

SICK

Technical description

WLL 190T - simple installation and structured functions

The WLL 190T fibre-optic photoelectric switches with fibre-optic cables of the LL 3 Series are particularly suitable in detecting very small objects, objects where there is background interference, objects which are transparent, colour marks, and for the use in positioning operations. Fibre-optic cables are ideal where installation space is at a premium. In addition, an 8-way interference suppression system prevents inter-cable interference (WLL 190T-Bus).
The WLL 190T can be used as a single device or integrated as a 16 -channel Bus.

The WLL 190T fibre-optic cable photoelectric switch and the LL 3 fibre-optic cable make a powerful team.

The properties and areas of application of the WLL 190T and LL 3 complement each other. The fibre-optic cables of the LL 3 Series are available in more than 80 options, ranging from universal to special purpose versions.

Monitoring - interaction and reaction, online

Monitoring simplifies a lot of functions: e.g. tests, programming, commissioning, maintenance and fault finding. The 4-digit display (red or green) and the 3-digit display (green) depict actual and visual feedback in the respective mode:

- in operation mode: feedback of the reception signal and the selected function modes,
- in programming mode: menu-guided selection of parameters and confirmation of activation or deactivation.

Operating mode

WLL 190T - with integrated Bus technology

High Power or High Speed

Ranges can be optimised by selectable response times ($0.4 \mathrm{~ms}, 1 \mathrm{~ms}, 4 \mathrm{~ms}$).

WLL 190T Series sensors already have integrated Bus technology. There is no need for separate Master or Slave units. Two Bus options are available: Software- and Hardware-Bus systems. The choice of options are simply coded and activated via a Bus plug (3-pin for Software-Bus systems and 5 -pin for Hardware-Bus systems).
The advantages are:

- Up to 16 WLL 190T can be cascaded together.
- 8 -way interference suppression is automatically active.
- Access to all software options
- Using a Hardware-Bus system reduces the amount of wiring needed.

Software

Securely and quickly programmed by pressing buttons and by menu guidance. The attributes of the unit and its parameters can be determined individually, directly on the sensor:
"Normal" sensitivity
9485
Optimised for transparent objects, such as glass
dBn
Dynamic switching threshold
ZanE
"Zone recognition" (window technology) for detecting marks

\square APC - Automatic Power Control active

cont

Numeric counter function for setting the coincidence signal
Func Functions: The entering of variable attributes of the unit, such as operating modes and response times

Special features via the Software-Bus system:
e.g. copying settings, Auto-O-Level

$\begin{array}{ll} 1 \Rightarrow \\ 1 \rightarrow 2 \\ \hline \end{array}$	Scanning range 1300 mm (5000 mm)
Through-beam system	
$1 \approx \frac{\square}{0}$	Scanning distance 300 mm

LED red light

Longest ranges
Precise, stable switching point
Numeric displays
Interactive user prompting
Appropriate for the LL 3 fibre-optic cable series

Adjustments possible

WLL 190T-P430	WLL 190T-N430
WLL 190T-P030	WLL 190T-N030
WLL 190T-P330	WLL 190T-N330

C $\mathrm{C}_{\mathrm{c} \times \mathrm{N}_{\mathrm{us}}}$

1 Sender LED, installation of LL 3 fibre-optic cable (sender fibre)
2 Receiver LED, installation of LL 3 fibre-optic cable (receiver fibre)
3 Locking of fibre-optic cables
4 Protective hood: can be folded out approx. 180°
5 M8 plug fixed or 1-wire cable or 3-wire cable replaceable (cables not included with delivery)
6 Mounting bracket included (see Accessories)
7 Indicator LED, yellow: lights up when switching output is active
8 Numeric display: 3-digit and 4-digit green: current reception value, operating mode red: Teach-in and function parameter
9 Step button $>$ (manual switching threshold: higher; or next function parameter)
10 Step button < (manual switching threshold: lower; or previous function parameter)
11 "Teach-in" pushbutton
12 Mode/Enter button (programming button)
Operating mode selector switch:
"SET": active Teach-in-switching threshold "RUN": sensor mode and function parameter selection)
14 Protecting cap (on both sides). For "block installation" remove, takeup for Bus plug

