Panasonic ideas for life

GENERAL CATALOG

SWITCHES

Development cycles in modern industry are becoming ever shorter and more complex, and they require a high degree of engineering. Components integrated into machines must therefore not only meet the current qualitative and technical standards but must also fulfill functional and application demands. Individual products can often only be integrated after they have been customized.
Panasonic Electric Works has always stood for product innovation - also when it comes to mechanical switches. Our immense portfolio includes switches in all common sizes and with various IP degrees of protection, and are guaranteed to cover all standard requirements. Our switches are characterized by a large switching capacity range, long lifetime and exceptional reliability. A wide selection of supplemental actuators coupled with various terminal styles, e.g. solder, quick connect, PC board terminal and cable connections, maximize flexibility and ease application design.
In addition, we concentrate on the development and implementation of customer-specific solutions: Does the cable have to be a little bit longer? Or is a pluggable solution necessary? With the engineering know-how at our European manufacturing sites, we guarantee flexible, on-time delivery and provide immediate, on-site technical support.

Product lineup

Tailoring equipment

Process steps

- Wire cutting
- Wire welding
- Hotmelt potting
- Contact crimping
- Development of customer-specific actuators
- Final assembly
- 100% final test
- Packaging

Contents

Selector Chart 4
Micro switches IP67 4
Micro switches IP40 6
Basic switches 6
Miniature switches 6
Subminiature switches 6
Ultraminiature switches 8
Interlock switches 8
Detection switches 10
Micro operator switches IP40 10
Rocker switches 10
Toggle switches 14
Micro Switches IP67 17
ASQ type 18
ABJ type 29
ABS type 40
ABV type 51
Turquoise switches 56
Turquoise switches important notes regarding use 57
Micro Switches IP40 59
AM1 (NZ basic) switches 60
AM5 (QV) switches 68
AM5 (QV) switches (contact gap more than 1mm) 80
AEQ (EQ) switches 81
AV (FS•FS-T) switches 86
AV3OOOG (FS) switches 99
AV6 (CS) switches 101
AH1 (FJ) switches 106
AV4 switches 111
AGX (GX) switches 117
AV1 (GW) switches 121
AHF2 (TIP) switches 126
Technical terminology \& cautions for use 129
Operation Switches 133
T-15 series switches 134
T-10 series switches 152
T-06/T-03 series switches 155
AJ8S (J8S) switches 158
AJ8 switches with trip function upgraded type 162
AJ7 (J7) switches 167
AJ8 (J8) switches 176
Technical terminology \& cautions for use 184

Application areas

Automotive

- Seat detection
- Electronic Steering Column Lock (ESCL)
- Door contact switch
- Electronic Parking Brake (EPB)

Health care/ Wellness

- Bathtube entrance
- Lady shaver
- Massage device

Industrial technology

- Final position switch
- Position recognition
- Air compressor
- Circuit breaker

Building automation

- Air conditioning
- Heating control
- Jalousie control

Medical technology

- Electrically adjustable hospital bed
- OP table
- Eye diagnostic

Security engineering

- Manual call point
- Break-in detection system
- Lock monitoring

			Actuator Symbols:		Push-butt	8	Rocker
Ambient temperature	Service life (min.)		Operating force on pin in N (max.)	Connection types	Actuator	Degree of protection	$\begin{gathered} \text { Page } \\ \text { Approvals } \end{gathered}$
	Mechanical	Electrical					
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1,000,000	500,000	1.7	- Solder - PCB - Lead wire	- Pin plunger - Hinge lever - Simulated roller lever	IP67	18
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1,000,000	$\begin{aligned} & 30,0001 \\ & 100,000 \end{aligned}$	1.96	- Solder - PCB - Lead wire	- Pin plunger - Roller lever - Hinge lever - Simulated roller lever - Other	IP67	$\begin{gathered} 29 \\ \text { UL, CSA } \end{gathered}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5,000,000	$\begin{aligned} & 50,0001 \\ & 200,000 \end{aligned}$	1.47	- Solder - PCB - Lead wire - Quick connect	- Pin plunger - Roller lever - Hinge lever - Simulated roller lever - Other	IP67	$\begin{gathered} 40 \\ \text { UL, CSA, } \\ \text { VDE, SEMKO } \end{gathered}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5,000,000	$\begin{aligned} & 100,000 / \\ & 1,000,000 \end{aligned}$	2.94	- Lead wire - Quick connect	- Pin plunger - Roller lever - Hinge lever - Simulated roller lever - Other	IP67	$\begin{gathered} 51 \\ \text { UL, CSA, } \\ \text { VDE, SEMKO } \end{gathered}$

Ambient temperature	Service life (min.)		Operating force on pin in N (max.)	Connection types	Actuator	Degree of protection	PageApprovals
	Mechanical	Electrical					
$-25^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$	20,000,000	500,000	3.63	- Solder - Screw	- Standard plunger - Roller lever - Simulated roller lever - Straight lever - Other	IP40	$\begin{gathered} 60 \\ \text { UL, CSA } \end{gathered}$
$-25^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	10,000,000	$\begin{gathered} 100,000 / \\ 2,000,000 \end{gathered}$	3.92	- Solder - Quick connect	- Pin plunger - Roller lever - Hinge lever - Simulated roller lever - Other	1P40	UL, CS UL, CSA, VDE, SEMKO ENEC
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\begin{gathered} 500,000 / \\ 30,000,000 \end{gathered}$	$\begin{gathered} 50,0001 \\ 200,000 \end{gathered}$	1.47	- Solder - PCB - Quick connect	- Pin plunger - Roller lever - Simulated roller lever - Hinge lever - Other	1P40	DEE, SEM, be, Semko
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	500,000	10,000	1.47	- Solder - PCB - Quick connect	- Pin plunger - Short hinge lever - Hinge lever - Long hinge lever - Simulated roller lever - Roller lever - Other	IP40	99 UL, CSA, VDE, SEMKO under application
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	500,000	200,000	1.50	- Connector	- Pin plunger - Roller lever - Simulated roller lever - Hinge lever - Other	IP40	$\begin{gathered} 101 \\ \text { UL, CSA } \end{gathered}$

	Type(Picture scale: DIN A4)	Features	Switching current	Contact types	Contact material	Switching voltage (max.)	
						vDC	vac
	Ultraminiature switches						
		- Subminiature design - Handles low level loads $100 \mu \mathrm{~A} / 3 \mathrm{VDC}$ to $100 \mathrm{~mA} / 30 \mathrm{VDC}$	$100 \mu \mathrm{~A}$ to 100 mA	SPDT	Au	30	-
		- Ultra miniature design - Flux-resistant - Gold contact available for low loads	1 mA to 3A	$\begin{aligned} & \text { SPDT, SPST- } \\ & \text { NO } \end{aligned}$	Ag/Au	30	125
		- Super miniature design	1 mA to 0.5 A	SPDT	Ag/Au	30	-
	Interlock switches						
		- Door interlock switch - Contact gap more than 4 mm - Snap-in fixing - Separate signal and switching contacts for 3 Form A type	10 mA to 10.1 A	SPST-NO	Ag	48	250
	AV1 1:1	- Door interlock switch - Snap-in/screw fixing - Contact gap 8 mm for 2 Form A/3 Form A snapin mounting type	10 mA to 10.1 A	SPST-NC SPST-NO	Ag	30	250

Ambient temperature	Service life (min.)		Operating force on pin in \mathbf{N} (max.)	Connection types	Actuator	Degree of protection	$\begin{gathered} \text { Page } \\ \text { Approvals } \end{gathered}$
	Mechanical	Electrical					
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	200,000	100,000	1.7	- Solder - PCB	- Pin plunger - Leaf lever - Simulated leaf lever	IP40	81
$-25^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$	1,000,000	$\begin{aligned} & 30,000 / \\ & 100,000 \end{aligned}$	1.47	- Solder - PCB	- Pin plunger - Simulated roller lever - Hinge lever	1P40	$\begin{gathered} 106 \\ \text { UL, CSA } \end{gathered}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	300,000	$\begin{aligned} & 20,0001 \\ & 200,000 \end{aligned}$	0.98	- Solder - PCB	- Pin plunger - Simulated roller lever - Hinge lever	1P40	111
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1,000,000	100,000	5.88	- Quick connect	\square	IP40	117 UL, CSA, VDE, SEMKO, ENEC
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1,000,000	100,000	9.81	- Quick connect		IP40	121 UL, CSA, VDE, ENEC

Ambient temperature	Service life (min.)		Operating force on pin in N (max.)	Connection types	Actuator	Degree of protection	Page Approvals
	Mechanical	Electrical					

Toggle Switches

| Ambient
 temperature | Service life (min.) | | Switching
 contact | Connection
 types | Actuator | Degree of
 protection | Page
 Approvals |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Mechanical | Electical | | | | | |

Panasonic ideas for life

(mm)

ULTRA-LONG STROKE, GH CONTACT RELIABILITY SEALED SWITCHES (SAME SIZE AS J TYPE)

2. Since contact pressure does not depend on the operation stroke, the range of possible use over the entire stroke is greatly increased.
(Please refer to operation concept diagram.)
3. High contact reliability to support low level switching loads
High contact reliability is maintained with gold plating on both sides of sliding contact.
4. Highly effective sealing for resistance against adverse environments
Immersion protection type

- JIS C0920 (water-resistance experiments for electrical machines and protection rating against incursion of solid substances)
D2
- JIS D0203 (method for testing moisture resistance and water resistance in automotive components)
IP67
- IEC529 (rating for outer shell protection)

5. Silent operation

With sliding contact construction there is no operation noise.
6. Direct operation possible from lateral direction with pin plunger (lever-less operation allows spacesavings)
7. Contains no harmful substances (mercury, lead, hexivalent chromium, cadmium)

TYPICAL APPLICATIONS

1. Automobiles (detection of door opening and closing and shift lever position, etc.)
2. Household appliances (propane stoves, vacuum cleaners, air conditioners, washing machines, etc.)
3. Same size as J type with ultra-long stroke. For pin plunger type, it maintains an ultra-long stroke O.T. (over travel) with over 2.2 mm on the NO side and over 2.5 mm on the NC side. Variations in operation can be absorbed.

ORDERING INFORMATION

[^0]
OPERATION CONCEPT DIAGRAM (reference)

Contact form: terminal type

CONTACT
ARRANGEMENT

1. SPDT

2. SPST-NC
(wire leads type only)

APPLICABLE CURRENT RANGE (reference)

PRODUCT TYPES

1. Terminal type (mounting hole: 3 mm standard type/3mm without boss type/2 boss type/side pin type)

Actuator	Operating force max.	Mounting hole: 3mm standard type			Mounting hole: 3 mm without boss type PC board terminal	Right 2 boss type Solder terminal	Left 2 boss type Solder terminal	Right side pin type Solder terminal	Left side pin type Solder terminal
		Solder terminal	PC right angle terminal	PC left angle terminal					
Pin plunger	1.5 N	ASQ10410	ASQ10710	ASQ10810	ASQ11510	ASQ16410	ASQ17410	ASQ14410	ASQ15410
Leaf lever	1.7 N	ASQ10417	ASQ10717	ASQ10817	ASQ11517	ASQ16417	ASQ17417	ASQ14417	ASQ15417
Simulated leaf lever	1.5 N	ASQ10418	ASQ10718	ASQ10818	ASQ11518	ASQ16418	ASQ17418	ASQ14418	ASQ15418

2. Wire leads bottom type (mounting hole: 3 mm standard type)

Actuator	Operating force max.	Wire leads bottom type (mounting hole: 3mm standard type)		
		Switching type	NC type	NO type
Pin plunger	1.5 N	ASQ10610	ASQ10620	ASQ10630
Leaf lever	1.7 N	ASQ10617	ASQ10627	ASQ10637
Simulated leaf lever	1.5 N	ASQ10618	ASQ10628	ASQ10638

3. Wire leads side type (mounting hole: 3 mm standard type)

Actuator		Wire leads right side type (mounting hole: 3mm standard type)		Wire leads left side type (mounting hole: 3mm standard type)	
	NC type	NO type	NC type	NO type	
Pin plunger	1.5 N	ASQ10220	ASQ10230	ASQ10320	ASQ10330
Leaf lever	1.7 N	ASQ10227	ASQ10237	ASQ10327	ASQ10337
Simulated leaf lever	1.5 N	ASQ10228	ASQ10238	ASQ10328	ASQ10338

ASQ1

RATING

1. Rating

$1 \mathrm{~mA}, 5 \mathrm{~V}$ DC to $100 \mathrm{~mA}, 30 \mathrm{~V}$ DC
Note: Please consult us regarding 42 V DC rating
2. Operation environment and conditions

Item	Specifications
Ambient and storage temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (no freezing and condensing)
Allowable operating speed	30 to $500 \mathrm{~mm} / \mathrm{s}$
Max. operating cycle rate	120 cpm

Note: When switching at low and high speeds or under vibration, or in high-temperature, high-humidity environments, life and performance may be reduced significantly depending on the load capacity. Please consult us.

3. Electrical characteristics

Withstand voltage (initial)	Between non-continuous terminals: 600 Vrms, Between each terminal and other exposed metal parts: $1,500 \mathrm{Vrms}$, Between each terminal and ground: $1,500 \mathrm{Vrms}$ (at detection current of 1 mA$)$
Insulation resistance (initial)	Min. $100 \mathrm{M} \Omega$ (at 500 V DC insulation resistance meter) (Locations measured same as withstand voltage.)
Contact resistance (initial)	Max. 1Ω (by voltage drop 0.1 A 6 to $8 \mathrm{~V} \mathrm{DC)}$

4. Characteristics

Item		Specifications	
Electrical switching life	5 V DC 1 mA (resistive load)	Min. 5×10^{5}	Switching frequency: 20 times/min. Conduction ratio: 1:1 Push-button operation speed: $100 \mathrm{~mm} / \mathrm{s}$ Push-button switching position: free position (FP) to operation limit position (TTP)
	16 V DC 50 mA (resistive load)	Min. 5×10^{5}	
	30 V DC 100 mA (resistive load)	Min. 2×10^{5}	
Vibration resistance (malfunction vibration resistance)		Single amplitude: 0.75 mm Amplitude of vibration: 10 to 55 Hz (4 minutes cycle) Direction and time: 30 minutes each in X, Y and Z directions	
		Amplitude of vibration: 5 to 200 Hz (10 minutes cycle) Acceleration: $43.1 \mathrm{~m} / \mathrm{s}^{2}$ Direction and time: 30 minutes each in X, Y and Z directions	
Shock resistance (malfunction shock resistance)		Shock value: $980 \mathrm{~m} / \mathrm{s}^{2}$ Direction and time: 5 times each in X, Y and Z directions	
Vibration resistance endurance		Frequency of vibration: 33.3 Hz , Acceleration: $43.1 \mathrm{~m} / \mathrm{s}^{2}$ Direction and time: 8 hours each in X, Y and Z directions	
Terminal strength		6 N min . (each direction) *Terminal deformation possible.	
Heat resistance		$85^{\circ} \mathrm{C} 500$ houres	
Cold resistance		$-40^{\circ} \mathrm{C} 500$ houres	
Humidity resistance		$40^{\circ} \mathrm{C} 95 \% \mathrm{RH} 500$ houres	
High-temperature, high-humidity resistance		$85^{\circ} \mathrm{C} 85 \% \mathrm{RH} 500$ houres	
Thermal shock resistance		30 min . at $85^{\circ} \mathrm{C}$ to 30 min at $-40^{\circ} \mathrm{C}$ for 1,000 cycles	
Water resistance		IP67 (wire leads type)	

Notes: As long as there are no particular designations, the following conditions apply to the test environment.

- Ambient temperature: 5 to $35^{\circ} \mathrm{C}$
- Relative humidity: 25 to $85 \% \mathrm{RH}$
- Air pressure: 86 to 106 kPa

5. Protective structure

1) JIS C0920: Waterproof type

A concrete testing method is to check for any adverse effect on the structure after leaving it submerged for 30 minutes under 1 m of water (with temperature difference between water and switch no larger than $5^{\circ} \mathrm{C}$).
2) IEC 60529: IP67 (waterproof type)

A concrete testing method is to check for any adverse effect on the structure after leaving it submerged for 30 minutes under 1 m of water (with temperature difference between water and switch no larger than $5^{\circ} \mathrm{C}$).
3) JIS D0203: Equivalent of D2

A concrete testing method is to check for any adverse effect on the structure after leaving it submerged for 30 minutes under 10 cm of water (with temperature difference between water and switch no larger than $30^{\circ} \mathrm{C}$).
Note: Names of the standards can be found in the section describing features.

