’s “Automatic Current Cutback” function at motor standstill reduces maximum holding torque by approximately 50%.

Audin - 8, avenue de la malle - 51370 Saint Brice Courcelles - Tel: 03.26.04.20.21 - Fax: 03.26.04.28.20 - Web: http: www.audin.fr - Email: info@audin.fr
Precautions

When using the **CSK TH** geared type, please note the following:

1. **Do not exceed the permissible torque:**

 Permissible torque represents the maximum value of the mechanical strength of the gear unit. Be sure to keep the total value of acceleration/deceleration torque and load (friction) torque at the shaft or stop of the motor under the permissible torque value. If torque exceeding the permissible torque is applied, the gear unit may fail.

2. **Do not exceed the permissible speed range:**

 Do not exceed the maximum output speed of the gearhead indicated in the specifications on page B-125, 126. The speed affects the life the gearhead.

3. **Consider backlash in bi-directional positioning:**

 Backlash is the free rotation angle (i.e., play) of the output shaft when the input section of the reduction gear is fixed. **CSK TH** geared type have been designed with a backlash of 15 arc minutes (gear ratio of 1:7.2 and 1:10) and 10 arc minutes (1:20 and 1:30). If, however, there is a problem with backlash in positioning in both directions, be sure to stop the motor in one direction. (In **CSK543AE-TG** models, backlash is 25 arc minutes and 15 arc minutes, respectively, for the above gear ratios.)

4. **The direction of gear-shaft rotations differs according to gear ratios:**

 The direction of motor shaft rotation and gear shaft rotation according to the gear ratio applied:
 - Gear ratio - 1:7.2 and 1:10 - Same as motor shaft
 - Gear ratio - 1:20 and 1:30 - Opposite of motor shaft
Dimensions

- **Motor scale 1/4, unit = mm**

CSK543-NATE (Single shaft)
Motor Model: PK543NAW Mass 0.21kg/Driver Model: CSD5807N-T

CSK543-NBTE (Double shaft)
Motor Model: PK543NBW Mass 0.21kg/Driver Model: CSD5807N-T

CSK544-NATE (Single shaft)
Motor Model: PK544NAW Mass 0.27kg/Driver Model: CSD5807N-T

CSK544-NBTE (Double shaft)
Motor Model: PK544NBW Mass 0.27kg/Driver Model: CSD5807N-T

CSK545-NATE (Single shaft)
Motor Model: PK545NAW Mass 0.35kg/Driver Model: CSD5807N-T

CSK545-NBTE (Double shaft)
Motor Model: PK545NBW Mass 0.35kg/Driver Model: CSD5807N-T

CSK546-NATE (Single shaft)
Motor Model: PK546NAW Mass 0.6kg/Driver Model: CSD5814N-T

CSK546-NBTE (Double shaft)
Motor Model: PK546NBW Mass 0.6kg/Driver Model: CSD5814N-T

CSK549-NATE (Single shaft)
Motor Model: PK549NAW Mass 1.3kg/Driver Model: CSD5814N-T

CSK549-NBTE (Double shaft)
Motor Model: PK549NBW Mass 1.3kg/Driver Model: CSD5814N-T

* 15±0.25 indicates the length of milling on motor shaft.

* These dimensions are for double shaft models. For single shaft, ignore the colored areas.

* Refer to page B-42 for information on motor installation.
CSK596-NATE (Single shaft)
Motor Model: PK596-NAE Mass 1.7kg/Driver Model: CSD5828N-T
CSK596-NBTE (Double shaft)
Motor Model: PK596-NBE Mass 1.7kg/Driver Model: CSD5828N-T

CSK599-NATE (Single shaft)
Motor Model: PK599-NAE Mass 2.8kg/Driver Model: CSD5828N-T
CSK599-NBTE (Double shaft)
Motor Model: PK599-NBE Mass 2.8kg/Driver Model: CSD5828N-T

CSK5913-NATE (Single shaft)
Motor Model: PK5913-NAE Mass 3.8kg/Driver Model: CSD5828N-T
CSK5913-NBTE (Double shaft)
Motor Model: PK5913-NBE Mass 3.8kg/Driver Model: CSD5828N-T

- These dimensions are for double shaft models. For single shaft, ignore the colored areas.
- Refer to page B-42 for information on motor installation.
Driver scale 1/2, unit = mm