$\because \underset{\sim}{n}$	Scanning range 600 mm (3000 mm)
Through-beam system	
$[\square$	Scanning distance 60 mm
Proximity system	

LED green light

For detection of marks
Precise, stable switching point
Numeric displays
Interactive user prompting
Appropriate for the LL 3 fibre-optic cable series

Adjustments possible

WLL 190T-P490	WLL 190T-N490
WLL 190T-P090	WLL 190T-N090
WLL 190T-P390	WLL 190T-N39

1 Sender LED, installation of LL 3 fibre-optic cable (sender fibre)
2 Receiver LED, installation of LL 3 fibre-optic cable (receiver fibre)
3 Locking of fibre-optic cables
4 Protective hood: can be folded out approx. 180°
5 M8 plug fixed or 1-wire cable or 3-wire cable replaceable (cables not included with delivery)
6 Mounting bracket included (see Accessories)
7 Indicator LED, yellow: lights up when switching output is active
8 Numeric display: 3-digit and 4-digit green: current reception value, operating mode red: Teach-in and function parameter
9 Step button $>$ (manual switching threshold: higher; or next function parameter)
10 Step button < (manual switching threshold: lower; or previous function parameter)
11 "Teach-in" pushbutton
12 Mode/Enter button (programming button)
Operating mode selector switch:
"SET": active Teach-in-switching threshold "RUN": sensor mode and function parameter selection)
14 Protecting cap (on both sides). For "block installation" remove, takeup for Bus plug

Operating elements

Notes on programming

"Enter" button :
0 opens the menu (i.e. the selection of the software functions) and then confirms the selected option.
$\boxed{\square} \backslash$ In Programming Mode:
Selection of software options (backwards or forwards in menu).In RUN Mode "sensor operation":
Online, alter manually, adapt the switching threshold in single steps.

Activate desired software function:

Select $\triangle \square+$ confirm \quad = activate option.
Teach-in button T :
Automatic teaching-in and saving of selected Sensitivity Mode and the switching threshold at "the press of a button" T. This button is only active when SET/RUN selection switch is in the SET position.

Back to RUN Mode (Sensor Mode):
Automatically after 10 s if no button is used, or "EXIT" each Mode with button.

Overview

1. Adjustment of switching thresholds by Teach-in and manual alteration of switching threshold

Mode switch in SET position:

1.1. Teaching: Teach-in switching threshold only active in SET Mode T (See 1.1 for details).

Mode switch in RUN position:

1.2. Manual alteration (adaptation) of switching threshold(s), "+" or "-" only active in RUN Mode $\triangle \mathbb{D}$ (See 1.2 for details).
1.3. Manual alteration (adaptation) of switching threshold(s). ZONE Mode (window), only active in RUN Mode \triangle (See 1.3 for details).

2. Selection of system functions (only active in RUN Mode) Mode switch in RUN position

Activate selection of operating modes and functions
2.1. Special functions (SPEcials) - only active with software Bus slotted in (Bus plug)
Exception: 2.1.1; (See 2.1 for details)
2.1.1. Counter functions (cont): activate and set value for sum impulse.

Only active with active software bus (Bus plug):
2.1.2. Copier Mode (coPy): all programmed settings are copied 1:1 to all Buscontacted WLL 190T.
2.1.3. Shift of zero-point of all receiver displays (ALL NO): the current value in display set to "0": now applicable from "-XXXX" ... "+XXXX".
2.1.4. ALL TEACH-IN (AL t): every Bus-contacted WLL 190T learns its individual switching threshold simultaneously.
Only 1-point Teach-in: "nor" \& "zone" \& "GLASS" Mode.
2.1.5. Difference evaluation (di FF): the difference value of two neighbouring WLL 190Ts is set. Q signal on excess or fall-short of difference.
2.2. Definition of operating modes (Functions)