6. Operating characteristics

Actuator		Pin plunger	Leaf lever	Simulated leaf lever
Operating Force (max. O.F.) *Note 2		1.5 N	1.7 N	1.5 N
Total travel Force (max. T.F.) (reference value)		(2.0N)	(3.1N)	(2.8N)
Free Position (max. F.P.)	From mounting boss and hole center line	9.2 mm	11.5 mm	14.4 mm
	From standoff	13.4 mm	15.7 mm	18.6 mm
Operating Position on NC side O.P. (N.C.) *Note 3	From mounting boss and hole center line	$8.7 \pm 0.3 \mathrm{~mm}$	$9.8 \pm 0.5 \mathrm{~mm}$	$12.5 \pm 0.5 \mathrm{~mm}$
	From standoff	$12.9 \pm 0.3 \mathrm{~mm}$	$14.0 \pm 0.5 \mathrm{~mm}$	$16.7 \pm 0.5 \mathrm{~mm}$
Operating Position on NO side O.P. (N.O.) *Note 4	From mounting boss and hole center line	$8.4 \pm 0.3 \mathrm{~mm}$	$9.3 \pm 0.5 \mathrm{~mm}$	$12.0 \pm 0.5 \mathrm{~mm}$
	From standoff	$12.6 \pm 0.3 \mathrm{~mm}$	$13.5 \pm 0.5 \mathrm{~mm}$	$16.2 \pm 0.5 \mathrm{~mm}$
Release Position on NC side R.P. (N.C.) *Note 5	From mounting boss and hole center line	$8.8 \pm 0.3 \mathrm{~mm}$	$10.1 \pm 0.5 \mathrm{~mm}$	$12.9 \pm 0.5 \mathrm{~mm}$
	From standoff	$13.0 \pm 0.3 \mathrm{~mm}$	$14.3 \pm 0.5 \mathrm{~mm}$	$17.1 \pm 0.5 \mathrm{~mm}$
Release Position on NO side R.P. (N.O.) *Note 6	From mounting boss and hole center line	$8.5 \pm 0.3 \mathrm{~mm}$	$9.6 \pm 0.5 \mathrm{~mm}$	$12.4 \pm 0.5 \mathrm{~mm}$
	From standoff	$12.7 \pm 0.3 \mathrm{~mm}$	$13.8 \pm 0.5 \mathrm{~mm}$	$16.6 \pm 0.5 \mathrm{~mm}$
Over travel on N.C. side (min. O.T. (N.C.))		2.5 mm	3.1 mm	3.3 mm
Over travel on N.O. side (min. O.T. (N.O.))		2.2 mm	2.6 mm	2.8 mm
Total Travel Position (T.T.P.) (reference value)	From mounting boss and hole center line	(5.9 mm)	(6.2mm)	(8.7mm)
	From standoff	(10.1mm)	(10.4mm)	(12.9mm)

Notes: 1. The above indicates the characteristics when operating the push-button from the vertical direction.
2. Indicates operation load for NO contact to achieve ON status.
3. Indicates position for NC contact to achieve OFF status.
4. Indicates position for NO contact to achieve ON status.
5. Indicates position for NC contact to achieve ON status.
6. Indicates position for NO contact to achieve OFF status.

DIMENSIONS

Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

1. Terminal type: Mounting hole 3mm, standard type
mm General tolerance: ± 0.25
Pin plunger

CAD Data

Operating Force (max. O.F.)		1.5 N
Free Position (max. F.P.)	From mounting boss and hole center line	9.2 mm
	From standoff	13.4 mm
Operating Position on NC side O.P. (N.C.)	From mounting boss and hole center line	$8.7 \pm 0.3 \mathrm{~mm}$
	From standoff	$12.9 \pm 0.3 \mathrm{~mm}$
Operating Position on NO side O.P. (N.O.)	From mounting boss and hole center line	$8.4 \pm 0.3 \mathrm{~mm}$
	From standoff	$12.6 \pm 0.3 \mathrm{~mm}$
Release Position on NC side R.P. (N.C.)	From mounting boss and hole center line	$8.8 \pm 0.3 \mathrm{~mm}$
	From standoff	$13.0 \pm 0.3 \mathrm{~mm}$
Release Position on NO side R.P. (N.O.)	From mounting boss and hole center line	$8.5 \pm 0.3 \mathrm{~mm}$
	From standoff	$12.7 \pm 0.3 \mathrm{~mm}$
Over travel on N.C. side (min. O.T. (N.C.))		2.5 mm
Over travel on N.O. side (min. O.T. (N.O.))		2.2 mm

Note: When switching at high speed or under shock, lever endurance may drop. Therefore, please be sure to conduct an endurance evaluation under actual switching conditions.

Operating Force (max. O.F.)	1.7 N	
Free Position (max. F.P.)	From mounting boss and hole center line	11.5 mm
Operating Position on	From mounting boss and hole center line	$9.8 \pm 0.5 \mathrm{~mm}$
NC side O.P. (N.C.)	From standoff	$14.0 \pm 0.5 \mathrm{~mm}$
Operating Position on	From mounting boss and hole center line	$9.3 \pm 0.5 \mathrm{~mm}$
NO side O.P. (N.O.)	From standoff	$13.5 \pm 0.5 \mathrm{~mm}$
Release Position on	From mounting boss and hole center line	$10.1 \pm 0.5 \mathrm{~mm}$
NC side R.P. (N.C.)	From standoff	$14.3 \pm 0.5 \mathrm{~mm}$
Release Position on NO side R.P. (N.O.)	From mounting boss and hole center line	From standoff
Over travel on N.C. side (min. O.T. (N.C.))	$13.6 \pm 0.5 \mathrm{~mm}$	
Over travel on N.O. side (min. O.T. (N.O.))	3.1 mm	

Operating Force (max. O.F.)	1.5 N	
Free Position (max. F.P.)	From mounting boss and hole center line	14.4 mm
	From standoff	18.6 mm
Operating Position on NC side O.P. (N.C.)	From mounting boss and hole center line	$12.5 \pm 0.5 \mathrm{~mm}$
Operating Position on	From mounting boss and hole center line	$12.0 \pm 0.5 \mathrm{~mm}$
NO side O.P. (N.O.)	From standoff	$16.2 \pm 0.5 \mathrm{~mm}$
Release Position on	From mounting boss and hole center line	$12.9 \pm 0.5 \mathrm{~mm}$
NC side R.P. (N.C.)	From standoff	$17.1 \pm 0.5 \mathrm{~mm}$
Release Position on	From mounting boss and hole center line	$12.4 \pm 0.5 \mathrm{~mm}$
NO side R.P. (N.O.)	From standoff	$16.6 \pm 0.5 \mathrm{~mm}$
Over travel on N.C. side (min. O.T. (N.C.))	3.3 mm	
Over travel on N.O. side (min. O.T. (N.O.))	2.8 mm	

Mounting hole: 3 mm without boss type

CAD Data

PC board terminal

PC board pattern

2. Right side pin type (solder terminal only)

Right 2 boss type (solder terminal only)

CAD Data

Left 2 boss type (solder terminal only)

3. Angle terminal type: mounting hole $\mathbf{3 ~ m m}$, standard type

Right type
CAD Data

Left type: mounting hole 3 mm , standard type

*Wire lead thickness : $0.3 \mathrm{~mm}^{2}$ Wire lead color
5. Wire leads right side type: Mounting hole 3mm, standard type

CAD Data

CAD Data

NOTES

1. Soldering conditions

The application of excessive heat upon the switch when soldering can cause degradation of switch operation.
Therefore, be sure to keep within the conditions given below.

1) Manual soldering: use soldering irons (max. $350^{\circ} \mathrm{C}$, within 3 seconds) capable of temperature adjustment. This is to prevent deterioration due to soldering heat. Care should be taken not to apply force to the terminals during soldering. 2) Automatic soldering: Soldering must be done as below;
$260^{\circ} \mathrm{C}$: within 6 seconds
$350^{\circ} \mathrm{C}$: within 3 seconds

2. Mounting

Please avoid use in which load would be applied to the sides (hatch part [both sides] shown below) of the switch in the direction indicated by the arrows. This could cause erroneous operation. Also, when using a metal installation board, please make allowance for burr direction designation and burr suppressing, etc., so that the burr side will not be on the switch installation side.

1) To secure the switch, please use an M3 small screw on a flat surface and tighten using a maximum torque of 0.29 $\mathrm{N} \cdot \mathrm{m}$. It is recommended that spring washers be used with the screws and adhesive be applied to lock the screws to prevent loosening of the screws. Please make sure not to apply adhesive onto the moving parts.
2) Be sure to maintain adequate insulating clearance between each terminal and ground.
3) Although it is possible to directly operate the pin plunger type from the lateral direction, please consult us if doing so.
4) After mounting please make sure no tensile load will be applied to the switch terminals.
5) Range of possible use: Please set the operation position to within the ranges in the following table so that there is sufficient insulation distance and to maintain contact reliability.

	Plunger/lever free	
Actuator	From mounting boss and hole center line	From standoff
	>9.2	>13.4
Leaf lever	>10.7	>14.9
Simulated leaf lever	>13.5	>17.7

Actuator	Plunger/Lever pushed	
	From mounting boss and hole center line	From standoff
Pin plunger	7.8 to 5.9	12.0 to 10.1
Leaf lever	8.4 to 6.2	12.6 to 10.4
Simulated leaf lever	11.1 to 8.7	15.3 to 12.9

6) PC board terminal type should be used if the products are to be soldered on the PC board. Solder terminal type is not for soldering on PC board.

3. Cautions regarding the circuit

1) In order to prevent malfunction in set devices caused by bounce and chattering during the ON-OFF switch operation, please verify the validity of the circuit under actual operating conditions and temperature range.
2) When switching inductive loads (relays, solenoids, buzzers, etc.), an arc absorbing circuit is recommended to protect the contacts.

4. Please verify under actual

 conditions.Please be sure to conduct quality verification under actual operating conditions in order to increase reliability during actual use.

5. Switch selection

Please make your selection so that there will be no problems even if the operating characteristics vary up to $\pm 20 \%$ from the standard values.

ASQ1

6. Oil-proof and chemical-proof

 characteristicsThe rubber cap swells when exposed to oil and chemicals. The extent of swelling will vary widely depending on the type and amount of oil and chemicals.
Check with the actual oil or chemicals used.
In particular, be aware that solvents such as freon, chlorine, and toluene cannot be used.

7. Environment

- Although continuous operation of the switch is possible within the range of ambient temperature (humidity), as the humidity range differs depending on the ambient temperature, the humidity range indicated below should be used.
Continuous use near the limit of the range should be avoided
- This humidity range does not guarantee permanent performance

8. Other

1) Please remember that this switch cannot be used under water. Also, please be warned that switching and sudden temperature changes with the presence of water droplets can cause seepage into the unit.
2) Keep away from environments where silicon based adhesives, oil or grease are present as faulty contacts may result from silicon oxide. Do not use in areas where flammable or explosive gases from gasoline and thinner, etc., may be present.
3) When using the lever type, please be careful not to apply unreasonable load from the reverse or lateral directions of operation.
4) Do not exceed the total travel position (TTP) and press the actuator. This could cause operation failure. Also, when switching at high speed or under shock even within the operation limit, the working life may decrease. Therefore, please be sure to verify the quality under actual conditions of use.
5) Please make considerations so that the switch does not become the stopper for the moving part.

Panasonic ideas for life

HIGH ENVIRONMENTAL RESISTANCE

TURQUOISESWTCHES ABJ TYPE

Dust protected type

Immersion protected type (wire leads bottom type)

Immersion protected (wire leads side type)

Mounting hole (2.3mm) type

Long stroke type

FEATURES

- Ultra-miniature size ($12.8 \times 6.5 \times 6 \mathrm{~mm}$)
- Sealed construction for use in adverse environment-Sealed construction by epoxy resin and rubber cap greatly reduces possible miscontact due to contaminants such as dust. Conforming to IP67* of IEC protective construction classification
- Elastomer double molding technology, an industry first and ultrasonic swaging technology contribute to uniform sealing in high production quantities
- ULICSA approved (except the long stroke type of ABJ2 and the side wire leads type.)
- Long stroke type is available

Since the repeatability is excellent and the play distance (over travel) from the operating position is ample, the task of performing adjustments during installation is easy.
Operating position accuracy $\pm 0.4 \mathrm{~mm}$
Overtravel= Min. 2.0 mm
As wide range of high pressure is achieved, a stable reliability is ensured

- Leaf lever side wire leads type added. We now offer two types.

M3 type installation hole
Fixed pin type

- Based on the protective construction classification of IEC, items which satisfy the test requirements are denoted with an IP designation

TYPICAL APPLICATIONS

- Industrial use video jack
- Automotive (ex. Device for opening and shutting of automobile doors)

ORDERING INFORMATION

(If Agency standard required, please refer to the "with Agency standard type". See next page.)

[^1]2. Not every combination is available. Please refer to the following table, "PRODUCT TYPES".

ABJ1,2,3,4,5
With Agency standard type

Type of switch	Size of mounting hole	Terminal	Contact arrangement	Actuator	Operating force by pin plunger (max.)	Contact	Agency standard
ABJ: Turquoise switch J type	$\begin{aligned} & 1: 1.2 \mathrm{~mm} \\ & 2: 2.3 \mathrm{~mm} \\ & 3: 3 \mathrm{~mm} \end{aligned}$	4: Solder terminal 5: PC board terminal 6: Wire leads (bottom type)	1: SPDT 2: SPST-NC (Wire leads type only) 3: SPST-NO (Wire leads type only)	0 : Pin plunger 2: Hinge lever 4: Simulated roller lever 6: Roller lever 8: Leaf lever (Mounting hole 3 mm lead wire type only)	$\begin{aligned} & \text { 4: } 1.23 \mathrm{~N} \\ & \text { 6: } 1.96 \mathrm{~N} \end{aligned}$	0 : AgNi alloy 1: AgNi alloy + Au-clad	9: UL/CSA 6×10^{3} rated (Except wire leads type)

Remarks: 1. Standard packing: Dust protected type 100 pcs./carton, 2,000 pcs./case; Immersion protected type 50 pcs./case.
2. Not every combination is available. Please refer to the following table, "PRODUCT TYPES"

CONTACT ARRANGEMENT

2. SPST-NC (wire leads type only)

3. SPST-NO (wire leads type only)

APPLICABLE CURRENT RANGE (reference)

PRODUCT TYPES

1. Dust protected type (terminal type)

Mounting hole 1.2 mm type / Mounting hole 2.3 mm type
AgNi alloy

Actuator	Operating force max.	Mounting hole 1.2 mm type		Mounting hole 2.3 mm type
		Solder terminal	PC board terminal	Solder terminal
Pin plunger	1.23 N	ABJ1410409	ABJ1510409	ABJ2410409
	1.96 N	ABJ1410609	ABJ1510609	ABJ2410609
Hinge lever	0.39 N	ABJ1412409	ABJ1512409	ABJ2412409
	0.64 N	ABJ1412609	ABJ1512609	ABJ2412609
Simulated roller lever	0.39 N	ABJ1414409	ABJ1514409	ABJ2414409
	0.64 N	ABJ1414609	ABJ1514609	ABJ2414609
Roller lever	0.39 N	ABJ1416409	ABJ1516409	ABJ2416409
	0.64 N	ABJ1416609	ABJ1516609	ABJ2416609

AgNi alloy + Au-clad

Actuator	Operating force max.	Mounting hole 1.2 mm type		Mounting hole 2.3 mm type
		Solder terminal	PC board terminal	Solder terminal
Pin plunger	1.23 N	ABJ1410419	ABJ1510419	ABJ2410419
	1.96 N	ABJ1410619	ABJ1510619	ABJ2410619
Hinge lever	0.39 N	ABJ1412419	ABJ1512419	ABJ2412419
	0.64 N	ABJ1412619	ABJ1512619	ABJ2412619
Simulated roller lever	0.39 N	ABJ1414419	ABJ1514419	ABJ2414419
	0.64 N	ABJ1414619	ABJ1514619	ABJ2414619
Roller lever	0.39 N	ABJ1416419	ABJ1516419	ABJ2416419
	0.64 N	ABJ1416619	ABJ1516619	ABJ2416619

2-(1). Immersion protected type (bottom wire leads type)
Mounting hole 1.2 mm type
AgNi alloy

Actuator	Operating force			
	max.	Mounting hole 1.2 mm type		
Pin plunger	1.23 N	SPDT	SPST-NC	SPST-NO
	1.96 N	ABJ161040	ABJ162040	ABJ163040
	0.39 N	ABJ161060	ABJ162060	ABJ163060
Simulated roller lever	0.64 N	ABJ161240	ABJ162240	ABJ163240
	0.39 N	ABJ161260	ABJ162260	ABJ163260
		0.64 N	ABJ161440	ABJ162440

AgNi alloy + Au-clad

Actuator	Operating force max.	Mounting hole 1.2 mm type		
		SPDT	SPST-NC	SPST-NO
Pin plunger	1.23 N	ABJ161041	ABJ162041	ABJ163041
	1.96 N	ABJ161061	ABJ162061	ABJ163061
Hinge lever	0.39 N	ABJ161241	ABJ162241	ABJ163241
	0.64 N	ABJ161261	ABJ162261	ABJ163261
Simulated roller lever	0.39 N	ABJ161441	ABJ162441	ABJ163441
	0.64 N	ABJ161461	ABJ162461	ABJ163461
Roller lever	0.39 N	ABJ161641	ABJ162641	ABJ163641
	0.64 N	ABJ161661	ABJ162661	ABJ163661

ABJ1,2,3,4,5
Mounting hole 2.3 mm type
AgNi alloy

Actuator	Operating force max.	Mounting hole 2.3 mm type		
		SPDT	SPST-NC	SPST-NO
Pin plunger	1.23 N	ABJ261040	ABJ262040	ABJ263040
	1.96 N	ABJ261060	ABJ262060	ABJ263060
Hinge lever	0.39 N	ABJ261240	ABJ262240	ABJ263240
	0.64 N	ABJ261260	ABJ262260	ABJ263260
Simulated roller lever	0.39 N	ABJ261440	ABJ262440	ABJ263440
	0.64 N	ABJ261460	ABJ262460	ABJ263460
Roller lever	0.39 N	ABJ261640	ABJ262640	ABJ263640
	0.64 N	ABJ261660	ABJ262660	ABJ263660

AgNi alloy + Au-clad

Actuator	Operating force max.	Mounting hole 2.3 mm type		
		SPDT	SPST-NC	SPST-NO
Pin plunger	1.23 N	ABJ261041	ABJ262041	ABJ263041
	1.96 N	ABJ261061	ABJ262061	ABJ263061
Hinge lever	0.39 N	ABJ261241	ABJ262241	ABJ263241
	0.64 N	ABJ261261	ABJ262261	ABJ263261
Simulated roller lever	0.39 N	ABJ261441	ABJ262241	ABJ263441
	0.64 N	ABJ261461	ABJ262461	ABJ263461
Roller lever	0.39 N	ABJ261641	ABJ262641	ABJ263641
	0.64 N	ABJ261661	ABJ262661	ABJ263661