Driver: CSD5828N-T Mass 0.25kg

Refer to page B-45 for information on driver installation.
Wiring Diagrams

- **Standard Type CSK54**, **CSK56**
- **TH Geared Type CSK543AE-TG**, **CSK564AE-TG**

![Wiring Diagram](image)

Notes regarding wiring

1. Keep the voltage \(V_{01} \) and \(V_{02} \) between DC5V and DC24V. When \(V_{01} \) is equal to DC5V, the external resistances \(R_1 \) is not necessary. When \(V_{01} \) is above DC5V, connect \(R_1 \) to keep the current below 20mA. When the output current exceeds 10mA, connect the external resistances \(R_2 \) to keep the current below 10mA.
2. Use twisted-pair wire of 0.2mm² or thicker and 2m or less in length for the signal line.
3. The suitable wire size for the CN1 and CN2 connectors is between AWG20 and 26. Use wires rated at AWG20 (0.5mm²) for the power line.
4. Signal lines should be kept at least 10cm away from power lines (power supply lines and motor lines). Do not bind the signal line and power line together.
5. If noise generated by the motor lead wires causes problem, try shielding of the motor lead wires with conductive tape or wire mesh.

Timing Chart

![Timing Chart](image)

*1: When the signal is in the "photocoupler ON" state, the "Automatic Current Cutback" function is deactivated. Always set it in the "photocoupler OFF" state when the pulse signal is stopped.

*2: It is recommended to wait a period of time to allow the motor oscillations to end before inputting the 'All Windings Off' signal. This time varies with the load inertia, the load torque and the starting pulse rate, etc. The signal input must be stopped before the motor stops.

*3: Do not input pulse signals immediately after switching the "All Windings Off" signal into the "photocoupler OFF" state, as this will affect the motor’s start-up characteristics. Ordinarily, the interval should be around 100ms.
Notes regarding wiring

1. Keep the voltage V_{01} and V_{02} between DC5V and DC24V. When V_{01} is equal to DC5V, the external resistances R_1 is not necessary. When V_{01} is above DC5V, connect R_1 to keep the current below 20mA. When the output current exceeds 10mA, connect the external resistances R_2 to keep the current below 10mA.

2. Use twisted-pair wire of 0.2mm² or thicker and 2m or less in length for the signal line.

3. The suitable wire size for the TB1 and TB2 connectors is between AWG20 and 26. Use wires rated at AWG20 (0.5mm²) for the power line.

4. Signal lines should be kept at least 10cm away from power lines (power supply lines and motor lines). Do not bind the signal line and power line together.

5. If noise generated by the motor lead wire causes problem, try shielding of the motor lead wires with conductive tape or wire mesh.

10µs minimum

1. When the signal is in the "photocoupler ON" state, the "Automatic Current Cutback" function is deactivated. Always set it in the "photocoupler OFF" state when the pulse signal is stopped.

2. It is recommended to wait a period of time to allow the motor oscillations to end before inputting the "All Windings Off" signal. This time varies with the load inertia, the load torque and the starting pulse rate, etc. The signal input must be stopped before the motor stops.

3. Do not input pulse signals immediately after switching the "All Windings Off" signal into the "photocoupler OFF" state, as this will affect the motor's start-up characteristics. Ordinarily, the interval should be around 100ms.

4. The motor will not operate properly when inputting a pulse signal while either the CW or CCW pulse is in the "photocoupler ON" state.
Description of Input/Output Signals

1. Pulse (Pulse and Direction) Signal

Input Circuit and Sample Connection

The characters indicate signals under the 1-pulse input mode, while the characters in parenthesis indicate signals under the 2-pulse input mode. The external resistance R is not needed when V₀ is 5V. When the voltage exceeds 5V, connect the external resistance R to keep input current at 20mA or less.

1-pulse Input Mode

- **Pulse Signal**
 - When the photocoupler state changes from 'ON' to 'OFF', the motor rotates one step.
 - The direction of the motor's rotation is determined by the following 'Rotation Direction' signal.

- **Rotation Direction Signal**
 - The 'Rotation Direction' signal is input.
 - A 'photocoupler ON' signal input commands a clockwise direction rotation.
 - A 'photocoupler OFF' signal input commands a counterclockwise direction rotation.

2-pulse Input Mode (only for CSK59 type)

- **CW Pulse Signal**
 - When the photocoupler state changes from 'ON' to 'OFF', the motor rotates one step in the clockwise direction.

- **CCW Pulse Signal**
 - When the photocoupler state changes from 'ON' to 'OFF', the motor rotates one step in the counterclockwise direction.