Are separately selected and set for each WLL 190T. (See 2.2 for details)
2.2.1. Response times (rESP): high speed (0.4 ms), standard (1 ms), long (4 ms).
2.2.2. Selection of switching mode (L--d): light-switching (L.ON) or dark-switching (D.ON).
2.2.3. Time increments, type and length (t EEr): OFF, tON, tOFF, one shot; time range from 1 ms to 9 s .
2.2.4. Automatic Power Control (APC): continuous, stabilised transmitter power for long-term stability.
2.2.5. Reset (rSET): resets all parameters to delivery state.
2.2.6. Selection of display format (diSP): numerical display, bar-display, display off.
2.2.7. Exit (E it): Back to programming loop in RUN Mode (= sensor operation).
3. Useful supplementary functions
(See 3.1 to 3.3 for details)
3.1. Shift zero-point of receiver display: current display value becomes "0" (see also 2.1.3)
3.2. Monitoring: display of all individual programmed device functions and options.
3.3. Locking/unlocking of function buttons (tamper prevention).

1. Adjustment of switching thresholds by Teach-in and manual alteration of switching threshold

1.1 Selection and use of Sensitivity Mode Teach-in

General Information

Teach-in only active in SET Mode. Ideal protection against accidental modification.

- Manual adjustment, digit-by-digit in RUN Mode, the taught-in threshold levels can be altered manually later in single steps (DIGIT by DIGIT) with the $\varangle \boxtimes$ STEP buttons \varangle Lower level, Δ Higher level.
0 ENTER button inactive in SET Mode.

1.1.1 Normal-Mode

1.1.1.1 Max. Teach-in

- No ambient interference of received signal.

Teaching frame:
through-beam fibre = object present, not transparent; proximity fibre = object absent, no influences of background.
Switching level = upwards of approx. >15 digits.
Typical application: no ambient interference, no transparent objects, max. reserves, max. sensitivity.

1.1.1.2 1-point Teach-in

Switching level is adapted to interference
Teaching frame:
through-beam fibre = object present;
proximity fibre $=$ object absent.
Switching level: object signal + approx. 10 \% ... 15 \% (min. 15 digits).
Typical application: standard application, no ambient interference expected, max. reserve.

- Exact adjusting to object present/absent. Teaching frame: both states are taught: object present/object absent, in no particular order. 1st step: object must be taught-in.
2nd step: no object must be taught-in.
Switching level: switching points ON/OFF = middle of level-1 and level-2 (min. ~ 10 digits); hysteresis $\sim \min . ~ \pm 3 \%$ (min. ~ 10 digits). Typical application: precise adjustment, switching level between object and ambient condition; for small signal reserves. Costlier handling.

1.1.1.4 Teaching of moving objects
(Teach-in if object is on the move)
\square 1st Step: $>$ 3s T : starts this specific Teach-in mode and sampling time. Sampling time: at least $>0.64 \mathrm{~ms}$.
2nd Step: $>$ 2s T : end of sampling time and Teach-in.
Switching level: ON / OFF = middle of level-1 and level-2
(+ approx. $\pm 3 \%$ hysteresis, min ~ 50 digits), $=2$-point Teach-in.
Typical application: teaching only possible if objects on the move
(control of ejection; exact positioning and speed of objects is only possible on active process).
Costlier handling.

1. Adjustment of switching thresholds by Teach-in and manual alteration of switching threshold

General Information

Teach-in only active in SET Mode. Ideal protection against accidental modification.

- Manual adjustment, digit-by-digit in RUN Mode, the taught-in threshold levels can be altered manually later in single steps (DIGIT by DIGIT) with the $\boxtimes \Delta$ STEP buttons \boxtimes Lower level, Δ Higher level.
- 0 ENTER button inactive in SET Mode.

1.1.2 Dynamic Teach-in

Setting/resetting of switching out-put (only) depending on steep positive/negative edge of an object during trigger time (detecting of edges of objects).
Switchinglevel: the output is continuously set by the first intense rising object-edge. The output is reset by the first intense degreasing object-edge.
Typical applications: the scanning distance of the parts are variable due to ripples, or due to unbalanced conveyor belts.

1. Adjustment of switching thresholds by Teach-in and manual alteration of switching threshold

1.1.3 Zone Teach-in

The object (2) will be taught-in as switching point with a bandwidth of +/-10 \%. Lower signals and higher signals (digits) are automatically suppressed.