Mounting hole 3mm type (leaf lever type)
AgNi alloy

Actuator	Operating force max.	Mounting hole 3 mm type		
		0.98 N	SPDT	SPST-NC

AgNi alloy + Au-clad

Actuator	Operating force	Mounting hole 3 mm type		
	max.	SPDT	SPST-NC	SPST-NO
Leaf lever	0.98 N	ABJ361841	ABJ362841	ABJ363841
	1.27 N	ABJ361861	ABJ362861	ABJ3638619

2-(2). Immersion protected type (side wire leads type)

Fixed pin (right side pin) type
AgNi alloy

Actuator	Operating force max.	Wire leads direction	Wire leads type	
			SPST-NC	SPST-NO
	1.27 N	Right	ABJ472840	ABJ473840
	1.27 N	Left	ABJ482840	-
	1.76 N	Right	ABJ472860	ABJ473860
		1.76 N	Left	ABJ482860

AgNi alloy + Au-clad

Actuator	Operating force max.	Wire leads direction	Wire leads type	
			SPST-NC	SPST-NO
	1.27 N	Right	ABJ472841	ABJ473841
	1.27 N	Left	ABJ482841	-
	1.76 N	Right	ABJ472861	ABJ473861
		1.76 N	Left	ABJ482861

Fixed pin (left side pin) type
AgNi alloy

Actuator	Operating force max.	Wire leads direction	Wire leads type	
			SPST-NC	SPST-NO
Leaf lever	1.27 N	Right	ABJ572840	ABJ573840
	1.27 N	Left	ABJ582840	-
	1.76 N	Right	ABJ572860	ABJ573860
	1.76 N	Left	ABJ582860	-
AgNi alloy + Au-clad				
Actuator	Operating force max.	Wire leads direction	Wire leads type	
			SPST-NC	SPST-NO
Leaf lever	1.27 N	Right	ABJ572841	ABJ573841
	1.27 N	Left	ABJ582841	-
	1.76 N	Right	ABJ572861	ABJ573861
	1.76 N	Left	ABJ582861	-

Mounting hole 3 mm type
AgNi alloy

Actuator	Operating force max.	Wire leads direction	Wire leads type
	1.27 N		SPST-NC
			ABJ382840

AgNi alloy + Au-clad

Actuator	Operating force max.	Wire leads direction	Wire leads type
Leaf lever	1.27 N	Left	ABJ382841
	1.76 N		ABJ382861

3. Immersion protected type (bottom wire leads type) Long stroke type

Mounting hole 2.3 mm type
AgNi alloy

Actuator	Operating force		
		\quad	Mounting hole 2.3 mm type
:---:			

SPECIFICATIONS

1. Contact rating

Type	Operating force max.	Standard rating	Low-level circuit rating
AgNi alloy contact	$1.76 \mathrm{~N}, 1.96 \mathrm{~N}$	$\begin{aligned} & \text { 2 A } 125 \mathrm{VAC} \\ & 2 \mathrm{~A} 30 \mathrm{VDC} \end{aligned}$	-
	$1.23 \mathrm{~N}, 1.27 \mathrm{~N}$	$\begin{aligned} & 1 \mathrm{~A} 125 \mathrm{VAC} \\ & 1 \mathrm{~A} 30 \mathrm{VDC} \end{aligned}$	-
Long stroke type AgNi alloy contact	2.45 N	$\begin{aligned} & \hline 1 \mathrm{~A} 125 \mathrm{~V} \mathrm{AC} \\ & 1 \mathrm{~A} 30 \mathrm{~V} \text { DC } \end{aligned}$	-
AgNi alloy + Au-clad contact	$\begin{aligned} & 1.23 \mathrm{~N}, 1.27 \mathrm{~N} \\ & 1.76 \mathrm{~N}, 1.96 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 0.1 \mathrm{~A} 125 \mathrm{~V} \mathrm{AC} \\ & 0.1 \mathrm{~A} 30 \mathrm{~V} \text { DC } \end{aligned}$	5 mA 6 V DC 2 mA 12 V DC 1 mA 24 V DC
Long stroke type AgNi alloy + Au-clad contact	2.45 N	$\begin{aligned} & 0.1 \mathrm{~A} 125 \mathrm{~V} \text { AC } \\ & 0.1 \mathrm{~A} 30 \mathrm{~V} \text { DC } \end{aligned}$	5 mA 6 V DC 2 mA 12 V DC 1 mA 24 V DC

ABJ1,2,3,4,5

2. Characteristics

Mechanical life (O.T.: Specified value)	Leaf lever, Long stroke type	Min. 5×10^{5} (at 60 cpm)
	Wire leads (right \& left side type)	Min. 3×10^{5} (at 60 cpm)
	Other types	Min. 10^{6} (at 60 cpm$)$
Electrical life at rated load (O.T.: max.)	AgNi alloy contact type	Min. 3×10^{4} (at 20 cpm)
	AgNi alloy + Au-clad contact type	Min. 10^{5} (at 20 cpm)
Insulation resistance		Min. $100 \mathrm{M} \Omega$ (at 500 V DC insulation resistance meter)
Dielectric strength Between non-continuous terminals Between each terminal and other exposed metal parts Between each terminal and ground		600 Vrms 1,500 Vrms 1,500 Vrms
Vibration resistance (pin plunger type)		10 to 55 Hz at single amplitude of 0.75 mm (contact opening max. 1 ms)
Shock resistance (pin plunger type)		Min. $294 \mathrm{~m} / \mathrm{s}^{2}\{30 \mathrm{G}\}$ (contact opening max. 1 ms)
Contact resistance (initial)	Ag contact type	Dust protected type (IP50): Max. $50 \mathrm{~m} \Omega$ Immersion protected type (IP67): Max. $100 \mathrm{~m} \Omega$ (by voltage drop 1 A 6 to 8 V DC)
	Au-clad contact type	Dust protected type (IP50): Max. $100 \mathrm{~m} \Omega$ Immersion protected type (IP67): Max. $150 \mathrm{~m} \Omega$ (by voltage drop 0.1 A 6 to 8 V DC)
Allowable operating speed (at no load)		1 to $500 \mathrm{~mm} / \mathrm{s}$
Max. operating cycle rate (at no load)		Other type: 120 cpm Long stroke type: 60 cpm
Ambient temperature		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Unit weight		Approx. 0.5 g (IP50 type)
Water resistance		IP67 (wire leads type)

3. Operating characteristics

Type of actuator		8th digit of part no.	Operating force, max.	Release force, min.	Pretravel, max. mm	Movement differential, max. mm	Overtravel, min. mm	Operating position, mm
Pin plunger		4	1.23 N	0.15 N	0.6	0.12	0.25	Mounting hole: 1.2 5.5 ± 0.2 Mounting hole: 2.3 7.0 ± 0.2
		6	1.96 N	$0.25 N$				
Hinge lever		4	0.39 N	0.029 N	3.0	0.5	0.5	Mounting hole: 1.2 6.8 ± 1.0 Mounting hole: 2.3 8.3 ± 1.0
		6	0.64 N	0.049 N				
Simulated roller lever		4	0.39 N	0.029 N	3.0	0.5	0.5	Mounting hole: 1.2 9.8 ± 1.0 Mounting hole: 2.3 11.3 ± 1.0
		6	0.64 N	0.049 N				
Roller lever		4	0.39 N	0.029 N	3.0	0.5	0.5	Mounting hole: 1.2 13.1 ± 1.0 Mounting hole: 2.3 14.6 ± 1.0
		6	0.64 N	0.049 N				
Leaf lever	Wire leads bottom type	4	0.98 N	0.20N	6.0	1.0	2.5	Mounting hole: 3.0 16.0 ± 2.0
		6	1.27 N	0.29 N	6.0	1.0	2.5	Mounting hole: 3.0 16.0 ± 2.0
	Wire leads side type	4	1.76 N	0.26 N	2.6	0.5	1.4	Fixed pin type 10.7 ± 0.7 Mounting hole: 3.0 16.25 ± 0.7
		6	1.27 N	0.22N	2.6	0.5	1.4	Fixed pin type 10.7 ± 0.7 Mounting hole: 3.0 16.25 ± 0.7
Long stroke type		7	2.45 N	0.20 N	-	0.5	2.0	2.5 ± 0.4

Note: The O.P. differs between the 1.2 mm and 2.3 mm dia. mounting hole types.

DIMENSIONS

1. Dust protected type

Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

1-(1) PC board terminal
Mounting hole 1.2 mm type
Pin plunger
CAD Data

Pretravel, max. mm	0.6	
Movement differential, max. mm	0.12	
Overtravel, Min. mm	0.25	
Operating position	Distance from mounting hole, mm	5.5 ± 0.2
	Distance from stand-off, mm	7 ± 0.3

Hinge lever
CAD Data

Pretravel, max. mm	3.0	
Movement differential, max. mm	0.5	
Overtravel, min. mm	0.5	
Operating position	Distance from mounting hole, mm	6.8 ± 1.0
	Distance from stand-off, mm	8.3 ± 1.2

Simulated roller lever

CAD Data

Pretravel, max. mm	3.0	
Movement differential, max. mm	0.5	
Overtravel, min. mm	0.5	
Operating position	Distance from mounting hole, mm	9.8 ± 1.0
	Distance from stand-off, mm	11.3 ± 1.2

Roller lever

CAD Data

Pretravel, max. mm	3.0	
Movement differential, max. mm	0.5	
Overtravel, min. mm	0.5	
Operating position	Distance from mounting hole, mm	13.1 ± 1.0
	Distance from stand-off, mm	14.6 ± 1.0

Pin plunger

CAD Data

Mounting hole: 1.2 mm

Mounting hole: 2.3 mm

Remarks: Dimensions of the actuator type are the same as corresponding PC board terminal types.

2. Immersion protected type

2-(1) Bottom wire leads type
Pin plunger

Thickness of the lead wire: $0.3 \mathrm{~mm}^{2}$ UL/CSA approved type AWG22
Color of the lead wire:
COM... Black
N.C. ... Red
N.O. ... White

Mounting hole: 2.3 mm

Thickness of the lead wire: $0.3 \mathrm{~mm}^{2}$ UL/CSA approved type: AWG22
Color of the lead wire:
COM...Black
N.C. ...Red
N.O. ... White

Remarks: 1. As for M1.2 type, other dimensions are the same as those of corresponding PC board terminal types.
As for M2.3 type, other dimensions are the same as those of corresponding solder terminal types.
2. Dimensions of the actuator type are the same as those of corresponding PC board terminal types.

Leaf lever
Mounting hole: 3 mm
CAD Data

Pretravel, max. mm	6.0
Movement differential, max. mm	1.0
Overtravel, min mm	2.5
Operating position	Distance from mounting hole, mm

2-(2) Side wire leads type
Fixed pin type
Right side pin type
Right wire leads type

CAD Data

Pretravel, max. mm	2.6
Movement differential, max. mm	0.5
Overtravel, min mm 1.4 Operating position Distance from mounting hole, mm	10.7 ± 0.7

Left wire leads type

Pretravel, max. mm	2.6
Movement differential, max. mm	0.5
Overtravel, min mm 1.4 Operating position Distance from mounting hole, mm	10.7 ± 0.7

Left side pin type

Right wire leads type

CAD Data

Pretravel, max. mm	2.6
Movement differential, max. mm	0.5
Overtravel, min mm 1.4 Operating position Distance from mounting hole, mm	10.7 ± 0.7

Left side pin type Left wire leads type

CAD Data

Pretravel, max. mm	2.6
Movement differential, max. mm	0.5
Overtravel, min mm 1.4 Operating position Distance from mounting hole, mm	10.7 ± 0.7

CAD Data

Pretravel, max. mm	2.6
Movement differential, max. mm	0.5
Overtravel, min mm Operating positionDistance from mounting hole, mm	16.25 ± 0.7

3. Immersion protected type (bottom wire leads type) Long stroke type

Mounting hole: 2.3 mm

CAD Data

Movement differential, max. mm	0.5
Overtravel, min mm	2.0
Operating position	2.5 ± 0.4

Panasonic ideas for life

HIGH ENVIRONMENTAL RESISTANCE

FEATURES

- Subminiature size ($19.8 \times 11.1 \times 6.4 \mathrm{~mm}$)
- Sealed construction for use in adverse environment. Sealed construction by epoxy resin and rubber cap greatly reduces possible miscontact due to contaminants such as dust. Conforming to IP67* of IEC protective construction classification
- Elastomer double molding technology, an industry first and ultrasonic swaging technology contribute to uniform sealing in high production quantities
- Expansion of low-level circuit type
- We offer a Au-clad 2-ply contact type (for small loads) that we developed specifically for small current and voltage loads in the range of 1 mA to 100 mA and 5 V to 30 V .
- ULICSA/VDE/SEMKO approved
(AS for Au-clad twin layer, VDE and SEMKO are not approved.)
* Based on the protective construction classification of IEC, items which satisfy the test requirements are denoted with an IP designation.

TYPICAL APPLICATIONS

- Automotive
- Home appliances (vacuum cleaner, air purifier)
- Others (gas cooking range)

ORDERING INFORMATION

Remarks: 1. Standard packing: Dust protected type 100 pcs./carton, 1,000 pcs./case; Immersion protected type 50 pcs./case.
2. SPST-NC and SPST-NO are only available for wire leads type.
3. Leaf lever is only available for wire leads type
4. As for wire position:

Straight type

Wire opposite to the actuator side type (Right angle)

Wire actuator side type (Left angle)
5. Not every combination is available. Please refer to the following table, "PRODUCT TYPES".

* Contact

0 : AgNi alloy

1: Au-clad triple layer

4: Au-clad double layer

CONTACT ARRANGEMENT

1. SPDT

2. SPST-NC (wire leads type only)

3. SPST-NO (wire leads type only)

PRODUCT TYPES

1. Dust protected type

AgNi alloy

Actuator	Operating force max.	.110 quick-connect terminal	Solder terminal	PC board terminal		
				Terminal position		
				Straight	Right angle	Left angle
Pin plunger	0.98 N	ABS1110403	ABS1410403	ABS1510403	ABS4510403	ABS5510403
	1.47 N	ABS1110503	ABS1410503	ABS1510503	ABS4510503	ABS5510503
Short hinge lever	0.39 N	ABS1111403	ABS1411403	ABS1511403	ABS4511403	ABS5511403
	0.59 N	ABS1111503	ABS1411503	ABS1511503	ABS4511503	ABS5511503
Hinge lever	0.34 N	ABS1112403	ABS1412403	ABS1512403	ABS4512403	ABS5512403
	0.54 N	ABS1112503	ABS1412503	ABS1512503	ABS4512503	ABS5512503
Long hinge lever	0.25 N	ABS1113403	ABS1413403	ABS1513403	ABS4513403	ABS5513403
	0.44 N	ABS1113503	ABS1413503	ABS1513503	ABS4513503	ABS5513503
Simulated roller lever	0.34 N	ABS1114403	ABS1414403	ABS1514403	ABS4514403	ABS5514403
	0.54 N	ABS1114503	ABS1414503	ABS1514503	ABS4514503	ABS5514503
Roller lever	0.39 N	ABS1116403	ABS1416403	ABS1516403	ABS4516403	ABS5516403
	0.59 N	ABS1116503	ABS1416503	ABS1516503	ABS4516503	ABS5516503

Au-clad triple layer

Actuator	Operating force max.	.110 quick-connect terminal	Solder terminal	PC board terminal		
				Terminal position		
				Straight	Right angle	Left angle
Pin plunger	0.98 N	ABS1110413	ABS1410413	ABS1510413	ABS4510413	ABS5510413
	1.47 N	ABS1110513	ABS1410513	ABS1510513	ABS4510513	ABS5510513
Short hinge lever	0.39 N	ABS1111413	ABS1411413	ABS1511413	ABS4511413	ABS5511413
	0.59 N	ABS1111513	ABS1411513	ABS1511513	ABS4511513	ABS5511513
Hinge lever	0.34 N	ABS1112413	ABS1412413	ABS1512413	ABS4512413	ABS5512413
	0.54 N	ABS1112513	ABS1412513	ABS1512513	ABS4512513	ABS5512513
Long hinge lever	0.25 N	ABS1113413	ABS1413413	ABS1513413	ABS4513413	ABS5513413
	0.44 N	ABS1113513	ABS1413513	ABS1513513	ABS4513513	ABS5513513
Simulated roller lever	0.34 N	ABS1114413	ABS1414413	ABS1514413	ABS4514413	ABS5514413
	0.54 N	ABS1114513	ABS1414513	ABS1514513	ABS4514513	ABS5514513
Roller lever	0.39 N	ABS1116413	ABS1416413	ABS1516413	ABS4516413	ABS5516413
	0.59 N	ABS1116513	ABS1416513	ABS1516513	ABS4516513	ABS5516513

Au-clad double layer

Actuator	Operating force max.	.110 quick-connect terminal	Solder terminal	PC board terminal		
				Terminal position		
				Straight	Right angle	Left angle
Pin plunger	0.98 N	ABS1110449	ABS1410449	ABS1510449	ABS4510449	ABS5510449
	1.47 N	ABS1110549	ABS1410549	ABS1510549	ABS4510549	ABS5510549
Short hinge lever	0.39 N	ABS1111449	ABS1411449	ABS1511449	ABS4511449	ABS5511449
	0.59 N	ABS1111549	ABS1411549	ABS1511549	ABS4511549	ABS5511549
Hinge lever	0.34 N	ABS1112449	ABS1412449	ABS1512449	ABS4512449	ABS5512449
	0.54 N	ABS1112549	ABS1412549	ABS1512549	ABS4512549	ABS5512549
Long hinge lever	0.25 N	ABS1113449	ABS1413449	ABS1513449	ABS4513449	ABS5513449
	0.44 N	ABS1113549	ABS1413549	ABS1513549	ABS4513549	ABS5513549
Simulated roller lever	0.34 N	ABS1114449	ABS1414449	ABS1514449	ABS4514449	ABS5514449
	0.54 N	ABS1114549	ABS1414549	ABS1514549	ABS4514549	ABS5514549
Roller lever	0.39 N	ABS1116449	ABS1416449	ABS1516449	ABS4516449	ABS5516449
	0.59 N	ABS1116549	ABS1416549	ABS1516549	ABS4516549	ABS5516549