Pulse Signal Characteristics

Pulse Signal Characteristics

1. The pulse voltage is 4~5V in the 'photocoupler ON' state, and 0~0.5V in the 'photocoupler OFF' state.
2. Input pulses for a pulse width is 5μs or more, the rise/ drop time is 2μs or less and pulse duty is 50% or less.
3. 10μs or more is the standard interval time for switching from CW to CCW. Note that the interval time greatly varies according to the motor and load inertia.

Pulse Signal Input Precautions

Be sure to set the signal in the 'photocoupler OFF' state when the pulse signal is at rest. Setting to the signal in the 'photocoupler ON' state will not activate the 'Automatic Current Cutback' function.

- **1-pulse Input Mode**
 - Be sure to switch the direction of rotation with the 'Pulse' signal in the 'photocoupler OFF' state.

- **2-pulse Input Mode**
 - Do not input CW pulses and CCW pulses at the same time.
 - When the 'CW Pulse' signal or 'CCW Pulse' signal is in the 'photocoupler ON' state, the input of pulses to the other will not rotate the motor normally.

Shaded area

Shaded area indicates the photocoupler diode is on. The motor moves when the photocoupler state changes from 'ON' to 'OFF'.

2. H. OFF* (All Windings Off) Signal

H. OFF (All Windings Off) Signal

Input Circuit and Sample Connection

The external resistance R is not needed when V₀ is 5V. When the voltage exceeds 5V, connect the external resistance R to keep input current at 20mA or less.

1. If the "H. OFF" (or C.OFF) signal is in the 'photocoupler ON' state, the current does not flow through the motor and the motor shaft can be turned manually. This function can be used when the motor shaft needs external rotation or manual positioning. Be sure to set to the signal in the 'photocoupler OFF' state when operating the motor. For regular use, no connections are necessary. The holding torque can be set in proportion to the motor stop current set by the STOP dial.
2. Turning the "H. OFF" (or C.OFF) signal OFF does not change the excitation sequence (phase) of the motor. When the motor shaft is turned manually with H. OFF (or C.OFF) input, the shaft may turn ±3.6° from the shaft position when H. OFF (or C.OFF) is released.
3. FULL/HALF (Step Angle) Signal

Input Circuit and Sample Connection

1. If the "FULL/HALF" signal is in the "photocoupler ON" state half-step mode (0.36°/step) has been selected; when it is in the "photocoupler OFF" state full-step mode (0.72°/step) has been selected.
2. Switch the step angle when the pulse input is in the "photocoupler OFF" state. The 'FULL/HALF' signal is read when the 'Pulse' signal is falling, therefore switching the "FULL/HALF" signal after the pulse has fallen will not change the signal until the pulse falls again.

Input Circuit and Sample Connection

1. If the "C.D.INH" signal is in the "photocoupler ON" state the "Automatic Current Cutback" function is not activated; even after the motor has stopped, current set with the RUN potentiometer will continue flowing to the motor.
2. If the "C.D.INH" signal is in the "photocoupler OFF" state the "Automatic Current Cutback" function is activated; approximately 100ms after the motor has stopped, current set with the STOP potentiometer will flow to the motor.
3. Approximately 100ms after the input pulses have stopped, the current is reduced; when the input pulse signal drops to 10Hz or below, the "Automatic Current Cutback" function works for each pulse.

5. TIMING (Excitation Timing) Signal

Output Circuit and Sample Connection

1. The "Excitation Timing" (TIMING) signal indicates that the excitation of the motor is in the initial state (STEP 0). Use this signal to detect the home position accurately by matching the mechanical home position of the device and the excitation home position (STEP 0) of the motor.
2. The signal is output once each time the excitation sequence returns to (STEP 0) in synchronization with input pulses. The excitation sequence is designed to complete one cycle as the motor shaft rotates 7.2°. Output is as follows:
 - 0.72°/step (Full step): 1 output per 10 pulses
 - 0.36°/step (Half step): 1 output per 20 pulses

Notes: When the power is turned ON, the excitation sequence is reset to STEP 0.

When used as indicated in the sample connection, the signal is in the "photocoupler ON" state at STEP 0.
6. O.HEAT (Overheat) Output
(This function is equipped only for CSK59 type)

Output Circuit and Sample Connection

Keep the voltage between 5V and 24V and current at 10mA or less.