These fix bandwidth can be extended manually, separately for the lower level (far) and higher level (near), see 1.3: manual threshold level in Zone Mode, too.
Ideal for mark detection, detection of no. 2 with variable bandwidth for example, or background and foreground suppression.

1.1.4 Glass teaching

Optimised for detection of transparent objects.

The high reception level of a reflector is taught-in. The switching level is automatically set -10% below it.
Essential: the max. received value should be below 4.000 digits (saturation). Adjust reflectorsize, -type oder -distance.
Safeness of detection: already objects with low damping of $>10 \%$, as transparent objects like glass or foils, or small objects will be detected. Hysteresis: 10% of set switching level, min. 15 digits.
Proximity-fibres: be sure, there are no effects by direct surface reflections from the object itself at close range! Enlarge the distance eventually.
General recommendation: test and check each application for limiting conditions such as saturation by reflector, direct reflections of target, too little transmission of objects etc.

1.2 Manual threshold level - Normal Mode

1.3 Manual threshold level - Zone Mode

1. Taught-in switching threshold

After 1.1. Teach-in of switching thresholds:

1.2. Manual alteration of switching thresholds in normal mode, WLL 190T in RUN Mode (sensor operation), no software functions called up.
Only the function buttons $\square \square$ are required for manual alteration (adaptation) of taught-in switching thresholds (only active in RUN Mode).

1. Taught-in switching threshold

After 1.1. Teach-in of switching thresholds:
1.3. Manual alteration of switching thresholds (only for Zone Mode). WLL 190T operates in RUN Mode (sensor operation), no software functions called up.
1.3.1. Changing the upper switching threshold

Only the function buttonsare required for manual alteration (adaptation) of taught-in switching thresholds (only active in RUN Mode).
1.3.1. Changing the lower switching threshold

WLL 190T - Difference Detection Mode
$1000-800=200 / 1100-900=200 / 900-700=200 / 800-700=100$

2.1 Special functions (SPEcials)

ENTER button
Functions = operating modes
SPEcials $=$ special functions

Please note.

2.1.1 also for solo WLL 190T, no Bus necessary.
2.1.2 ... 2.1.5 only active with software Bus (Bus plug contacted).
2.1.1 Counter $=$ pre-selection of number of impulses. Output active (impulse) when defined number is reached. Impulse counter is internally restarted again on next object. The total sums are further summed and shown in display (max. 9999).

2.1.2 to 2.1.5 Bus Software, only available with contacted Bus plug

2.1.2 coPY = Copier Mode: all programmed settings are copied 1:1 to all Bus-contacted WLL 190Ts.
2.1.3 ALL NO = all displays set to "Auto-O-value": the currently displayed reception level is individually set to " 0 " for each device.
Visual display of alterations/drifts (changes in material, contamination, etc.).
(See also 3.1 Solo function).
2.1.4 All Teach-in: all WLL 190T connected via INTERNAL Bus (Bus plug) learn their particular individual switching threshold simultaneously with a single Teach-in.
2.1.5 diFF Difference detection

Online linking of second neighbouring WLL 190T.
Calculation operation: always A - B. "A" is always the master. This is programmed. " B " is always the slave. Teaching of switching thresholds (calculated value A-B) simultaneously by A.

Activation:

1. Selection of the software function,
2. SET and teaching for $A+B$ by T button on sensor A.

Deactivation:

1. Selection of software function diFF,
2. Confirmation no diFF by 0 .

Please note, no deactivation with RESET. Applications: sorting tasks, quality checks, detection of parts even with distance fluctuations (height impact).
Exit: Switch from Programming Mode to RUN Mode (sensor operation) via button.

2.2 Function Mode: Selection of operating modes

Selection, setting and saving of basic WLL 190T functions. Individually and for every device, Bus has no effect.