[^2]ABS1,4,5

2. Immersion protected type (3 wire leads type SPDT)

AgNi alloy

Actuator	Operating force max.	SPDT		
		Wire position		
		Straight	Right angle	Left angle
Pin plunger	0.98 N	ABS161040	ABS461040	ABS561040
	1.47 N	ABS161050	ABS461050	ABS561050
Short hinge lever	0.39 N	ABS161140	ABS461140	ABS561140
	0.59 N	ABS161150	ABS461150	ABS561150
Hinge lever	0.34 N	ABS161240	ABS461240	ABS561240
	0.54 N	ABS161250	ABS461250	ABS561250
Long hinge lever	0.25 N	ABS161340	ABS461340	ABS561340
	0.44 N	ABS161350	ABS461350	ABS561350
Simulated roller lever	0.34 N	ABS161440	ABS461440	ABS561440
	0.54 N	ABS161450	ABS461450	ABS561450
Roller lever	0.39 N	ABS161640	ABS461640	ABS561640
	0.59 N	ABS161650	ABS461650	ABS561650

Au-clad triple layer

Actuator	Operating force max.	SPDT		
		Wire position		
		Straight	Right angle	Left angle
Pin plunger	0.98 N	ABS161041	ABS461041	ABS561041
	1.47 N	ABS161051	ABS461051	ABS561051
Short hinge lever	0.39 N	ABS161141	ABS461141	ABS561141
	0.59 N	ABS161151	ABS461151	ABS561151
Hinge lever	0.34 N	ABS161241	ABS461241	ABS561241
	0.54 N	ABS161251	ABS461251	ABS561251
Long hinge lever	0.25 N	ABS16141	ABS46141	ABS56141
	0.44 N	ABS16151	ABS46151	ABS56151
Simulated roller lever	0.34 N	ABS161441	ABS461441	ABS561441
	0.54 N	ABS161451	ABS461451	ABS561451
Roller lever	0.39 N	ABS161641	ABS461641	ABS561641
	0.59 N	ABS161651	ABS461651	ABS561651

Au-clad double layer

Actuator	Operating force max.	SPDT		
		Wire position		
		Straight	Right angle	Left angle
Pin plunger	0.98 N	ABS161044	ABS461044	ABS561044
	1.47 N	ABS161054	ABS461054	ABS561054
Short hinge lever	0.39 N	ABS161144	ABS461144	ABS561144
	0.59 N	ABS161154	ABS461154	ABS561154
Hinge lever	0.34 N	ABS161244	ABS461244	ABS561244
	0.54 N	ABS161254	ABS461254	ABS561254
Long hinge lever	0.25 N	ABS161344	ABS461344	ABS561344
	0.44 N	ABS161354	ABS461354	ABS561354
Simulated roller lever	0.34 N	ABS161444	ABS461444	ABS561444
	0.54 N	ABS161454	ABS461454	ABS561454
Roller lever	0.39 N	ABS161644	ABS461644	ABS561644
	0.59 N	ABS161654	ABS461654	ABS561654

* Agency standard: Please refer to "Ordering information".

3. Immersion protected type (2 wire leads type SPST-NC)

AgNi alloy

Actuator	Operating force max.	SPST-NC		
		Wire position		
		Straight	Right angle	Left angle
Pin plunger	0.98 N	ABS162040	ABS462040	ABS562040
	1.47 N	ABS162050	ABS462050	ABS562050
Short hinge lever	0.39 N	ABS162140	ABS462140	ABS562140
	0.59 N	ABS162150	ABS462150	ABS562150
Hinge lever	0.34 N	ABS162240	ABS462240	ABS562240
	0.54 N	ABS162250	ABS462250	ABS562250
Long hinge lever	0.25 N	ABS162340	ABS462340	ABS562340
	0.44 N	ABS162350	ABS462350	ABS562350
Simulated roller lever	0.34 N	ABS162440	ABS462440	ABS562440
	0.54 N	ABS162450	ABS462450	ABS562450
Roller lever	0.39 N	ABS162640	ABS462640	ABS562640
	0.59 N	ABS162650	ABS462650	ABS562650

Au-clad triple layer

Actuator	Operating force max.	SPST-NC		
		Wire position		
		Straight	Right angle	Left angle
Pin plunger	0.98 N	ABS162041	ABS462041	ABS562041
	1.47 N	ABS162051	ABS462051	ABS562051
Short hinge lever	0.39 N	ABS162141	ABS462141	ABS562141
	0.59 N	ABS162151	ABS462151	ABS562151
Hinge lever	0.34 N	ABS162241	ABS462241	ABS562241
	0.54 N	ABS162251	ABS462251	ABS562251
Long hinge lever	0.25 N	ABS162341	ABS462341	ABS562341
	0.44 N	ABS162351	ABS462351	ABS562351
Simulated roller lever	0.34 N	ABS162441	ABS462441	ABS562441
	0.54 N	ABS162451	ABS462451	ABS562451
Roller lever	0.39 N	ABS162641	ABS462641	ABS562641
	0.59 N	ABS162651	ABS462651	ABS562651

Au-clad double layer

Actuator	Operating force max.	SPST-NC		
		Wire position		
		Straight	Right angle	Left angle
Pin plunger	0.98 N	ABS162044	ABS462044	ABS562044
	1.47 N	ABS162054	ABS462054	ABS562054
Short hinge lever	0.39 N	ABS162144	ABS462144	ABS562144
	0.59 N	ABS162154	ABS462154	ABS562154
Hinge lever	0.34 N	ABS162244	ABS462244	ABS562244
	0.54 N	ABS162254	ABS462254	ABS562254
Long hinge lever	0.25 N	ABS162344	ABS462344	ABS562344
	0.44 N	ABS162354	ABS462354	ABS562354
Simulated roller lever	0.34 N	ABS162444	ABS462444	ABS562444
	0.54 N	ABS162454	ABS462454	ABS562454
Roller lever	0.39 N	ABS162644	ABS462644	ABS562644
	0.59 N	ABS162654	ABS462654	ABS562654

[^3]ABS1,4,5

4. Immersion protected type (2 wire leads type SPST-NO)

AgNi alloy

Actuator	Operating force max.	SPST-NO		
		Wire position		
		Straight	Right angle	Left angle
Pin plunger	0.98 N	ABS163040	ABS463040	ABS563040
	1.47 N	ABS163050	ABS463050	ABS563050
Short hinge lever	0.39 N	ABS163140	ABS463140	ABS563140
	0.59 N	ABS163150	ABS463150	ABS563150
Hinge lever	0.34 N	ABS163240	ABS463240	ABS563240
	0.54 N	ABS163250	ABS463250	ABS563250
Long hinge lever	0.25 N	ABS163340	ABS463340	ABS563340
	0.44 N	ABS163350	ABS463350	ABS563350
Simulated roller lever	0.34 N	ABS163440	ABS463440	ABS563440
	0.54 N	ABS163450	ABS463450	ABS563450
Roller lever	0.39 N	ABS163640	ABS463640	ABS563640
	0.59 N	ABS163650	ABS463650	ABS563650

Au-clad triple layer

Actuator	Operating force max.	SPST-NO		
		Wire position		
		Straight	Right angle	Left angle
Pin plunger	0.98 N	ABS163041	ABS463041	ABS563041
	1.47 N	ABS163051	ABS463051	ABS563051
Short hinge lever	0.39 N	ABS163141	ABS463141	ABS563141
	0.59 N	ABS163151	ABS463151	ABS563151
Hinge lever	0.34 N	ABS163241	ABS463241	ABS563241
	0.54 N	ABS163251	ABS463251	ABS563251
Long hinge lever	0.25 N	ABS163341	ABS463341	ABS563341
	0.44 N	ABS163351	ABS463351	ABS563351
Simulated roller lever	0.34 N	ABS163441	ABS463441	ABS563441
	0.54 N	ABS163451	ABS463451	ABS563451
Roller lever	0.39 N	ABS163641	ABS463641	ABS563641
	0.59 N	ABS163651	ABS463651	ABS563651

Au-clad double layer

Actuator	Operating force max.	SPST-NO		
		Wire position		
		Straight	Right angle	Left angle
Pin plunger	0.98 N	ABS163044	ABS463044	ABS563044
	1.47 N	ABS163054	ABS463054	ABS563054
Short hinge lever	0.39 N	ABS163144	ABS463144	ABS563144
	0.59 N	ABS163154	ABS463154	ABS563154
Hinge lever	0.34 N	ABS163244	ABS463244	ABS563244
	0.54 N	ABS163254	ABS463254	ABS563254
Long hinge lever	0.25 N	ABS163344	ABS463344	ABS563344
	0.44 N	ABS163354	ABS463354	ABS563354
Simulated roller lever	0.34 N	ABS163444	ABS463444	ABS563444
	0.54 N	ABS163454	ABS463454	ABS563454
Roller lever	0.39 N	ABS163644	ABS463644	ABS563644
	0.59 N	ABS163654	ABS463654	ABS563654

* Agency standard: Please refer to "Ordering information".

5. Immersion protected type (3 wire leads type SPDT)

- Leaf lever type

AgNi alloy

Actuator	Operating force max.		SPDT			
		Sire position				
Right angle					\quad Left angle	Straight
:---						

Au-clad triple layer

Actuator	Operating force max.	SPDT		
		Wire position		
		Straight	Right angle	Left angle
Leaf lever	0.88 N	ABS161841	ABS461841	ABS561841
	1.08 N	ABS161851	ABS461851	ABS561851
Au-clad double layer				
Actuator	Operating force max.	SPDT		
		Wire position		
		Straight	Right angle	Left angle
Leaf lever	0.88 N	ABS161844	ABS461844	ABS561844
	1.08 N	ABS161854	ABS461854	ABS561854

6. Immersion protected type (2 wire leads type SPST-NC)

- Leaf lever type

AgNi alloy

Actuator	Operating force max.	SPST-NC		
		Wire position		
		Straight	Right angle	Left angle
Leaf lever	0.88 N	ABS162840	ABS462840	ABS562840
	1.08 N	ABS162850	ABS462850	ABS562850
Au-clad triple layer				
Actuator	Operating force max.	SPST-NC		
		Wire position		
		Straight	Right angle	Left angle
Leaf lever	0.88 N	ABS162841	ABS462841	ABS562841
	1.08 N	ABS162851	ABS462851	ABS562851

Au-clad double layer

Actuator	Operating force max.	SPST-NC		
		Wire position		
		Straight	Right angle	Left angle
Leaf lever	0.88 N	ABS162844	ABS462844	ABS562844
	1.08 N	ABS162854	ABS462854	ABS562854

7. Immersion protected type (2 wire leads type SPST-NO)

- Leaf lever type

AgNi alloy

Actuator	Operating force max.	SPST-NO		
		Wire position		
		Straight	Right angle	Left angle
Leaf lever	0.88 N	ABS163840	ABS463840	ABS563840
	1.08 N	ABS163850	ABS463850	ABS563850
Au-clad triple layer				
Actuator	Operating force max.	SPST-NO		
			Wire position	
		Straight	Right angle	Left angle
Leaf lever	0.88 N	ABS163841	ABS463841	ABS563841
	1.08 N	ABS163851	ABS463851	ABS563851

[^4]ABS1,4,5
Au-clad double layer

Actuator	Operating force max. gf	SPST-NO		
		Wire position		
		Straight	Right angle	Left angle
Leaf lever	0.88 N	ABS163844	ABS463844	ABS563844
	1.08 N	ABS163854	ABS463854	ABS563854

* Agency standard: Please refer to "Ordering information".

SPECIFICATIONS

1. Contact rating

Voltage	AgNi alloy contact type		Au-clad contact type	
			Au-clad triple layer	Au-clad double layer
	Resistive load	Inductive load	Resistive load	
125 V AC	2 A	2 A	0.1 A	-
250 V AC	2 A	2 A	0.1 A	-
30 V DC	2 A	2 A	0.1 A	0.1 A
125 V DC	0.4 A	0.05 A	-	-

Low-level circuit rating (Au-clad contact type)

Rated voltage	Resistive load
6 V DC	5 mA
12 V DC	2 mA
24 V DC	1 mA

2. Characteristics

Recommended contact material chart classified by load voltage \& current (reference)

Remarks: If the contact is being used in the constant low-level circuit load range, the Au-clad double layer contact is recommended. If there is a danger of the current being less than 0.5 A , for instance if the contact is being turned on and off, the Au-clad triple layer type is recommended.

Mechanical life (O.T.: Specified value)	Leaf lever	Min. 5×10^{5} (at 60 cpm)
	Other types	Min. 5×10^{6} (at 60 cpm)
Electrical life at rated load (O.T.: Max.)	AgNi alloy contact type	Min. 5×10^{4} (at 20 cpm)
	Au-clad contact type	Min. 2×10^{5} (at 20 cpm)
Insulation resistance		Min. $100 \mathrm{M} \Omega$ (at 500 V DC insulation resistance meter)
Dielectric strength Between non-continuous terminals Between each terminal and other exposed metal parts Between each terminal and ground		1,000 Vrms 1,500 Vrms $1,500 \mathrm{Vrms}$
Vibration resistance (pin plunger type)		10 to 55 Hz at single amplitude of 0.75 mm (contact opening max. 1 ms)
Shock resistance (pin plunger type)		Min. $294 \mathrm{~m} / \mathrm{s}^{2}$ (contact opening max. 1 ms)
Contact resistance (initial)	AgNi alloy contact type	Dust protected type (IP50): Max. $50 \mathrm{~m} \Omega$ Immersion protected type (IP67): Max. $100 \mathrm{~m} \Omega$ (by voltage drop 1 A 6 to 8 V DC)
	Au-clad contact type	Dust protected type (IP50): Max. $100 \mathrm{~m} \Omega$ (by voltage drop 0.1 A 6 to 8 V DC) Immersion protected type (IP67): Max. $150 \mathrm{~m} \Omega$
Allowable operating speed (at no load)		0.1 to $500 \mathrm{~mm} / \mathrm{s}$
Max. operating cycle rate (at no load)		120 cpm
Ambient temperature		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Unit weight		Approx. 2 g (IP50 type)
Water resistance		IP67 (wire leads type)

3. Operating characteristics

Type of actuator 8th digit of part no.	Operating force, max.		Release force, min.		Pretravel, max. mm	Movement differential, max. mm	Overtravel, min. mm	Operating position, mm
Pin plunger	0.98 N	1.47 N	0.15 N	0.20 N		0.1	0.4	8.4 ± 0.3
Short hinge lever	0.39 N	0.59 N	0.034 N	0.039 N	2.5	0.5	0.8	8.8 ± 0.8
Hinge lever	0.34 N	0.54 N	0.029 N	0.034 N	2.8	0.8	1.2	8.8 ± 0.8
Long hinge lever	0.25 N	0.44 N	0.025 N	0.029 N	3.5	1.0	1.6	8.8 ± 1.2
Simulated roller lever	0.34 N	0.54 N	0.029 N	0.034 N	2.8	0.8	1.2	11.65 ± 0.8
Roller lever	0.39 N	0.59 N	0.034 N	0.039 N	2.5	0.5	0.8	14.5 ± 0.8
Leaf lever	0.88 N	1.08 N	0.17 N	0.20 N	4.5	1.0	2.5	14.5 ± 1.5

DIMENSIONS

1. Dust protected type

mm General tolerance: ± 0.25
1-(1) . 110 quick-connect terminal
Pin plunger

CAD Data

Pretravel, max. mm	0.6	
Movement differential, max. mm	0.1	
Overtravel, min. mm	0.4	
Operating position	Distance from mounting hole, mm	8.4 ± 0.3
	Distance from stand-off, mm	11.8 ± 0.4

Short hinge lever

CAD Data

Pretravel, max. mm	2.5	
Movement differential, max. mm	0.5	
Overtravel, min. mm	0.8	
Operating position	Distance from mounting hole, mm	8.8 ± 0.8
	Distance from stand-off, mm	12.2 ± 0.9

Hinge lever

CAD Data

Pretravel, max. mm	2.8	
Movement differential, max. mm	0.8	
Overtravel, Min. mm	1.2	
Operating position	Distance from mounting hole, mm	8.8 ± 0.8
	Distance from stand-off, mm	12.2 ± 0.9

Long hinge lever

Pretravel, max. mm		3.5
Movement differential, max. mm		1
Overtravel, min. mm		1.6
Operating position	Distance from mounting hole, mm	8.8 ± 1.2
	Distance from stand-off, mm	12.2 ± 1.3

CAD Data

Pretravel, max. mm	2.8	
Movement differential, max. mm	0.8	
Overtravel, min. mm	1.2	
Operating position	Distance from mounting hole, mm	Distance from stand-off, mm

Roller lever

CAD Data

Pretravel, max. mm		2.5
Movement differential, max. mm		0.5
Overtravel, min. mm		0.8
Operating position	Distance from mounting hole, mm	14.5 ± 0.8
	Distance from stand-off, mm	17.9 ± 0.9

1-(2) Solder terminal

CAD Data

1-(3) PC board terminal

Straight type

CAD Data

Remarks: Dimensions of the actuator types are the same as those of corresponding .110 quick-connect terminal types.

Remarks: Dimensions of the actuator types are the same as those of corresponding .110 quick-connect terminal types.

Left angle type

CAD Data

Remarks: Dimensions of the actuator types are the same as those of corresponding .110 quick-connect terminal types.