1. The "Overheat" (O.HEAT) signal is output to protect the driver from overheating damage when the temperature of the driver radiation plate rises abnormally due to a rise in the ambient temperature or other factors. At the same time this signal is output, the O.H. LED on the circuit board lights.
2. If the 'Automatic Current Off' function is activated, the motor excitation will cease (shaft free) and the motor will come to a natural stop.
3. When the "O.HEAT" signal has been output, reconfirm the use conditions (ambient temperature, operation patterns, etc.) or take appropriate measures, such as forced cooling of the driver.
4. The "O.HEAT" signal is automatically turned off when the temperature of the driver radiation plate falls. (The O.HEAT signal returns to the 'photocoupler OFF' state and O.H.LED goes off.) This signal cannot be turned on and off by using external signals or by turning the power back on.

Switching and Setting Functions
(This switch is equipped only for CSK59 type)

1. **Automatic Current Off Function**

 Setting the "Automatic Current Off" select switch to "ACO" (left side) activates the "Automatic Current Off" function. When the function is activated, the motor output current is automatically reduced to zero and the motor stops if the temperature of the driver radiation plate rises to 90°C (overheat).

 Setting this switch to "OFF" (right side) deactivates the automatic current off function. (The motor can be operated even after overheating, but it is recommended that the motor be stopped promptly upon detecting of an overheat signal.) This select switch is set to "ACO" at the factory.

2. **Pulse Input Mode**

 Setting the pulse input mode select switch to "1P" (right side) places the driver in 1-pulse input mode which control the motor through pulse signals and directional signals.

 Setting this switch to "2P" (left side) place the driver in 2-pulse input mode which control the motor through two pulse signal systems of CW and CCW pulse.

 The select switch is set to "1P" at the factory.

AUDIN

- Address: 8, avenue de la malle - 51370 Saint Brice Courcelles
- Tel: 03.26.04.20.21
- Fax: 03.26.04.28.20
- Web: http://www.audin.fr
- Email: info@audin.fr

ORIENTAL MOTOR GENERAL CATALOGUE

- Page: B-136
2. Adjusting the Motor Operating Current

Set “Automatic Current Cutback Release” (C.D.INH) signal to in the “photocoupler ON” state (SW:ON) when adjusting the RUN current.

(1) Adjust the motor RUN current with the RUN potentiometer.

Adjustment Range

<table>
<thead>
<tr>
<th>Type</th>
<th>Adjustment Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSD5807N-T</td>
<td>0.1A/phase~0.75A/phase</td>
</tr>
<tr>
<td>CSD5814N-T</td>
<td>0.1A/phase~1.4A/phase</td>
</tr>
<tr>
<td>CSD5828N-T</td>
<td>1.0A/phase~2.8A/phase</td>
</tr>
</tbody>
</table>

(2) The motor operating current is set for rated current (CSD5807N-T: 0.75A/phase, CSD5814N-T: 1.4A/phase, CSD5828N-T: 2.8A/phase) at the time of shipping, but it can be readjusted using the RUN potentiometer. The operating current can be lowered to suppress temperature rise in the motor/driver, or lower operating current in order to allow a margin for motor torque or to reduce vibration.

Note: The motor RUN current should be less than the motor rated current.

3. Adjusting The Current At Motor Standstill

Set “Automatic Current Cutback Release” (C.D.INH) signal at in the “photocoupler OFF” state (SW: OFF) when adjusting the current while the motor is stopped.

(1) Adjust the current at motor standstill with the STOP potentiometer.

Adjustment Range

<table>
<thead>
<tr>
<th>Type</th>
<th>Adjustment Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSD5807N-T</td>
<td>0.1A~0.56A/phase</td>
</tr>
<tr>
<td>CSD5814N-T</td>
<td>0.1A~1.05A/phase</td>
</tr>
<tr>
<td>CSD5828N-T</td>
<td>0.7A~2.3A/phase</td>
</tr>
</tbody>
</table>

(2) At the time of shipping, the current at motor standstill is set for half of rated Current (CSD5807N-T: 0.75A/phase, CSD5814N-T: 0.7A/phase, CSD5828N-T: 1.4A/phase, CSD5828N-T: 2.8A/phase) The STOP potentiometer can be used to readjust the current at motor standstill to the current value required to produce enough holding torque.

\[
\text{Holding Torque (N\cdot m)} = \frac{\text{Rated Holding Torque (N\cdot m) \times Current at Motor Standstill (A)}}{\text{Motor Rated Current (A)}}
\]