Info on programming:
The function is selected with $\varangle \square$. The selected function MUST be confirmed with 0 .
2.2.1 Response time (rESP)

High SPeed -1.25 kHz :
shortest response time (0.4 ms), reduced ranges
Standard - 500/s: standard setting,
response time 1 ms , standard ranges
long - 125/s: maximum ranges, response time 4 ms .
2.2.2 Switching type ($\mathrm{L}-\mathrm{d}$), Select switching type L.ON or D.ON

L on: light-switching (L.ON)
d on: dark-switching (D.ON)
2.2.3 Time increments (t iEr) for timer, option of various time increments, variable time range.
oFF (no time increment activated)
oFdy (OFF-Delay)
ondy (ON-Delay)
Shot (One-Shot)
Time range: selectable in 1 ms increments;
from $1 \mathrm{~ms} . . .9 \mathrm{~s}(\triangle \square)$.
2.2.4 APC Automatic Power Control (APc)

Transmission power is continuously measured by an internal receiver and held at a constant level. This compensates for ageing, temperature, etc.: long-term switching point stability, ideal for applications with reduced functional reserve.
Please note: lifetime of transmitter LED is reduced.
2.2.5 Reset (rSEt)

All operating modes are reset to the standard setting
"Ex-works delivery state".

Ex-works delivery state:

Response time: Standard $=1 \mathrm{~ms}$
Switching type: L.ON (hellschaltend)
Timer: Aus
APC: \quad inactive (Automatic Power Control)
Display: digital display
Counter: Off
Sensitivity: max. (switch. threshold >~15 DIGITs)
2.2.6 Display type (diSP): digital display of reception signal in RUN Mode: selection from 3 types:
di9: digital display
bAr: bar graph (bar display from I to IIII).
Please note: inactive in Counter Mode.
oFF: display inactive in RUN Mode
2.2.7 Exit: Change from Programming Mode to RUN Mode (sensor operation).
Automatic: if no programming button used for 10 s .
In Special Mode (2.1) or Function Mode (2.2): directly back to RUN Mode from any option, if © pressed for >3 seconds.

LOE
nar

11

The WLL 190T System-bus - modules and accessories

WLL 190T already has the Bus-system integrated within it.

It is activated via a coded plug. There are no separate Master or Slave units needed, or programming tools of any kind.
Two optional Bus-systems with staggered features can be chosen for each individual Bus plug.

WLL 190T Solo - the Highlights

The WLL 190T "Solo Unit" already offers significantly enhanced system data:

- Much greater ranges (~2 ... 3 x WLL 170T)

Proximity system max. 1,300 mm (5,000 mm); Through-beam system max. 300 mm

- Simple, variable adjustment of the sensitivity setting
- ONE UNIT for all requirements, due to freely selectable function settings
- Monitoring, i.e. numeric displays provide information and offer menu-guided programming
- ONE UNIT for all requirements, due to APC - Automatic Power Control. The constant transmission of data provides stabilised switching threshold levels
- Enclosure rating IP 66 as a single stand-alone WLL 190T unit

The WLL 190T Software-Bus provided by a 3-pin Bus plug

- Access to further software functions
- Automatic 8 -way interference suppression

The Software-Bus components (optionally up to $16 \times$ WLL 190T units)
A: Sensor A1 or A2 or A3. We recommend that A1, A2 and A3 are not mixed together in a general structured arrangement.
B: Bus plug, 3-pin (grey), only B1
C: Cable receptacle only C1, C2 or C3
D: End pieces, two

Selection of WLL 190 Bus-components

A WLL 190T Connection technology
A1 Sensor type WLL 190T, sensor plugs
Accessories: C1a and C1b
WLL 190T-P030,PNP, LED red, order no. 6026572
WLL 190T-N030, NPN, LED red, order no. 6026573
WLL 190T-P090, PNP, LED green, order no. 6026585
WLL 190T-N090, NPN, LED green, order no. 6026586

A2 Sensor type WLL 190T, M8, 4-pin
Accessories: C2
WLL 190T-P430, PNP, LED red, order no. 6026574 WLL 190T-N430, NPN, LED red, order no. 6026575 WLL 190T-P490, PNP, LED green, order no. 6026587 WLL 190T-N490, NPN, LED green, order no. 6026588

A3 Sensor type WLL 190T, M8, 3-pin Accessories: C3

WLL 190T-P330, PNP, LED red, order no. 6026576
WLL 190T-N330, NPN, LED red, order no. 6026577
WLL 190T-P390, PNP, LED green, order no. 6026589
WLL 190T-N390, NPN, LED green, order no. 6026590
B Bus plug
B1 Bus plug, 3-pin, only for Software Bus
STE-WLL190-03P
order no. 6026581