2. Immersion protected type

Wire leads
Pin plunger
Straight type

CAD Data

Thickness of the lead wire: $0.5 \mathrm{~mm}^{2}$
UL/CSA approved type and Right/Left angle type: AWG \#20
Color of the lead wire:
COM...Black
N.C. ...Red
N.O. ... White

Remarks: 1. Other dimensions are the same as those of .110 quick-connect terminal types.
2. Dimensions of the actuator types are the same as those of corresponding . 110 quickconnect terminal types.

Right angle type

Left angle type

CAD Data

Thickness of the lead wire: $0.5 \mathrm{~mm}^{2}$
UL/CSA approved type and Right/Left angle type: AWG \#20
Color of the lead wire:
COM...Black
N.C. ...Red
N.O. ... White

Right angle type

Left angle type

Panasonic

 ideas for life

HIGH ENVIRONMENTAL RESISTANCE

TURQUOISE SWITCHES ABVTYPE

FEATURES

- Miniature size ($33 \times 15.9 \times 10.3 \mathrm{~mm}$)
- Sealed construction for use in adverse environment-Sealed construction by epoxy resin and rubber cap greatly reduces possible miscontact due to contaminants such as dust. Conforming to IP67* of IEC protective construction classification
- Elastomer double molding technology, an industry first and ultrasonic swaging technology contribute to uniform sealing in high production quantities
- ULICSA/VDE/SEMKO approved
* Based on the protective construction classification of IED, items which satisfy the test requirements are denoted with an IP designation.

TYPICAL APPLICATIONS

- Automotive
- Agricultural devices
- Industrial equipment

ORDERING INFORMATION

Remarks: 1. Standard packing: Dust protected type 50 pcs./carton, 500 pcs./case; Immersion protected type 50 pcs./case. 2. Not every combination is available. Please refer to the following table, "PRODUCT TYPES".

CONSTRUCTION

.187 quick-connect terminal Wire leads

CONTACT ARRANGEMENT

1. SPDT

2. SPST-NC

3. SPST-NO

APPLICABLE CURRENT RANGE (reference only)

	 AgNi alloy AgNi alloy + Au clad 15 V 15 V				
PRODUCT TYPES					
Contact	Actuator	Contact Arrangement	Operating force, max.	187 Quick-connect terminal	Wire Leads
AgNi alloy	Pin plunger	SPDT	0.98 N	ABV1210403	ABV1610403
			1.96 N	ABV1210503	ABV1610503
		SPST-NC	0.98 N	ABV1220403	ABV1620403
			1.96 N	ABV1220503	ABV1620503
		SPST-NO	0.98 N	ABV1230403	ABV1630403
			1.96 N	ABV1230503	ABV1630503
	Hinge lever	SPDT	0.59 N	ABV1212403	ABV1612403
			1.18 N	ABV1212503	ABV1612503
		SPST-NC	0.59 N	ABV1222403	ABV1622403
			1.18 N	ABV1222503	ABV1622503
		SPST-NO	0.59 N	ABV1232403	ABV1632403
			1.18 N	ABV1232503	ABV1632503
	Simulated roller lever	SPDT	0.59 N	ABV1214403	ABV1614403
			1.18 N	ABV1214503	ABV1614503
		SPST-NC	0.59 N	ABV1224403	ABV1624403
			1.18 N	ABV1224503	ABV1624503
		SPST-NO	0.59 N	ABV1234403	ABV1634403
			1.18 N	ABV1234503	ABV1634503
	Short roller lever	SPDT	1.08 N	ABV1215403R	ABV1615403R
			2.16 N	ABV1215503R	ABV1615503R
		SPST-NC	1.08 N	ABV1225403R	ABV1625403R
			2.16 N	ABV1225503R	ABV1625503R
		SPST-NO	1.08 N	ABV1235403R	ABV1635403R
			2.16 N	ABV1235503R	ABV1635503R
	Roller lever	SPDT	0.59 N	ABV1216403	ABV1616403
			1.18 N	ABV1216503	ABV1616503
		SPST-NC	0.59 N	ABV1226403	ABV1626403
			1.18 N	ABV1226503	ABV1626503
		SPST-NO	0.59 N	ABV1236403	ABV1636403
			1.18 N	ABV1236503	ABV1636503

AgNi alloy + Au-clad

Contact	Actuator	Contact Arrangement	Operating force, max.	187 Quick-connect terminal	Wire Leads
AgNi alloy + Au-clad	Pin plunger	SPDT	0.98 N	ABV1210413	ABV1610413
			1.96 N	ABV1210513	ABV1610513
		SPST-NC	0.98 N	ABV1220413	ABV1620413
			1.96 N	ABV1220513	ABV1620513
		SPST-NO	0.98 N	ABV1230413	ABV1630413
			1.96 N	ABV1230513	ABV1630513
	Hinge lever	SPDT	0.59 N	ABV1212413	ABV1612413
			1.18 N	ABV1212513	ABV1612513
		SPST-NC	0.59 N	ABV1222413	ABV1622413
			1.18 N	ABV1222513	ABV1622513
		SPST-NO	0.59 N	ABV1232413	ABV1632413
			1.18 N	ABV1232513	ABV1632513
	Simulated roller lever	SPDT	0.59 N	ABV1214413	ABV1614413
			1.18 N	ABV1214513	ABV1614513
		SPST-NC	0.59 N	ABV1224413	ABV1624413
			1.18 N	ABV1224513	ABV1624513
		SPST-NO	0.59 N	ABV1234413	ABV1634413
			1.18 N	ABV1234513	ABV1634513
	Short roller lever	SPDT	1.08 N	ABV1215413R	ABV1615413R
			2.16 N	ABV1215513R	ABV1615513R
		SPST-NC	1.08 N	ABV1225413R	ABV1625413R
			2.16 N	ABV1225513R	ABV1625513R
		SPST-NO	1.08 N	ABV1235413R	ABV1635413R
			2.16 N	ABV1235513R	ABV1635513R
	Roller lever	SPDT	0.59 N	ABV1216413	ABV1616413
			1.18 N	ABV1216513	ABV1616513
		SPST-NC	0.59 N	ABV1226413	ABV1626413
			1.18 N	ABV1226513	ABV1626513
		SPST-NO	0.59 N	ABV1236413	ABV1636413
			1.18 N	ABV1236513	ABV1636513

SPECIFICATIONS

1. Contact rating

Type	Standard rating	Low-level rating
AgNi alloy + Au-clad contact	$3 \mathrm{~A} \mathrm{250} \mathrm{V} \mathrm{AC} \mathrm{(O.F} 1.96 \mathrm{~N})$.	5 mA 6 V DC
	$1 \mathrm{~A} \mathrm{250} \mathrm{V} \mathrm{AC} \mathrm{(O.F} 0.98 \mathrm{~N})$.	2 mA 12 VDC
	$5 \mathrm{~A} \mathrm{250} \mathrm{V} \mathrm{AC} \mathrm{(O.F} 1.96 \mathrm{~N})$.	1 mA 24 V DC

2. Characteristics

Mechanical life (O.T.: Specified value)	Min. 5×10^{6} (at 60 cpm)
Electrical life \quad Nominal rating (O.T.: Max.)	Min. 10^{5} (at 20 cpm$)^{* 1}$
Low-level rating (O.T.: Specified value)	Min. 10^{6} (at 20 cpm)
Insulation resistance	Min. $100 \mathrm{M} \Omega$ (at 500 V DC insulation resistance meter)
Dielectric strength Between non-continuous terminals Between each terminal and other exposed metal parts Between each terminal and ground	1,000 Vrms 2,000 Vrms 2,000 Vrms
Vibration resistance	10 to 55 Hz at single amplitude of 0.75 mm (contact opening: max. 1 ms)
Shock resistance	Min. $294 \mathrm{~m} / \mathrm{s}^{2}$ (contact opening: max. 1 ms)
AgNi alloy contact type	Dust protected type (IP50): max. $50 \mathrm{~m} \Omega$ Immersion protected type (IP67): max. $100 \mathrm{~m} \Omega$ (by voltage drop 1A 6 to 8V DC)
AgNi alloy + Au-clad contact type	Dust protected type (IP50): max. $50 \mathrm{~m} \Omega$ Immersion protected type (IP67): max. $100 \mathrm{~m} \Omega$ (by voltage drop 0.1A 6 to 8 V DC)
Allowable operating speed (at no load)	1 to $500 \mathrm{~mm} / \mathrm{s}$
Max. operating cycle rate (at no load)	120 cpm
Ambient temperature (at no load)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Unit weight	Approx. 7 g (IP50 type)
Water resistance	IP67 (wire leads type)

Note: *1 O.F. 0.98 N type is $\operatorname{Min} 5 \times 10^{5}$ (at 20 com)

3. Operating characteristics

Type of actuator 8th digit of part no.	Operating force, max.		Release force, min.		Pretravel, max. $m m$	Movement differential, max. mm	Overtravel, min. mm	Operating position, mm
Pin plunger	1.96 N	0.98 N	0.39 N	0.25 N		0.4	0.8	14.7 ± 0.6
Hinge lever	1.18 N	0.59 N	0.13 N	0.098 N	3.2	1.2	1.2	15.3 ± 1.2
Simulated roller lever	1.18 N	0.59 N	0.13 N	0.098 N	3.2	1.2	1.2	18.5 ± 1.2
Short roller lever	2.16 N	1.08 N	0.39 N	0.20 N	1.6	0.5	0.8	20.7 ± 0.8
Roller lever	1.18 N	0.59 N	0.13 N	0.098 N	3.2	1.2	1.2	20.7 ± 1.2

DIMENSIONS

Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

1. Dust protected type
mm General tolerance: ± 0.4
1-(1). 187 quick-connect terminal
Pin plunger

Pretravel, max. mm	1.6
Movement differential, max. mm	0.4
Overtravel, min. mm	0.8
Operating position, mm	14.7 ± 0.6

Pretravel, max. mm	3.2
Movement differential, max. mm	1.2
Overtravel, min. mm	1.2
Operating position, mm	15.3 ± 1.2

Pretravel
3.2 max.

Pretravel, max. mm	3.2
Movement differential, max. mm	1.2
Overtravel, min. mm	1.2
Operating position, mm	18.5 ± 1.2

Short roller lever CAD Data

Pretravel, max. mm	1.6
Movement differential, max. mm	0.5
Overtravel, min. mm	0.8
Operating position, mm	20.7 ± 0.8

Roller lever

CAD Data

Pretravel, max. mm	3.2
Movement differential, max. mm	1.2
Overtravel, min. mm	1.2
Operating position, mm	20.7 ± 1.2

2. Immersion protected type

Wire Leads
CAD Data

Remarks: Dimensions of the actuator types are the same as those of corresponding solder and .110 quick-connect terminal types.

Thickness of the lead wire: Standard type: $0.75 \mathrm{~mm}^{2}$ UL/CSA approved type: AWG \#18 Color of the lead wire
COM ...black
N.C. ...red
N.O. ...white

Turquoise switches

High-Environmental-Resistance-Turquoise-Colored-Seal-Switches

Against dust, gas and water

Elastomer double molding technology, an industry first, and ultrasonic swaging technology contribute to uniform sealing in high production quantities IP67 type (immersion protected) Broad lineup: J, S and V models make up over 1,000 types.

ABS (S type)

- Available
Lineup

Size	Type	Terminal						$\begin{aligned} & \text { U. } \\ & \text { N} \\ & 0 \\ & \hline 0 \\ & \hline \end{aligned}$	Actuator								
			PC board														
				$\begin{aligned} & \frac{0}{0} \\ & \frac{5}{4} \end{aligned}$													
J	Terminals	\bullet	\bullet					Au, Ag	\bullet	\bullet			\bullet	\bullet			M1.2
type	Wire leads						\bullet	Au, Ag	\bullet	\bullet			\bullet	\bullet		\bullet	M2.3, M3
S	Terminals	\bullet	\bullet	\bullet	\bullet			Au, Ag	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet			M23
type	Wire leads						\bullet	Au, Ag	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet		\bullet	M2.3
V	Terminals					\bullet		Au, Ag	\bullet	\bullet			\bullet	\bullet	\bullet		
type	Wire leads						\bullet	Au, Ag	\bullet	\bullet			\bullet	\bullet	\bullet		

Ultrasonic swaging process
The rubber cap is securely sealed to the switch cover during an ultrasonic swaging process.

Cross section of the rubber cap

Cross section of wire leads type
Protective grade of body: IP67
Dust and immersion protected type

Elastomer: Elastic thermoplastic resin

The industry's first elastomer double molding technology is used to mold the elastomer to the switch body. A reliable seal of the body and cover is achieved.

- Construction

The dust protected type (IP50) and the immersion protected type (IP67) pass the following tests, respectively. The immersion protected type is especially tested to check for the entry of water after soaking for a certain period of time. Avoid operation where they are immersed in water.

[Test conditions]

- Dust protected type (IP50)

The powder circulation pump may be replaced by other means suitable to maintain the talcum powder in suspension in a closed test chamber. The talcum powder used shall be able to pass through a square-meshed sieve the nominal wire diameter of which is $50 \mu \mathrm{~m}$ and the nominal width between wires $75 \mu \mathrm{~m}$.

The amount of talcum powder to be used is 2 kg per cubic metre of the test chamber volume. The duration of the test is 8
hours.

- Immersion protected type (IP67)

The lowest point of enclosures should be least 1 m below the surface of the water. The duration of the test is 30 minutes.

TURQUOISE SWITCHES: IMPORTANT NOTES REGARDING USE

1. Fastening of the switch body
1) Fasten the switch body onto a smooth surface using the correct screw as shown in the chart below and tighten it with the prescribed torque. Be careful not to exceed the prescribed torque when tightening as this may adversely affect the sealing properties and switch functioning, and also cause damage. If using a torque driver, verify that it is set to the prescribed torque. Also, we recommend that you use a spring washer and adhesive to prevent loosening and to lessen the tightening load on the switch.

	Screws	Tightening torque
ABJ	M1.2	Not more than $0.098 \mathrm{~N} \cdot \mathrm{~m}$
	M2.3	Not more than $0.29 \mathrm{~N} \cdot \mathrm{~m}$
	M3.0	Not more than $0.29 \mathrm{~N} \cdot \mathrm{~m}$
ABS	M2.3	Not more than $0.29 \mathrm{~N} \cdot \mathrm{~m}$
ABV	M3.0	Not more than $0.49 \mathrm{~N} \cdot \mathrm{~m}$

2) Fixed pin type

To secure the switch unit, thermally crimp or press-fit the mounting pins. If the pins are to be press-fitted, install a guide on the opposite surface to the mounting pins to prevent them from slipping out of position and developing play.
3) Be sure to maintain adequate insulating clearance between each terminal and ground.
4) The positioning of the switch should be such that direct force is not applied to the push-button or actuator in its free position. The operating force to the pushbutton should only be applied in a perpendicular direction.
5) The standard value of overtravel used should be within the range of 70% to 100% of the rated O.T. value.
6) When soldering the V-type turquoise switch or the immersion protected type of the J and S type switches, the sealing material sometimes forms a lump or bulge at the base of the terminal or lead. Be sure to allow enough space for this when attaching the switch.

2. Soldering operations

1) Manual soldering: use soldering irons (max. $350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F}$) capable of temperature adjustment. This is to prevent deterioration due to soldering heat. Care should be taken not to apply force to the terminals during soldering. Specifications

	Wattage	Soldering time
ABJ	18 W	Within 3 seconds
ABS	60 W	Within 3 seconds
ABV	60 W	Within 5 seconds

2) Terminal portions should not be moved within 1 minute after soldering.

3. Variance of operating

 characteristicsAllow for up to $\pm 20 \%$ variation of the specified characteristics values to compensate for long term operational wear of the switch in your design.
4. Cautions regarding use

1) When switching inductive loads (relays, solenoids, buzzers, etc.), an arc absorbing circuit is recommended to protect the contacts.
2) If switching of the contact is synchronized with the phase of the AC power, reduced electrical life or welded contact may occur. Therefore, test the switch while it is operating under actual loads for this condition. If found, you may wish to take corrective action in your design.
3) In the following operating condition, the electrical life might be greatly reduced depending upon the switching load.
Please consult us before use.

- Switching operation at a high or low speed (near limits specified).

4) If the build up of dust or dirt becomes so severe that it requires the use of the attached lever, there is the concern that the flexible part may be impeded and return movement may not be possible. In this situation take the following precautions:

- Select a product number for a switch with a higher operation load or use a leaf type lever.
- Attach a protective cover to the lever.

5) If the leaf lever type switch is excessively pushed (pushed further than the operational limit position) or switching is done at high speed or is accompanied by the impact, the lever will break. Please be careful. Also, be careful with the BV short roller lever type switch as improper return may result from pressing too much.

5. Protection from dust, water and corrosive gas

1) The pin button and the space around the body cap Turquoise switches are sealed with elastic material, the terminal portion is integrally molded. This prevents dust entry and protects the switch against corrosive gases. Wireleaded types are recommended for applications subject to water or oil splash. However, avoid soaking these immersion protected types in oil or water, because they types are not of completely oil tight construction.
2) Take care that breathing actions don't allow water vapor to get inside during opening and closing or cause rapid temperature changes.
3) Keep away from environments where silicon based adhesives, oil or grease are present as faulty contacts may result from silicon oxide. Do not use in areas where flammable or explosive gases from gasoline and thinner, etc., may be present.

- Dust protection test

Test conditions:
Dust-protected IP50 switches ...
Repeatedly pass pure talc powder through a standard wire sieve with a $75 \mu \mathrm{~m}$ nominal diameter so that the talc is suspended in the air around the switch area. Two kilograms of talc powder should be suspended for each cubic meter of laboratory space. The talc suspension should then be left for eight hours.

- Hydrogen sulfide exposure test Test conditions: Concentration: 3 ppm
Temperature: $40^{\circ} \mathrm{C} 104^{\circ} \mathrm{F}$ Humidity: 75\% RH

- Waterproof test

Test conditions:
Immersion protected IP67 switches ... Submerge at 1 m below the water surface for 30 minutes.

