MODEL IAMA - CONFIGURABLE 3-WAY ISOLATING AMPLIFIER

- 3-WAY ISOLATION OF ANALOG SIGNALS
- UNIVERSAL CONVERSION MODULE - INPUTS AND OUTPUTS SELECTED VIA DIP SWITCH SETTINGS
- OVER 35 INPUT AND OUTPUT ANALOG CONVERSION COMBINATIONS
- ULTRA SLIM DESIGN - ONLY 0.244" WIDE
- 19 to 30 VDC POWER

PROCESS CONTROL $c \epsilon$ EQUIPMENT FOR HAZARDOUS
LOCATIONS 31ZN
CLASS 1, DIV 2
GROUPS A, B, C, D T5

GENERAL DESCRIPTION

The IAMA can isolate and convert over 35 combinations of analog signal ranges. The IAMA converts and transmits signals linearly proportional to the input. DIP switch range selection eliminates the need to order and stock different modules for each input and output signal range, and allows quick and convenient setup for over 35 standard signal conversions. In addition to the conversion capabilities, the IAMA modules feature optically isolated Input/Output signal circuits and isolated Power to Input, Power to Output circuits. The modules' overall full scale accuracy typically exceed 0.04%. DIN rail mounting saves time and panel space. The units are equipped with universal mounting feet for attachment to standard top hat profile rail according to EN50022-35x7.5.

DIMENSIONS In inches (mm)

ORDERING INFORMATION

MODEL NO.	DESCRIPTION	PART NUMBER
IAMA	Configurable 3-Way Isolating Amplifier	IAMA0006

SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in the manual or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

CAUTION: Read complete instructions prior to installation and operation of the unit.

SPECIFICATIONS

1. POWER: 19.2 to 30 V DC, 450 mW max.
2. INPUT / OUTPUT RANGES: See table 1
3. SPAN ADJUSTMENT: Potentiometer, located below transparent top cover.
4. MAX INPUT SIGNAL:

Current: 50 mA
Voltage: 30 V
5. INPUT RESISTANCE:

Current: Approx. 50Ω
Voltage: Approx. $100 \mathrm{k} \Omega$
6. MAX OUTPUT SIGNAL:

Current: $28 \mathrm{~mA} / 12.5 \mathrm{~V}$
Voltage: $12.5 \mathrm{~V} / 22 \mathrm{~mA}$
7. LOAD RESISTANCE:

Current: 500Ω max.
Voltage: $10 \mathrm{k} \Omega$ min
8. OUTPUT COMPLIANCE:

Current: $12.5 \mathrm{~V} \max (500 \Omega)$. Ripple: $<20 \mathrm{mV}$
Voltage: $22 \mathrm{~mA}(10 \mathrm{k} \Omega)$. Ripple: $<20 \mathrm{mV}$
9. TRANSMISSION ERROR:

The transmission error without adjustment is $<0.4 \%$. Using the potentiometer, the error can be adjusted to $<0.1 \%$.
10. TEMPERATURE COEFFICIENT:

Max.: <0.01\%/K
Typ.: $<0.002 \% / K$
11. CUT-OFF FREQUENCY: 100 Hz
12. STEP RESPONSE (FROM 10 to 90%): 3.5 msec
13. TEST VOLTAGE (Input/Output/Supply): $1.5 \mathrm{kV}, 50 \mathrm{~Hz}, 1 \mathrm{~min}$.
14. ENVIRONMENTAL CONDITIONS:

Operating Temperature Range: $-20^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.149^{\circ} \mathrm{F}\right)$
Storage Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$

15. TESTS/APPROVALS:

 C $\in \mathrm{cqu}_{\mathrm{us}}^{\circ}$
U PROCESS CONTROL EQUIPMENT FOR HAZARDOUS LOCATIONS LISTED 31ZN

Class I Div 2 Groups A, B, C, D T5

A) This equipment is suitable for use in Class I, Division 2, Groups A, B, C and D or non- hazardous locations only.
B) Warning - explosion hazard - substitution of components may impair suitability for Class 1, Division 2.
C) Warning - explosion hazard - do not disconnect equipment unless power has been switched off or the area is known to be non-hazardous.
16. CERTIFICATIONS AND COMPLIANCES:

Conformance With EMC Guideline 89/336/EEC And Low Voltage Directive 73/23/EEC
Immunity to Interference According to EN 61000-6-2 ${ }^{1}$

Discharge of static electricity (ESD)	EN 61000-4-2	Criterion B ${ }^{2}$
Electromagnetic HF field	EN 61000-4-3	Criterion A 3
Fast transients (Burst)	EN 61000-4-4	Criterion B ${ }^{2}$
Surge voltage capacities (Surge)	EN 61000-4-5	Criterion B2
Conducted disturbance Noise Emission According to EN 50081-2 Noise emission of housing	EN 61000-4-6	Criterion A ${ }^{3}$
	EN 550114	Class A5

${ }^{1}$ EN 61000 corresponds to IEC 1000
${ }^{2}$ Criterion B: Temporary impairment to operational behavior that is corrected by the device itself.
${ }^{3}$ Criterion A: Normal operating behavior within the defined limits.
${ }^{4}$ EN 55011 corresponds to CISPR11
${ }^{5}$ Class A: Area of application industry.
17. CONNECTIONS: 12 AWG max., Stripping length: $0.47^{\prime \prime}$ (12 mm)
18. CONSTRUCTION: Polybutylenterephthalate PBT, black
19. MOUNTING: Standard DIN top hat (T) profile rail according to EN50022 - 35×7.5
20. WEIGHT: $2 \mathrm{oz} .(54 \mathrm{~g})$

BLOCK DIAGRAM

INPUTS

The IAMA accepts a full range of process signal inputs and isolates and converts these signals to common industrial control signals. The input signal combinations are configured by making specific DIP switch selections on the 6 and 2 position DIP switches.

OUTPUTS

As with the input choices, the process signal output of the modules is DIP switch selectable. The maximum output current signal is 28 mA with $=500 \Omega$ output resistance and the maximum output voltage signal is 12.5 V with $=10 \mathrm{~K} \Omega$ output resistance. The transmission error without adjustment is $<0.4 \%$. Using the potentiometer, the error can be adjusted to $<0.1 \%$.

TABLE 1 - CONFIGURATION

		DIP SWITCHES							
RANGES		OUTPUT (S2)						INPUT (S1)	
IN	OUT	1	2	3	4	5	6	1	2
$0-10 \mathrm{~V}$	$0-20 \mathrm{~mA}$	off							
	4-20 mA	off	off	off	off	off	ON	off	off
	0-10 V	ON	off	ON	off	off	off	off	off
	2-10 V	ON	off	ON	off	off	ON	off	off
	0-5 V	ON	ON	off	off	off	off	off	off
	$1-5 \mathrm{~V}$	ON	ON	off	off	off	ON	off	off
$2-10 \mathrm{~V}$	$0-20 \mathrm{~mA}$	off	off	off	ON	ON	off	off	off
	4-20 mA	off							
	0-10 V	ON	off	ON	ON	ON	off	off	off
	2-10 V	ON	off	ON	off	off	off	off	off
	0-5V	ON	ON	off	ON	ON	off	off	off
	$1-5 \mathrm{~V}$	ON	ON	off	off	off	off	off	off
0-5V	$0-20 \mathrm{~mA}$	off	off	off	off	off	off	ON	off
	4-20 mA	off	off	off	off	off	ON	ON	off
	0-10 V	ON	off	ON	off	off	off	ON	off
	2-10 V	ON	off	ON	off	off	ON	ON	off
	0-5 V	ON	ON	off	off	off	off	ON	off
	$1-5 \mathrm{~V}$	ON	ON	off	off	off	ON	ON	off
$1-5 \mathrm{~V}$	0-20 mA	off	off	off	ON	ON	off	ON	off
	4-20 mA	off	off	off	off	off	off	ON	off
	0-10 V	ON	off	ON	ON	ON	off	ON	off
	2-10 V	ON	off	ON	off	off	off	ON	off
	0-5 V	ON	ON	off	ON	ON	off	ON	off
	$1-5 \mathrm{~V}$	ON	ON	off	off	off	off	ON	off
$0-20 \mathrm{~mA}$	0-20 mA	off	ON						
	4-20 mA	off	off	off	off	off	ON	off	ON
	0-10 V	ON	off	ON	off	off	off	off	ON
	2-10 V	ON	off	ON	off	off	ON	off	ON
	0-5V	ON	ON	off	off	off	off	off	ON
	$1-5 \mathrm{~V}$	ON	ON	off	off	off	ON	off	ON
4-20 mA	$0-20 \mathrm{~mA}$	off	off	off	ON	ON	off	off	ON
	4-20 mA	off	ON						
	0-10 V	ON	off	ON	ON	ON	off	off	ON
	2-10 V	ON	off	ON	off	off	off	off	ON
	0-5 V	ON	ON	off	ON	ON	off	off	ON
	1-5V	ON	ON	off	off	off	off	off	ON