B2 Bus plug, 5-pin, only for Hardware Bus

STE-WLL190-05P *)

[^0]

WLL 190T Accessories

C Cable receptacles

C1a For A1: $\mathrm{U}_{\mathrm{V}}+\mathrm{Q}$, 3-core cable, WLL 190T sensor plug DOL-LL1903-02M, cable length 2 m, order no. 6026578 DOL-LL1903-05M, cable length 5 m, order no. 6028379

> C1b Für A1: Q, single-core, WLL 190T sensor plug (only Wire-Saving)

DOL-LL1901-02M **), cable length 2 m, order no. 6026579 DOL-LL1901-05M **), cable length 5 m , order no. 6028380

C2 For A2: $U_{V}+Q, 4$-core, M8, 4-pin

DOL-0804-G02M, cable length 2 m , order no. 6009870
DOL-0804-G05M, cable length 5 m , order no. 6009872

C3 For A3: $\mathrm{U}_{\mathrm{V}}+\mathrm{Q}$, 3-core, M8, 3-pin

DOL-0803-G02M, cable length 2 m , order no. 6010785 DOL-0803-G05M, cable length 5 m , order no. 6022009

D End pieces

D
BF-EB01-W190 pieces for mounting profile rail assembly

Please note:

- Do not mix 3-pin Bus plug with 5-pin Bus-plugs
- Do not connect WLL 190T Bus components whilst electrically powered

"Wire-Saving" for a significant reduction in wiring due to the WLL 190T Hardware-Bus system

- The V_{S} voltage supply is only fed by a 3 -core connecting cable (Master).
- Additional units (up to $15 \times$ WLL 190T units) are connected via a singlecore connecting cable (Slaves). This means only the Q output circuit is connected.
- All software options are also available.

Example of wire reduction:
16 conventionally wired photoelectric switches require 48 terminal connections.
16 wired WLL 190T units only need 18 terminal connections.
Savings: 30 terminals and associated wiring.

WLL 190T Hardware-Bus by means of 5-pin Bus plug.

- "Wire-Saving" - considerable reduction in cost and effort in electrical wiring.
- All options of the Software-Bus available..

The Hardware-Bus components
A: Master sensor, max. one sensor, either A1 or A2 or A3.
Cable receptacles C1a, C2 or C3.
Slave sensors, max. 15, only A1 with C1b cable receptacles.
B: Bus plug, 5-pin (black), only B2
D: End pieces, two

[^1]
Female connector M8, 3-pin, straight

Cable diameter $5 \mathrm{~mm}, 3 \times 0.34 \mathrm{~mm}^{2}$, sheath PVC

Type	Order no.	Cable
DOL-0803-G02M	6010785	
DOL-0803-G05M	6022009	
DOL-0803-G10M	6022011	

1 With screw locking
2 Connecting cable Ø 5 mm

1) Minimum bend radius in dynamic use
$R_{\text {min }}=20 \times$ cable diameter

Female connector M8, 4-pin, straight. Contacts as defined by EN 50044
Cable diameter $5 \mathrm{~mm}, 4 \times 0.25 \mathrm{~mm}^{2}$, sheath PVC

Type	Order no.	Cable length
D0L-0804-G02M	6009870	2 m
D0L-0804-G05M	6009872	5 m
DOL-0804-G10M	6010754	10 m

With screw locking
Connecting cable $\varnothing 5 \mathrm{~mm}$

1) Minimum bend radius in dynamic use
$R_{\min }=20 \times$ cable diameter

Mounting bracket WLL 170T*

Type	Order no.
BEF-WLL 170	5306574

Female connector M8, 3-pin, straight

Female connector M8, 4-pin, straight

Type	Order no.	Cutable to size for cable Ø 3.5 -
DOS-0804-G	6009974	5 mm with screw locking

Template for bending radius R 10 mm , for sensing tip $\varnothing 1.5 \mathrm{~mm}$ and $\varnothing 2.5 \mathrm{~mm}$

2 Bending radius R 5 mm

[^2] and WLL 190T

Connector WLL 190T, 3-wire
Cable diameter $3.8 \mathrm{~mm}, 3 \times 0.14 \mathrm{~mm}^{2}$, sheath PVC
(WLL 190T - single unit or master cable for wire saving)