Notes for Turquoise Switches

6. Oil-proof and chemical-proof characteristics

The rubber elastomer swells when exposed to oil and chemicals. The extent of swelling will vary widely depending on the type and amount of oil and chemicals. Check with the actual oil or chemicals used.
In particular, be aware that solvents such as freon, chlorine, and toluene cannot be used.

7. Washability (ABJ and ABS)

The Turquoise switch terminal with lead wires type and without lead wires typeshare the same main body. As a result, if the print board terminal type satisfies the set conditions, then it can undergo a complete cleaning after automatic soldering. After soldering is completed, perform cleaning within the prescribed temperature and time range, and pay careful attention to the following points.

1) Perform proper temperature, time, drying control in the cleaning process in order to prevent absorption of the liquid due to respiratory action. Be particularly careful that all the water droplets in the switch area are cleaned off in the final drying process.
2) Some cleaning liquids (solvents) may harm the rubber parts. Use water or a weak alkaline water solution.
3) Ultrasonic cleaning methods may damage the internal components or contacts. Use immersion or shower cleaning methods. In addition to the above points, the use of automatic cleaning equipment is particularly recommended for easy control of the process temperature and time. The recommended cleaning conditions for the Turquoise switches are shown below. However, please evaluate the actual cleaning process to verify its suitability for the switch.

REFERENCE

1. Dust-protected type

This type of construction prevents dust that is large enough to have an effect on operation from getting inside the unit. This construction is stipulated by protective classes against solid matter in the IEC standards (IEC60529). Test conditions: The switch is left for eight hours in a test chamber with a constant level of floating pure talc that has passed through a standard $75 \mu \mathrm{~m}$ sieve, in a concentration of 2 kg of talc per cubic meter of volume in the test chamber.

2. Immersion-protected type

This type of construction prevents any harmful effects even after the device is left underwater at a depth of 1 m for 30 minutes. This construction is stipulated by protective classes against water in the
IEC standards (IEC60529).

3. IEC's IP Codes

The IEC (International Electrotechnical Commission) has defined the IP characteristic code that represents the levels of protection described in IEC standard (IEC60529). The two numbers that follow the IP code (the characteristics numbers) indicate the suitability of this protection for all environmental conditions.

- Level of Protection Indicated by the 1st Characteristics Number

1st Characteristics Number	Protection level (IEC60529/Solid matter) 0 No protection
1	Protected against solid matter larger than 50mm
2	Protected against solid matter larger than 12mm
3	Protected against solid matter larger than 2.5mm
4	Protected against solid matter larger than 1.0mm
5	Dust-protected type Prevents dust that is large enough to have an effect on operation from getting inside the unit
6	Dust-resistant type Prevents dust from getting inside the unit

Recommended Cleaning Method

- Level of Protection Indicated by the 2nd Characteristics Number

JIS C0920	2nd Characteristics Number	Protection level (IEC60529/Liquid matter)
	0	No protection
Dropletprotected type I	1	Protected against water droplets that fall perpendicular to the unit
Dropletprotected type II	2	Protected against water droplets that fall from within 15° of perpendicular to the unit
Rainprotected type	3	Protected against water droplets that fall from within 60° of perpendicular to the unit
Splashprotected type	4	Protected against water that splashes on the unit from any direction
Sprayprotected type	5	Free from adverse effects even if sprayed directly with water from any direction
Waterresistant type	6	Protected against water sprayed directly on the unit from any direction
Immersionprotected type	7	Water does not get inside of the unit when submerged in water according to the specified conditions
Underwater type	8	Unit can be used underwater

Note: Details of test conditions are the same as JIS C 0920. Please refer to them.

HIGH CONTACT CAPACITY, PRECISE OPERATION

FEATURES

-10 A High current switching capacity and high precision

- Wide allowance of operating speed
- Versatile variety of actuators
- ULIC-UL approved

TYPICAL APPLICATION

- General industrial machinery
- Medical equipment
- Measuring instruments
- Transportation equipment
- Home electric appliances

ORDERING INFORMATION

Type of switch	Upper body cover shape \& terminal			Basic specifications	Actuators	Contact
NZ basic (AM1) switch	1: Flat, solder terminal 3: Flat, screw terminal 5: Grooved, solder terminal 7: Grooved, screw terminal	Flat	r shape Grooved	0: Standard type 0: Pin plunger 1: Oil tight type 1: Hinge lever (leaf spring) 3: Reversed 3: Hinge roller lever (roller, leaf, spring) action type 4: Hinge short roller lever 4: One way type 5: Overtravel plunger 6: Compact overtravel plunger 7: Panel mount plunger 811: Panel mount roller plunger 812: Panel mount cross roller plunger		F: Cadmium free

Remarks: Not every combination is available. Please refer to the following table, "PRODUCT TYPES".

TERMINAL VARIATION

Standard types, reversed action types and oil tight types are available in two terminal designs, solder and screw terminals, as shown in the above columns:
Differences in dimension between solder and screw terminals are as follows;
Solder terminal

Screw terminal

Terminal plate

PRODUCT TYPES

1. Standard type

Actuator	Solder terminal	Screw terminal
Pin plunger	AM1100F	AM1300F
Over travel plunger	AM1105F	AM1305F
Compact over travel plunger	AM1106F	AM1306F
Panel mount plunger	AM1107F	AM1307F
Panel mount roller plunger	AM110811F	AM130811F
Panel mount cross roller plunger	AM110812F	AM130812F
Flexible leaf lever	AM1101F	AM1301F
Flexible roller leaf lever	AM1103F	AM1303F
Hinge lever	AM1501F	AM1701F
Hinge short roller lever	AM1504F	AM1704F
Hinge roller lever	AM1503F	AM1703F
One way type•hinge short roller lever	AM1544F	AM1744F
One way type•hinge roller lever	AM1543F	AM1743F
Reversed action type•hinge lever	AM1531F	AM1731F
Reversed action type•hinge short roller lever	AM1534F	AM1734F
Reversed action type•hinge roller lever	AM1533F	AM1733F
2. Oil tight types		
	Solder terminal	Screw terminal
Hinge lever	AM1511F	AM1711F
Hinge short roller lever	AM1514F	AM1714F
Hinge roller lever	AM1513F	AM1713F

Remarks: 1. Standard part number indicates UL/C-UL mark.
2. Standard packing for inner carton: 20 cps .

SPECIFICATIONS

1. Contact Rating

Type	Voltage	Resistive load ($\cos \phi=1$)	$\begin{aligned} & \text { Inductive load } \\ & (\cos \phi=0.6 \text { to } 0.7) \end{aligned}$	Motor or lamp load	
				N.C.	N.O.
Standard types One way types Reversed action types	125 V AC	10 A	6 A	3 A	1.5 A
	250 V AC	10 A	6 A	2 A	1 A
	480 V AC	1 A	0.5 A	-	-
	125 V DC	0.5 A	0.05 A	-	-
	250 V DC	0.25 A	0.03 A	-	-
Oil tight types	125 V AC	10 A	6 A	3 A	1.5 A
	250 V AC	10 A	6 A	2 A	1.0 A
	125 V DC	0.5 A	0.05 A	-	-

2. Characteristics

Item				
Expected life	Mechanical	Pin plunger types (O.T.: specified value)		Min. $2 \times 10^{7}(60 \mathrm{cpm}$) (at rated overtravel)
:---				
(oil tight: Min. 1.5×10^{6})				

AM1

OPERATING CHARACTERISTICS

Standard types

Types of actuator	Pin plunger	Overtravel plunger	Compact overtravel plunger	Panel mount plunger
Operating force, max.	3.63 N			
Release force, min.	1.12 N			
Pretravel, max. mm	0.4			
Movement differential, max. mm	0.05			
Overtravel, min. mm	0.13	1.5	1.5	5.6
Operating position, mm	15.9 ± 0.4	28.2 ± 0.5	21.2 ± 0.5	21.8 ± 0.8

Types of actuator	Panel mount roller plunger	Panel mount cross roller plunger	Flexible leaf lever	Flexible roller leaf lever
Operating force, max.	3.63 N	1.47 N		
Release force, min.	1.12 N	0.14 N		
Pretravel, max. mm	0.4	4		
Movement differential, max. mm	0.05	1.3		
Overtravel, min. mm	3.6	1.6		
Operating position, mm	33.3 ± 1.2	17.5 ± 0.8		

Types of actuator	Hinge lever	Hinge short roller lever	Hinge roller lever
Operating force, max.	0.69 N	1.57 N	0.98 N
Release force, min.	0.14 N	0.42 N	0.2 N
Pretravel, max. mm	10	4.5	7.5
Movement differential, max. mm	1.3	0.7	1.3
Overtravel, min. mm	5.6	2.4	3.6
Operating position, mm	19.1 ± 0.7	30.2 ± 0.4	30.2 ± 0.7
One way types			
Types of actuator	Hinge short roller lever	Hinge roller lever	
Operating force, max.	2.23 N	1.67 N	
Release force, min.	0.42 N	0.42 N	
Pretravel, max. mm	3.5	4.5	
Movement differential, max. mm	0.4	0.5	
Overtravel, min. mm	1.5	2.4	
Free position, max. mm	31.8	43.3	
Operating position, mm	30.2 ± 0.4	41.3 ± 0.4	

Reversed action types

Types of actuator	Hinge lever	Hinge short roller lever	Hinge roller lever
Operating force, max.	1.67 N	5.30 N	2.35 N
Release force, min.	0.27 N	1.67 N	0.56 N
Pretravel, max. mm	5.0	2.5	3.6
Movement differential, max. mm	0.9	0.4	0.7
Overtravel, min. mm	5.6	2.0	4.0
Operating position, mm	19.1 ± 0.8	30.2 ± 0.5	30.2 ± 0.8

Oil tight types

Types of actuator	Hinge lever	Hinge short roller lever	Hinge roller lever
Operating force, max.	0.69 N	1.67 N	0.98 N
Release force, min.	0.14 N	0.42 N	0.20 N
Pretravel, max. mm	10	4.5	7.5
Movement differential, max. mm	1.5	0.7	1.3
Overtravel, min. mm	5.6	2.4	3.6
Operating position, mm	19.1 ± 0.7	30.2 ± 0.4	30.2 ± 0.7

DIMENSIONS

1. Standard types

Pin plunger

CAD Data

AM1100F (solder terminal)
AM1300F (screw terminal)

Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

mm General tolerance: ± 0.4

Operating force, max.	3.63 N
Release force, min.	1.12 N
Pretravel, max. mm	0.4
Movement differential, max. mm	0.05
Overtravel, min. mm	0.13
Operating position, mm	15.9 ± 0.4

Overtravel plunger

CAD Data

AM1105F (solder terminal) AM1305F (screw terminal)

Operating force, max.	3.63 N
Release force, min.	1.12 N
Pretravel, max. mm	0.4
Movement differential, max. mm	0.05
Overtravel, min. mm	1.5
Operating position, mm	28.2 ± 0.5

Compact over plunger

CAD Data

AM1106F (solder terminal) AM1306F (screw terminal)

Operating force, max.	3.63 N
Release force, min.	1.12 N
Pretravel, max. mm	0.4
Movement differential, max. mm	0.05
Overtravel, min. mm	1.5
Operating position, mm	21.2 ± 0.5

Panel mount plunger

CAD Data

AM1107F (solder terminal) AM1307F (screw terminal)

Operating force, max.	3.63 N
Release force, min.	1.12 N
Pretravel, max. mm	0.4
Movement differential, max. mm	0.05
Overtravel, min. mm	5.6
Operating position, mm	21.8 ± 0.8

Operating force, max.	3.63 N
Release force, min.	1.12 N
Pretravel, max. mm	0.4
Movement differential, max. mm	0.05
Overtravel, min. mm	3.6
Operating position, mm	33.3 ± 1.2

Panel mount cross roller plunger

CAD Data

AM110812F (solder terminal) AM130812F (screw terminal)

Operating force, max.	3.63 N
Release force, min.	1.12 N
Pretravel, max. mm	0.4
Movement differential, max. mm	0.05
Overtravel, min. mm	3.6
Operating position, mm	33.3 ± 1.2

Dimensions and Operating characteristics are the same as those of Panel mount roller plunger type. However, the roller joins the switch body at an angle of 90°.

Flexible leaf lever

CAD Data

AM1101F (solder terminal) AM1301F (screw terminal)

Flexible roller leaf lever

CAD Data

AM1103F (solder terminal) AM1303F (screw terminal)

Operating force, max.	1.47 N
Release force, min.	0.14 N
Pretravel, max. mm	4
Movement differential, max. mm	1.3
Overtravel, min. mm	1.6
Operating position, mm	28.6 ± 0.8

AM1501F (solder terminal) AM1701F (screw terminal)

Hinge short roller lever

CAD Data

AM1504F (solder terminal) AM1704F (screw terminal)

Operating force, max.	1.57 N
Release force, min.	0.42 N
Pretravel, max. mm	4.5
Movement differential, max. mm	0.7
Overtravel, min. mm	2.4
Operating position, mm	30.2 ± 0.4

Hinge roller lever

CAD Data

AM1503F (solder terminal)
AM1703F (screw terminal)

Operating force, max.	0.98 N
Release force, min.	0.2 N
Pretravel, max. mm	7.5
Movement differential, max. mm	1.3
Overtravel, min. mm	3.6
Operating position, mm	30.2 ± 0.7

2. One way types

This type is operated only to one direction, not to the reversed direction by the construction of the roller lever, pivoting away from the cam on the return stroke. Hinge short roller lever

CAD Data

AM1544F (solder terminal) AM1744F (screw terminal)

(solder terminal)
AM1743F (screw terminal)

Roller 9.5 dia.x4: Plastic	Operating force, max.	1.67 N
Release force, min.	0.42 N	
Pretravel, max. mm	4.5	
Movement differential, max. mm	0.5	
Overtravel, min. mm	2.4	
Operating position, mm	41.3 ± 0.4	

3. Reversed action types

When the actuator is operated, the switching mechanism returns to the free position. Extraordinary force by pushing the plunger too much is not put on the switching mechanism, which means stability in life.
Hinge lever

CAD Data

AM1531F (solder terminal) AM1731F (screw terminal)

Hinge short roller lever

AM1534F (solder terminal) AM1734F (screw terminal)

Operating force, max.	1.67 N
Release force, min.	0.27 N
Pretravel, max. mm	5.0
Movement differential, max. mm	0.9
Overtravel, min. mm	5.6
Operating position, mm	19.1 ± 0.8

Operating force, max.	5.30 N
Release force, min.	1.67 N
Pretravel, max. mm	2.5
Movement differential, max. mm	0.4
Overtravel, min. mm	2.0
Operating position, mm	30.2 ± 0.5

Hinge roller lever

CAD Data

4. Oil tight types

mm General tolerance: ± 0.4
The push-button part is sealed with the rubber cap and the connected part between the cap and body is also coated with resin sohat these parts are kept away from foreign matters. This type has resistance to oil.
Hinge lever

CAD Data

AM1511F (solder terminal) AM1711F (screw terminal)

Hinge short roller lever

CAD Data

AM1514F (solder terminal) AM1714F (screw terminal)

Hinge roller lever

CAD Data

AM1513F (solder terminal)
AM1713F (screw terminal)

Operating force, max.	0.98 N
Release force, min.	0.20 N
Pretravel, max. mm	7.5
Movement differential, max. mm	1.3
Overtravel, min. mm	3.6
Operating position, mm	30.2 ± 0.7

NOTES

1. Regarding fastening of switch body
1) In fastening the switch body, use M4 mounting screws to attach switches with the torque $1.5 \mathrm{~N} \cdot \mathrm{~m}$ or less.
2) After mounting and wiring, the insulation distance between ground and each terminal should be confirmed as sufficient.
2. Adjustment of the operating device The operating device should be positioned so that it applies no stress to the push-button or actuator when the switch is in the open position. If this condition is exceeded, the mechanical and electrical performance will be
impaired. In addition, the force applied by the operating device should be in a perpendicular direction. Even if the pushbutton is used in the full total travel position, there will be no influence on the life of the switch.

3. Soldering operations

Soldering should be done in less than 5 seconds, with a 60 watt iron (tip temperature $=350^{\circ} \mathrm{C}$ max.). Care should be taken not to apply force to the terminal during soldering.

4. Avoid using switches in the following conditions:

- In corrosive gases such as hydrogen sulfide.
- In flammable or explosive gases such as gasoline or thinner etc.
- In a dusty environment.
- In an ambient humidity over 85%.
- In conditions where the perpendicular operating speed is less than $0.1 \mathrm{~mm} / \mathrm{s}$ or more than $1,000 \mathrm{~mm} / \mathrm{s}$
- In a silicon atmosphere.

5. Others

Caution should be taken not to drop switches.

Standard type contact gap is 1 mm . Please consult us if you need more than 1 mm contact gap.