WIRING CONNECTIONS

Primary power is connected to terminals 7 or $3(19.2-30 \mathrm{VDC})$ and 8 or 4 (GND 3). For best results, the power should be relatively "clean" and within the specified variation limits. Drawing power from heavily loaded circuits or from circuits that also power loads that cycle on and off, should be avoided.
The input signal is connected to pins 1 (In U,I) and 2 (GND 1). Connections for the output signal are made on pins 5 (Out U,I) and 6 (GND 2).

INSTALLATION

The unit is equipped with a universal mounting foot for attachment to standard DIN style top hat (T) profile rail according to EN50022-35 x 7.5 and 35×15. The unit should be installed in a location that does not exceed the maximum operating temperature and provides good air circulation. Placing the unit near devices that generate excessive heat should be avoided.

T Rail Installation

To install the IAMA on a "T" style rail, angle the module so that the top groove of the "foot" is located over the lip of the top rail. Push the module toward the rail until it snaps into place. To remove a module from the rail, insert a screwdriver into the slot on the bottom of the "foot", and pry upwards on the module until it releases from the rail.

APPLICATION

Cost efficiency measurements of a printing company included the reduction of bulk stock of the various inks used in their printing processes. The company currently had various ink flow and level devices with different current and voltage outputs and wanted to record these measurements into a control room PC. Several IAMA Universal Signal Conditioning Modules were the answer. The IAMA's universal input allowed for easy signal conditioning of the various output signals to the required PC's Bus Board 0 to 10 VDC input signal. In this case, the IAMA's retransmitted 0 to 10 VDC output was field calibrated, negating the expense and time required to rewrite the PC's software parameters. In addition to accepting multiple signal types, the IAMA also provides the necessary electrical isolation between the control room PC and the hazards of the

LIMITED WARRANTY

The Company warrants the products it manufactures against defects in materials and workmanship for a period limited to one year from the date of shipment, provided the products have been stored, handled, installed, and used under proper conditions. The Company's liability under this limited warranty shall extend only to the repair or replacement of a defective product, at The Company's option. The Company disclaims all liability for any affirmation, promise or representation with respect to the products.
The customer agrees to hold Red Lion Controls harmless from, defend, and indemnify RLC against damages, claims, and expenses arising out of subsequent sales of RLC products or products containing components manufactured by RLC and based upon personal injuries, deaths, property damage, lost profits, and other matters which Buyer, its employees, or sub-contractors are or may be to any extent liable, including without limitation penalties imposed by the Consumer Product Safety Act (P.L. 92-573) and liability imposed upon any person pursuant to the Magnuson-Moss Warranty Act (P.L. 93-637), as now in effect or as amended hereafter.
No warranties expressed or implied are created with respect to The Company's products except those expressly contained herein. The Customer acknowledges the disclaimers and limitations contained herein and relies on no other warranties or affirmations.

Red Lion Controls AP		
Red Lion Controls	Red Lion Controls BV	31, Kaki Bukit Road 3,
20 Willow Springs Circle	Basicweg 11b	\#06-04/05 TechLink
York PA 17402	NL -3821 BR Amersfoort	Singapore 417818
Tel $+1(717) 767-6511$	Tel $+31(0) 334723225$	
Fax $+1(717) 764-0839$	Fax $+31(0) 334893793$	Fax $+656743-3360$