Type	Order no.	Cable length	
DOL-LL1903-02M	6026578	2 m	
DOL-LL1903-05M	6028379	5 m	

1) Minimum bend radius in dynamic use
$\mathrm{R}_{\text {min }}=20 \times$ cable diameter
brn $\widehat{=} \mathrm{L}+$
blu 气 M
$\mathrm{blk} \xlongequal{\underline{\mathrm{Q}}}$

Bus plug, 3-pin for WLL 190T	
Software-Bus	
Type	Order no.
STE-WLL190-03P	6026581

Bus plug, 5-pin for WLL 190T ${ }^{2}$)
Hardware bus for wire saving

Type	Order no.	
STE-WLL190-05P 026580		

2) Included with delivery of DOL-LL1901-02M and DOL-LL1901-05M

Endcap for block installation WLL 190T on DIN-RAIL mounting ${ }^{3)}$

Type	Order no.
BF-EB01-W190	513011

3) 2 pieces included with delivery of WLL 190T

Protecting c	L 190T ${ }^{3}$
Type	Order no.
BF-WLL190-01	5311592

3) 2 pieces included with delivery of WLL 190T
4) Double sided adhesive tape. Remove protective foil for protection class IP 66

Contact:

Australia
Phone +61394974100 1800334802 - tollfree E-Mail sales@sick.com.au
Belgium/Luxembourg Phone +32 (0)2 4665566 E-Mail info@sick.be

Brasil
Phone +55 11 5091-4900 E-Mail sac@sick.com.br
CeskáRepublika Phone +420257911850 E-Mail sick@sick.cz
China
Phone +852-27636966 E-Mail ghk@sick.com.hk
D a n mark
Phone +4545826400 E-Mail sick@sick.dk
Deutschland
Phone $+49(0) 21153$ 01-250 E-Mail vzdinfo@sick.de
España
Phone +34934803100
E-Mail info@sick.es
France
Phone +33164623500
E-Mail info@sick.fr
Great Britain
Phone $+44(0) 1727831121$
E-Mail info@sick.co.uk
Italia
Phone +390227409319
E-Mail ced@sick.it
Japan
Phone +81 (0)3 33581341
E-Mail info@sick.jp
Korea
Phone +82-2 786 6321/4
E-Mail kang@sickkorea.net

```
Nederlands
    Phone +31 (0)30 2292544
    E-Mail info@sick.nl
Norge
    Phone +4767815000
    E-Mail austefjord@sick.no
Österreich
    Phone +43 (0)22 36 62 28 8-0
    E-Mail office@sick.at
Polsk a
    Phone +48228374050
    E-Mail info@sick.pl
Schweiz
    Phone +41416192939
    E-Mail contact@sick.ch
    Singapore
    Phone +6567443732
    E-Mail admin@sicksgp.com.sg
    S uomi
    Phone +358-9-25 15 800
    E-Mail sick@sick.fi
Sverige
    Phone +4686806450
    E-Mail info@sick.se
Taiw a n
    Phone +886 2 2365-6292
    E-Mail sickgrc@ms6.hinet.nete
T ürki y e
    Phone +902163889590 pbx
    E-Mail info@sick.com.tr
US A / C a n ad a / M é x ico
    Phone +1(952) 941-6780
                                    1800-325-7425 - tollfree
    E-Mail info@sickusa.com
```

More representatives and agencies in all major industrial nations at www.sick.com

COMPOSANTS D'AUTOMATISME SYSTEMES D'AUTOMATISME
CONSTITUANTS ELECTROTECHNIQUES
MESURE ET CONTROLE
SECURITE MACHINE
8, Avenue de la Malle - ZI Les Coïdes
51370 SAINT BRICE COURCELLES
Tél. : 03.26.04.20.21 - Fax : 03.26.04.28.20
Email : info@audin.fr-Web : http://www.audin.fr

[^0]: *) included in the "scope of supply" of cable receptacles C1b

[^1]: **) included in the "scope of supply": 5 -pin Bus plug (B2)

[^2]: * Included with delivery of WLL 170(T)