FEATURES

- High precision as a result of designing ideal spring by using computer analysis
O.P. $14.7 \pm 0.4 \mathrm{~mm}$
- Reliable design with shock resistance $\mathbf{m i n} .980 \mathrm{~m} / \mathrm{s}^{2}$
- High inrush resistance 160A
- Wide variety of contact ratings and terminal types
- ULIC-UL, ENEC/VDE approved

Protection grade: IP40

TYPICAL APPLICATION

- Home appliances
- Vending machines
- Amusement and communication equipment
- Copies
- General industrial machines

CONSTRUCTION

1. Ag alloy contact 2. Au-clad contact

CONTACT ARRANGEMENT

TERMINALS
. 187 Quick-connect terminal . 187 Quick-connect/solder terminal Bottom COM terminal

Side COM terminal

Dimensions
. 187 Quick-connect terminal

Dimensions
. 187 Quick-connect/solder terminal

. 250 Quick-connect terminal Bottom COM terminal

Side COM terminal

Dimensions

OPERATION FORCE CHART

Actuator	Operation Force, max. by actuator				
	7th digit of part number	3	4	5	6
Pin plunger	0.49 N	0.98 N	1.96 N	2.94 N	
Short hinge lever	0.59 N	1.08 N	2.16 N	3.14 N	
Hinge lever	0.29 N	0.59 N	1.18 N	4.12 N	
Long hinge lever	0.15 N	0.29 N	0.59 N	0.77 N	
Simulated roller lever	0.29 N	0.59 N	1.18 N	2.35 N	
Short roller lever	0.59 N	1.08 N	2.16 N	1.77 N	
Roller lever	0.29 N	0.59 N	1.18 N	2.14 N	

ORDERING INFORMATION

0.1A type

Remarks: 1. Not every combination is available. Please refer to the table, "PRODUCT TYPES".
2. Please refer to the Standard Chart regarding Agency Standard

6A type

Remarks: 1. Not every combination is available. Please refer to the table, "PRODUCT TYPES". 2. Please refer to the Standard Chart regarding Agency Standard

11A type

Remarks: 1. Not every combination is available. Please refer to the table, "PRODUCT TYPES".
2. Please refer to the Standard Chart regarding Agency Standard

16A type

Remarks: 1. Not every combination is available. Please refer to the table, "PRODUCT TYPES".
2. Please refer to the Standard Chart regarding Agency Standard

PRODUCT TYPES

0.1A type (AgNi alloy + Au-clad contact)

. 187 Quick-connect terminal

1) Bottom COM terminal

Actuator	Operating force, max.	Contact arrangement	Contact arrangement	
		SPDT	SPST-NC	SPST-NO
Pin plunger	0.49 N	AM50010C33	AM50020C33	AM50030C33
	0.98 N	AM50010C43	AM50020C43	AM50030C43
	1.96 N	AM50010C53	AM50020C53	AM50030C53
Short hinge lever	0.59 N	AM50011C33	AM50021C33	AM50031C33
	1.08 N	AM50011C43	AM50021C43	AM50031C43
	2.16 N	AM50011C53	AM50021C53	AM50031C53
Hinge lever	0.29 N	AM50012C33	AM50022C33	AM50032C33
	0.59 N	AM50012C43	AM50022C43	AM50032C43
	1.18 N	AM50012C53	AM50022C53	AM50032C53
Long hinge lever	0.15 N	AM50013C33	AM50023C33	AM50033C33
	0.29 N	AM50013C43	AM50023C43	AM50033C43
	0.59 N	AM50013C53	AM50023C53	AM50033C53
Simulated roller lever	0.29 N	AM50014C33	AM50024C33	AM50034C33
	0.59 N	AM50014C43	AM50024C43	AM50034C43
	1.18 N	AM50014C53	AM50024C53	AM50034C53
Short roller lever	0.59 N	AM50015C33	AM50025C33	AM50035C33
	1.08 N	AM50015C43	AM50025C43	AM50035C43
	2.16 N	AM50015C53	AM50025C53	AM50035C53
Roller lever	0.29 N	AM50016C33	AM50026C33	AM50036C33
	0.59 N	AM50016C43	AM50026C43	AM50036C43
	1.18 N	AM50016C53	AM50026C53	AM50036C53

2) Side COM terminal

Actuator	Operating force, max.	Contact arrangement	Contact arrangement	
		SPDT	SPST-NC	SPST-NO
Pin plunger	0.49 N	AM50040C33	AM50050C33	AM50060C33
	0.98 N	AM50040C43	AM50050C43	AM50060C43
	1.96 N	AM50040C53	AM50050C53	AM50060C53
Short hinge lever	0.59 N	AM50041C33	AM50051C33	AM50061C33
	1.08 N	AM50041C43	AM50051C43	AM50061C43
	2.16 N	AM50041C53	AM50051C53	AM50061C53
Hinge lever	0.29 N	AM50042C33	AM50052C33	AM50062C33
	0.59 N	AM50042C43	AM50052C43	AM50062C43
	1.18 N	AM50042C53	AM50052C53	AM50062C53
Long hinge lever	0.15 N	AM50043C33	AM50053C33	AM50063C33
	0.29 N	AM50043C43	AM50053C43	AM50063C43
	0.59 N	AM50043C53	AM50053C53	AM50063C53
Simulated roller lever	0.29 N	AM50044C33	AM50054C33	AM50064C33
	0.59 N	AM50044C43	AM50054C43	AM50064C43
	1.18 N	AM50044C53	AM50054C53	AM50064C53
Short roller lever	0.59 N	AM50045C33	AM50055C33	AM50065C33
	1.08 N	AM50045C43	AM50055C43	AM50065C43
	2.16 N	AM50045C53	AM50055C53	AM50065C53
Roller lever	0.29 N	AM50046C33	AM50056C33	AM50066C33
	0.59 N	AM50046C43	AM50056C43	AM50066C43
	1.18 N	AM50046C53	AM50056C53	AM50066C53

[^5]AM5

6A type (AgNi alloy contact)

. 187 Quick-connect terminal

1) Bottom COM terminal

Actuator	Operating force, max.	Contact arrangement	Contact arrangement	
		SPDT	SPST-NC	SPST-NO
Pin plunger	0.49 N	AM50610C33	AM50620C33	AM50630C33
Short hinge lever	0.59 N	AM50611C33	AM50621C33	AM50631C33
Hinge lever	0.29 N	AM50612C33	AM50622C33	AM50632C33
Long hinge lever	0.15 N	AM50613C33	AM50623C33	AM50633C33
Simulated roller lever	0.29 N	AM50614C33	AM50624C33	AM50634C33
Short roller lever	0.59 N	AM50615C33	AM50625C33	AM50635C33
Roller lever	0.29 N	AM50616C33	AM50626C33	AM50636C33
2) Side COM terminal				
Actuator	Operating force, max.	Contact arrangement	Contact arrangement	
		SPDT	SPST-NC	SPST-NO
Pin plunger	0.49 N	AM50640C33	AM50650C33	AM50660C33
Short hinge lever	0.59 N	AM50641C33	AM50651C33	AM50661C33
Hinge lever	0.29 N	AM50642C33	AM50652C33	AM50662C33
Long hinge lever	0.15 N	AM50643C33	AM50653C33	AM50663C33
Simulated roller lever	0.29 N	AM50644C33	AM50654C33	AM50664C33
Short roller lever	0.59 N	AM50645C33	AM50655C33	AM50665C33
Roller lever	0.29 N	AM50646C33	AM50656C33	AM50666C33

Remarks: Also 187 Quick-connect/solder terminal is available. When ordering, change the eighth digit of part number C to A . <ex.> . 187 Quick-connect terminal . 187 Quick-connect/solder terminal AM50610C33 $\rightarrow \quad$ AM50610A33

11A type (AgSnO_{2} alloy contact)
. 187 Quick-connect terminal

1) Bottom COM terminal

Actuator	Operating force, max.	Contact arrangement	Contact arrangement	
		SPDT	SPST-NC	SPST-NO
Pin plunger	0.98 N	AM51110C43N	AM51120C43N	AM51130C43N
Short hinge lever	1.08 N	AM51111C43N	AM51121C43N	AM51131C43N
Hinge lever	0.59 N	AM51112C43N	AM51122C43N	AM51132C43N
Long hinge lever	0.29 N	AM51113C43N	AM51123C43N	AM51133C43N
Simulated roller lever	$0.59 N$	AM51114C43N	AM51124C43N	AM51134C43N
Short roller lever	1.08 N	AM51115C43N	AM51125C43N	AM51135C43N
Roller lever	$0.59 N$	AM51116C43N	AM51126C43N	AM51136C43N

2) Side COM terminal

Actuator	Operating force, max.	Contact arrangement	Contact arrangement	
		SPDT	SPST-NC	SPST-NO
Pin plunger	0.98 N	AM51140C43N	AM51150C43N	AM51160C43N
Short hinge lever	1.08 N	AM51141C43N	AM51151C43N	AM51161C43N
Hinge lever	0.59 N	AM51142C43N	AM51152C43N	AM51162C43N
Long hinge lever	0.29 N	AM51143C43N	AM51153C43N	AM51163C43N
Simulated roller lever	$0.59 N$	AM51144C43N	AM51154C43N	AM51164C43N
Short roller lever	$1.08 N$	AM51145C43N	AM51155C43N	AM51165C43N
Roller lever	$0.59 N$	AM51146C43N	AM51156C43N	AM51166C43N

Remarks: 1. Also 187 Quick-connect/solder terminal is available. When ordering, change the eighth digit of part number C to A .
<ex.> . 187 Quick-connect terminal . 187 Quick-connect/solder terminal

$$
\text { AM51110C43N } \quad \rightarrow \quad \text { AM51110A43N }
$$

2. . 250 Quick-connect terminal is available. When ordering, change the eighth digit of part number C to D. <ex.> . 187 Quick-connect terminal .250 Quick-connect terminal AM51110C43N $\rightarrow \quad$ AM51110D43N

16A type (AgSnO_{2} alloy contact)

. 187 Quick-connect terminal

1) Bottom COM terminal

Actuator	Operating force, max.	Contact arrangement	Contact arrangement	
		SPDT	SPST-NC	SPST-NO
Pin plunger	1.96 N	AM51610C53N	AM51620C53N	AM51630C53N
	2.94 N	AM51610C63N	AM51620C63N	AM51630C63N
	3.92N	AM51610C73N	AM51620C73N	AM51630C73N
Short hinge lever	2.16 N	AM51611C53N	AM51621C53N	AM51631C53N
	3.14 N	AM51611C63N	AM51621C63N	AM51631C63N
	4.12 N	AM51611C73N	AM51621C73N	AM51631C73N
Hinge lever	1.18 N	AM51612C53N	AM51622C53N	AM51632C53N
	1.77 N	AM51612C63N	AM51622C63N	AM51632C63N
	2.35 N	AM51612C73N	AM51622C73N	AM51632C73N
Long hinge lever	0.59 N	AM51613C53N	AM51623C53N	AM51633C53N
	0.88 N	AM51613C63N	AM51623C63N	AM51633C63N
	1.18 N	AM51613C73N	AM51623C73N	AM51633C73N
Simulated roller lever	1.18 N	AM51614C53N	AM51624C53N	AM51634C53N
	1.77 N	AM51614C63N	AM51624C63N	AM51634C63N
	2.35 N	AM51614C73N	AM51624C73N	AM51634C73N
Short roller lever	1.18 N	AM51615C53N	AM51625C53N	AM51635C53N
	3.14 N	AM51615C63N	AM51625C63N	AM51635C63N
	4.12 N	AM51615C73N	AM51625C73N	AM51635C73N
Roller lever	1.18 N	AM51616C53N	AM51626C53N	AM51636C53N
	1.77 N	AM51616C63N	AM51626C63N	AM51636C63N
	2.35 N	AM51616C73N	AM51626C73N	AM51636C73N

2 Side COM terminal

Actuator	Operating force, max.	Contact arrangement	Contact arrangement	
		SPDT	SPST-NC	SPST-NO
Pin plunger	1.96 N	AM51640C53N	AM51650C53N	AM51660C53N
	2.94 N	AM51640C63N	AM51650C63N	AM51660C63N
	3.92 N	AM51640C73N	AM51650C73N	AM51660C73N
Short hinge lever	2.16 N	AM51641C53N	AM51651C53N	AM51661C53N
	3.14 N	AM51641C63N	AM51651C63N	AM51661C63N
	4.12 N	AM51641C73N	AM51651C73N	AM51661C73N
Hinge lever	1.18 N	AM51642C53N	AM51652C53N	AM51662C53N
	1.77 N	AM51642C63N	AM51652C63N	AM51662C63N
	2.35 N	AM51642C73N	AM51652C73N	AM51662C73N
Long hinge lever	0.59 N	AM51643C53N	AM51653C53N	AM51663C53N
	0.88 N	AM51643C63N	AM51653C63N	AM51663C63N
	1.18 N	AM51643C73N	AM51653C73N	AM51663C73N
Simulated roller lever	1.18 N	AM51644C53N	AM51654C53N	AM51664C53N
	1.77 N	AM51644C63N	AM51654C63N	AM51664C63N
	2.35 N	AM51644C73N	AM51654C73N	AM51664C73N
Short roller lever	2.16 N	AM51645C53N	AM51655C53N	AM51665C53N
	3.14 N	AM51645C63N	AM51655C63N	AM51665C63N
	4.12 N	AM51645C73N	AM51655C73N	AM51665C73N
Roller lever	1.18 N	AM51646C53N	AM51656C53N	AM51666C53N
	1.77 N	AM51646C63N	AM51656C63N	AM51666C63N
	2.35 N	AM51646C73N	AM51656C73N	AM51666C73N

[^6]
DATA

Au-clad type
Range of low-level current and voltage

\rightarrow DC voltage (V)

SPECIFICATIONS

1. Contact rating

Type		Voltage	Resistive load $(\cos \phi=1)$	$\begin{gathered} \text { Inductive load } \\ (\cos \phi \approx 0.6 \text { to } 0.7) \end{gathered}$
AgNi alloy + Au-clad contact	0.1A type	250 V AC	0.1A	0.1A
		125 V AC	0.1A	0.1A
		30V DC	0.1A	0.1A
AgNi alloy contact	6A type	250 V AC	6A	3A
		125 V AC	6A	3A
		125 V DC	0.5A	0.5A
AgSnO_{2} alloy contact	11A type	250 V AC	11A	6A
		125 V AC	11A	6A
		125 V DC	0.6A	0.6A
	16A type	250 V AC	16A	10A
		125 V AC	16A	10A
		125 V DC	0.6A	0.6A
AgNi alloy + Au-clad contact for low level circuit		6 V DC	5 mA	-
		12 V DC	2 mA	-
		24 V DC	1 mA	-

Remark: The inductive load for DC should have a time constant of 7 ms or less.

2. Characteristics

Type		16, 11, 6A type	0.1A type
Expected life (min.)	Mechanical	10^{7} operations (at 60 cpm)	
	Electrical	10^{5} Operations (at rated load 20 cpm)	10^{5} operations (at rated load) 2×10^{6} operations (at low-level circuit rating)
Insulation resistance		$100 \mathrm{M} \Omega$ (at 500V DC)	
Dielectric strength	Between terminals	1,000Vrms for 1 min .	
	Between terminals and other exposed metal parts	$2,000 \mathrm{Vrms}$ for 1 min .	
	Between terminals and ground	2,000 Vrms for 1 min .	
Contact resistance (initial)		$50 \mathrm{~m} \Omega$ (by voltage drop at 1 A 6 to 8 V DC)	$50 \mathrm{~m} \Omega$ (by voltage drop at 0.1A 6 to 8 V DC)
Vibration resistance (by pin plunger)		10 to 55 Hz at simple amplitude of 0.75 mm (contact opening: max. 1 ms)	
Shock resistance (by pin plunger) (contact opening: max. 1ms)		O.F. 0.49 N max. type Min. $98 \mathrm{~m} / \mathrm{s}^{2}$ O.F. 0.98 N max. type Min. $196 \mathrm{~m} / \mathrm{s}^{2}$ O.F. 1.96 N to 3.92 N max. type Min . $294 \mathrm{~m} / \mathrm{s}^{2}$	O.F. 0.49N max. type Min. $98 \mathrm{~m} / \mathrm{s}^{2}$ O.F. 0.98 N max. type Min. $196 \mathrm{~m} / \mathrm{s}^{2}$ O.F. 1.96 N max. type Min. $294 \mathrm{~m} / \mathrm{s}^{2}$
Allowable operating speed		0.1 to $1,000 \mathrm{~mm} / \mathrm{s}$ (at pin plunger)	
Maximum operating cycle rate		600cpm	
Ambient temperature		-25 to $+105^{\circ} \mathrm{C}\left(\right.$ not freezing below $0^{\circ} \mathrm{C}$)	
Weight		Approx. 6.3g	
Contact material		6A type: AgNi alloy, 11A and 16A type: AgSnO_{2} alloy	AgNi alloy + Au-clad

[^7]2. OF: Value of pin plunger
3. When switching at low and high speeds or under vibration, or in high-temperature, high-humidity environments, life and performance may be reduced significantly depending on the load capacity. Please consult us.

3. Operating characteristics

1) Pin plunger

7th digit of part no.	3	4	5	6	7
Operating force, max.	0.49 N	0.98 N	1.96 N	2.94N	3.92N
Release force, min.	0.12 N	0.25 N	0.49 N	0.74 N	0.98 N
Pretravel, max. mm			1.4		
Movement differential, max. mm			0.4		
Overtravel, min. mm			1.0		
Operating position mm			14.7 ± 0.4		
2) Short hinge lever					
7th digit of part no.	3	4	5	6	7
Operating force, max.	0.59 N	1.08 N	2.16 N	3.14 N	4.12 N
Release force, min.	0.098N	0.20 N	0.39 N	0.59 N	0.78 N
Pretravel, max. mm	1.6				
Movement differential, max. mm	0.5				
Overtravel, min. mm	0.9				
Operating position mm	15.3 ± 0.5				
3) Hinge lever					
7 th digit of part no.	3	4	5	6	7
Operating force, max.	0.29 N	0.59 N	1.18 N	1.77 N	2.35 N
Release force, min.	0.049 N	0.098 N	0.20 N	0.29 N	0.39N
Pretravel, max. mm			3.2		
Movement differential, max. mm			1.0		
Overtravel, min. mm			1.4		
Operating position mm			15.3 ± 1.0		

7 th digit of part no.	3	4	5	6	7
Operating force, max.	0.15 N	0.29 N	0.59 N	0.88 N	1.18 N
Release force, min.	0.025 N	0.049 N	0.098 N	0.15 N	0.20 N
Pretravel, max. mm	7.5				
Movement differential, max. mm	2.0				
Overtravel, min. mm	2.2				
Operating position mm	15.3 ± 2.6				
5) Simulated roller lever					
7 th digit of part no.	3	4	5	6	7
Operating force, max.	0.29 N	0.59 N	1.18 N	1.77 N	2.35 N
Release force, min.	0.049 N	0.098 N	0.20 N	0.29 N	0.39 N
Pretravel, max. mm			3.2		
Movement differential, max. mm			1.0		
Overtravel, min. mm			1.4		
Operating position mm			18.5 ± 1.0		

6) Short roller lever

7 th digit of part no.	3	4	5	6	7
Operating force, max.	0.59 N	1.08 N	2.16 N	3.14 N	4.12 N
Release force, min.	0.098 N	0.20 N	0.39 N	0.59 N	0.78 N
Pretravel, max. mm	1.6				
Movement differential, max. mm	0.5				
Overtravel, min. mm	0.9				
Operating position mm	20.7 ± 0.5				

7) Roller lever

7th digit of part no.	3	4	5	6	7
Operating force, max.	0.29 N	0.59 N	1.18 N	1.77N	2.35 N
Release force, min.	0.049 N	0.098 N	0.20 N	0.29 N	0.39 N
Pretravel, max. mm	3.2				
Movement differential, max. mm	1.0				
Overtravel, min. mm	1.4				
Operating position mm	20.7 ± 1.0				

DIMENSIONS

187 Quick-connect terminal

mm General tolerance: ± 0.25
Interested in CAD data? You can obtain CAD data for all products with
CAD Data mark from your local Panasonic Electric Works representative.

250 Quick-connect terminal

Side COM terminal

CAD Data

187 Quick-connect terminal

. 250 Quick-connect terminal

2. Short hinge lever

CAD Data

3. Hinge lever

CAD Data

The dimensions other than drawn above are same as pin plunger type.

4. Long hinge lever

CAD Data

The dimensions other than drawn above are same as pin plunger type.

5. Simulated roller lever

CAD Data

The dimensions other than drawn above are same as pin plunger type.

The dimensions other than drawn above are same as pin plunger type.
7. Hinge Roller lever

CAD Data

The dimensions other than drawn above are same as pin plunger type.

NOTES

1. Fastening of the switch body
1) Use flat filister head M3 screws to mount switches with less than a 0.49 $\mathrm{N} \cdot \mathrm{m}$ torque. Use of screws washers or adhesive lock is recommended to prevent loosening of the screws.
2) Check insulation distance between ground and each terminal
3) When the operation object is in the free position, force should not be applied directly to the actuator or pin plunger. Also force should be applied to the pin plunger from vertical direction to the switch.
4) The standard value of overtravel should be the range of 70% to 100% of the rated O.T. value.

2. Soldering operations

Manual soldering should be accomplished within 5 seconds, with max. $350^{\circ} \mathrm{C}$ iron. Care should be taken not to apply force to the terminal during soldering.
Terminal portions must not be moved in min. 1 minute after soldering.
Also no tensile strength of lead wires should be applied to terminals.
3. Varience of operating characteristics
When specifying the switch, allow $+20 \%$ to the listed operating and release forces.

USE OF CONNECTOR

4. Environment

Avoid using the switches in the following conditions;

- In corrosive gases, such as silicon gas
- In a dusty environment

5. For switching of inductive loads
(relays, solenoids, etc.)
1) In order to prevent damage to contacts due to the occurrence of arcing, an arc absorbing circuit should be applied.
2) Care should be taken that occurrence in AC load possibly shorten the expected life.
6. Please assure the quality and reliability of the switch under the actual service condition.
7. It is recommended to use Au-clad contact type in use of low-level circuit rating.
8. Cover and body are press-fitted. Once it is taken apart, it may cause change of characteristics.

The . 187 Quick-connect terminal and . 250 Quick-connect terminal accept the all kinds of 1 polarity connectors and the
"Positive Lock" connectors
Please contact the manufacturers directly.

- receptacle terminal

- "Positive Lock" connector. (equipped with the lock construction of low insertion type)

- Conforms with the IEC950 standards for secondary circuit insulation distance.
Assures a contact gap of at least 1mm
- Can handle high-capacity loads on the secondary side that S-type size switches cannot
- High inrush and hard impacts resistant
- Excellent operating position precision
- ULICSA/VDE/SEMKO/TÜV approved

PRODUCT TYPES

Contact rating: $0.1 \mathrm{~A}, 6 \mathrm{~A}, 11 \mathrm{~A}, 16 \mathrm{~A}$ (250V AC)
Terminal shape: . 187 Quick connect terminal, . 187 Quick connect/solder terminal
For other specifications, please consult us.

DIMENSIONS AND NOTES

Please refer to Standard QV switches catalog for dimensions and notes.

SPECIFICATIONS

- Contact ratings (0.1 to 16 A)

Voltage	Resistive load (cos $\square=1.0)$				Inductive load (cos $\phi \approx 0.6$ to 0.7)			
	0.1 A	6 A	11 A	16 A	0.1 A	6 A	11 A	16 A
250 VAC	0.1 A	6 A	11 A	16 A	0.1 A	3 A	6 A	10 A
125 V AC	0.1 A	6 A	11 A	16 A	0.1 A	3 A	6 A	10 A
125 V DC	0.1 A	0.5 A	0.6 A	0.6 A	0.1 A	0.5 A	0.6 A	0.6 A

- 0.1A type minimum load:

6V DC 5mA (resistive load) 12V DC 2mA (resistive load) 24V DC 1mA (resistive load)

Remark: The inductive load for $D C$ should have a time constant of 7 ms or less.

Please consult us for further information.

LOW LEVEL LOAD SWITCH ($100 \mu \mathrm{~A}$ at 3 V DC)

FEATURES

- Handles low level load $100 \mu \mathrm{~A}$ at 3V DC to 100mA 30V DC [Minimum switching capacity (reference value) $10 \mu \mathrm{~A}$ at 1V DC]
- Ultra-long stroke. For pin plunger type, it maintains an ultra-long stroke O.T. (over travel) with over 2.2 mm on the NO side and over 2.5 mm on the NC side.
- Since contact pressure does not depend on the operation stroke, the range of possible use over the entire stroke is greatly increased.
- Silent operation
- Protection grade: IP40

TYPICAL APPLICATIONS

- Household appliances
(Cover detection of air conditioners and air purifiers for safety purpose. Cover destruction detection of crime prevention devices.)

ORDERING INFORMATION

PRODUCT TYPES

Terminal type (mounting hole: 3mm standard type / 3mm without boss type)

Actuator	Operating force max.	Mounting hole: 3mm standard type	Mounting hole: 3mm without boss type
		Solder terminal	PC board terminal
Pin plunger	1.2 N	AEQ10410	AEQ11510
Leaf lever	1.7 N	AEQ10417	AEQ11517
Simulated leaf lever	1.5 N	AEQ10418	AEQ11518

AEQ1

RATING

1. Rating

$100 \mu \mathrm{~A}$ at 3 V DC to 100 mA 30 V DC.
[Min. switching capacity (reference value*) $10 \mu \mathrm{~A}$ at 1 V DC]

* This value is a rough indication of the lowest possible low level load at which switching is possible.

This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it isecommended to check this with the actual load.

2. Operation environment and conditions

Item	
Ambient and storage temperature	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (no freezing and condensing)
Allowable operating speed	30 to $500 \mathrm{~mm} / \mathrm{s}$
Max. operating cycle rate	120 cpm

Note 1: When switching at low and high speeds or under vibration, or in high-temperature, high-humidity environments, life and erformance may be reduced significantly depending on the load capacity. Please consult us.
Note 2:

3. Electrical characteristics

Dielectric strength (initial)	Between non-continuous terminals: 600 Vrms , Between each terminal and other exposed metal parts: $1,500 \mathrm{Vrms}$, Between each terminal and ground: $1,500 \mathrm{Vrms}$ (at detection current of 1 mA)
Insulation resistance (initial)	Min. $100 \mathrm{M} \Omega$ (at 500 V DC insulation resistance meter, Locations measured same as breakdown voltage.)
Contact resistance (initial)	Max. 1Ω (by voltage drop $0.1 \mathrm{~A}, 6$ to $8 \mathrm{~V} \mathrm{DC)}$

4. Characteristics

	Item	Spe	
Electrical switching life	3 V DC 0.1 mA (resistive load)	Min. 2×10^{5}	Switching frequency: 20 times/min. Conduction ratio: 1:1 Push-button operation speed: $100 \mathrm{~mm} / \mathrm{s}$ Push-button switching position: free position (F.P.) to total travel position (T.T.P.)
	30 V DC 100mA (resistive load)	Min. 10^{5}	
Vibration resistance (malfunction vibration resistance)		Single amplitude: 0.75 mm Amplitude of vibration: 10 to 55 Hz (4 minutes cycle) Direction and time: 2 hours each in X, Y and Z directions	
Shock resistance (malfunction shock resistance)		Shock value: $294 \mathrm{~m} / \mathrm{s}^{2}$ Direction and time: 3 times each in X, Y and Z directions	
Vibration resistance endurance		Frequency of vibration: 33.3 Hz , Acceleration: $43.1 \mathrm{~m} / \mathrm{s}^{2}$ Direction and time: 8 hours each in X, Y and Z directions	
Terminal strength		Min. 6 N (to each direction, applied power at 1 minute) *Terminal deformation possible.	
Salt spray resistance		Density of salt water: 5 \% Temperature: $35^{\circ} \mathrm{C}$ each 100 hours At free position (F.P.) and total travel position (T.T.P.)	
Heat and cold resistance		-45 to $-40^{\circ} \mathrm{C} 48$ hours 85 to $90^{\circ} \mathrm{C} 48$ hours	
Humidity resistance		$40^{\circ} \mathrm{C} 95 \%$ R.H. 96 hours	
Protection grade			

Notes: As long as there are no particular designations, the following conditions apply to the test environment.
Ambient temperature: 5 to $35^{\circ} \mathrm{C}$
Relative humidity: 25 to 85% R.H.
Air pressure: 86 to 106 kPa

5. Operating characteristics

Item		Standard value		
		Pin plunger	Leaf lever	Simulated leaf lever
Operating Force (max. O.F.) *Note 2		1.2 N	1.7 N	1.5 N
Total travel Force (max. T.F.) reference value		(1.8 N)	(3.1 N)	(2.8 N)
Free Position (max. F.P.)	From mounting boss and hole center line	9.2 mm	11.5 mm	14.4 mm
Operating Position on NC side [O.P. (N.C.)] ${ }^{* N o t e} 3$	From mounting boss and hole center line	$8.7 \pm 0.3 \mathrm{~mm}$	$9.8 \pm 0.5 \mathrm{~mm}$	$12.5 \pm 0.5 \mathrm{~mm}$
Operating Position on NO side [O.P. (N.O.)] *Note 4	From mounting boss and hole center line	$8.4 \pm 0.3 \mathrm{~mm}$	$9.3 \pm 0.5 \mathrm{~mm}$	$12.0 \pm 0.5 \mathrm{~mm}$
Release Position on NC side [R.P. (N.C.)] *Note 6	From mounting boss and hole center line	$8.8 \pm 0.3 \mathrm{~mm}$	$10.1 \pm 0.5 \mathrm{~mm}$	$12.9 \pm 0.5 \mathrm{~mm}$
Release Position on NO side [R.P. (N.O.)] *Note 7	From mounting boss and hole center line	$8.5 \pm 0.3 \mathrm{~mm}$	$9.6 \pm 0.5 \mathrm{~mm}$	$12.4 \pm 0.5 \mathrm{~mm}$
Over travel on NC side [min. O.T. (N.C.)]		2.5 mm	3.1 mm	3.3 mm
Over travel on NO side [min. O.T. (N.O.)]		2.2 mm	2.6 mm	2.8 mm
Total Travel Position (T.T.P.) reference value	From mounting boss and hole center line	(5.9 mm)	(6.2 mm)	$(8.7 \mathrm{~mm})$

Notes: 1. The above indicates the characteristics when operating the push-button from the vertical direction.
2. Indicates operation load for NO contact to achieve ON status.
3. Indicates position for NC contact to achieve OFF status.
4. Indicates position for NO contact to achieve ON status.
5. Although there is some overlap in the range of the operating position (O.P.) on the NC and NO sides due to the toleranceactuality there is always an intermediate OFF range (the NC and NO sides will never ON at the same time.)
6. Indicates position for NC contact to achieve ON status.
7. Indicates position for NO contact to achieve OFF status.

OPERATION CONCEPT DIAGRAM

Contact form: terminal type

DATA
Applicable current range (reference)

CONTACT ARRANGEMENT

Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

1. Solder terminal; Mounting hole: 3mm, standard type

Pin plunger

Operating Force (max. O.F.)		1.2 N
Total travel Force (max. T.F.) reference value	$(1.8 \mathrm{~N})$	
Free Position (F.P.)	From mounting boss and hole center line	9.2 mm max.
Operating Position on NC side [O.P. (N.C.)]	From mounting boss and hole center line	$8.7 \pm 0.3 \mathrm{~mm}$
Operating Position on NO side [O.P. (N.O.)]	From mounting boss and hole center line	$8.4 \pm 0.3 \mathrm{~mm}$
Release Position on NC side [R.P. (N.C.)]	From mounting boss and hole center line	$8.8 \pm 0.3 \mathrm{~mm}$
Release Position on NO side [R.P. (N.O.)]	From mounting boss and hole center line	$8.5 \pm 0.3 \mathrm{~mm}$
Over travel on NC side [min. O.T. (N.C.)]	2.5 mm	
Over travel on NO side [min. O.T. (N.O.)]		2.2 mm

2. Leaf lever

CAD Data

Operating Force (max. O.F.)	1.7 N	
Total travel Force (max. T.F.) reference value		$(3.1 \mathrm{~N})$
Free Position (F.P.)	From mounting boss and hole center line	11.5 mm max.
Operating Position on NC side [O.P. (N.C.)]	From mounting boss and hole center line	$9.8 \pm 0.5 \mathrm{~mm}$
Operating Position on NO side [O.P. (N.O.)]	From mounting boss and hole center line	$9.3 \pm 0.5 \mathrm{~mm}$
Release Position on NC side [R.P. (N.C.)]	From mounting boss and hole center line	$10.1 \pm 0.5 \mathrm{~mm}$
Release Position on NO side [R.P. (N.O.)]	From mounting boss and hole center line	$9.6 \pm 0.5 \mathrm{~mm}$
Over travel on NC side [min. O.T. (N.C.)]	3.1 mm	
Over travel on NO side [min. O.T. (N.O.)]		2.6 mm

Note: When switching at high speed or under shock, lever endurance may drop. Therefore, please be sure to conduct an endurance evaluation under actual switching conditions.
3. Simulated leaf lever

CAD Data

Operating Force (max. O.F.)		1.5 N
Total travel Force (max. T.F.) reference value	$(2.8 \mathrm{~N})$	
Free Position (F.P.)	From mounting boss and hole center line	14.4 mm max.
Operating Position on NC side [O.P. (N.C.)]	From mounting boss and hole center line	$12.5 \pm 0.5 \mathrm{~mm}$
Operating Position on NO side [O.P. (N.O.)]	From mounting boss and hole center line	$12.0 \pm 0.5 \mathrm{~mm}$
Release Position on NC side [R.P. (N.C.)]	From mounting boss and hole center line	$12.9 \pm 0.5 \mathrm{~mm}$
Release Position on NO side [R.P. (N.O.)]	From mounting boss and hole center line	$12.4 \pm 0.5 \mathrm{~mm}$
Over travel on NC side [min. O.T. (N.C.)]	3.3 mm	
Over travel on NO side [min. O.T. (N.O.)]		2.8 mm

Note: When switching at high speed or under shock, lever endurance may drop. Therefore, please be sure to conduct an endurance evaluation under actual switching conditions.

4. PC board terminal; Mounting hole: 3 mm , without boss type

Pin plunger

CAD Data

PC board terminal

PC board pattern

NOTES

\square Soldering conditions

Manual soldering: use soldering irons (max. $350^{\circ} \mathrm{C}$, within 2 seconds) capable of temperature adjustment. This is to prevent deterioration due to soldering heat. Care should be taken not to apply force to the terminals during soldering. Terminal portion must not be moved within 1 minute after soldering.

\square Mounting

Please avoid use in which load would be applied to the sides [hatch part (both sides) shown below] of the switch in the direction indicated by the arrows. This could cause erroneous operation. Also, when using a metal installation board, please make allowance for burr direction designation and burr suppressing, etc., so that the burr side will not be on the switch installation side.

1) To secure the switch, please use an M3 small screw on a flat surface and tighten using a maximum torque of 0.29 $\mathrm{N} \cdot \mathrm{m}$. It is recommended that spring washers be used with the screws and adhesive be applied to lock the screws to prevent loosening of the screws. Please make sure not to apply adhesive onto the moving parts.
2) Be sure to maintain adequate insulating clearance between each terminal and ground.
3) Although it is possible to directly operate the pin plunger type from the lateral direction, please consult us if doing so.
4) After mounting please make sure no tensile load will be applied to the switch terminals.
5) Range of possible use: Please set the operation position to within the ranges in the following table so that there is sufficient insulation distance and to maintain contact reliability.

Actuator	Plunger/lever free	
	From boss and hole center line	From standoff
Pin plunger	$>9.2 \mathrm{~mm}$	$>13.4 \mathrm{~mm}$
Leaf lever	$>10.7 \mathrm{~mm}$	$>14.9 \mathrm{~mm}$
Simulated leaf lever	$>13.5 \mathrm{~mm}$	$>17.7 \mathrm{~mm}$

Actuator	Plunger/Lever pushed	
	From boss and hole center line	From standoff
Pin plunger	7.8 to 5.9 mm	12.0 to 10.1 mm
Leaf lever	8.4 to 6.2 mm	12.6 to 10.4 mm
Simulated leaf lever	11.1 to 8.7 mm	15.3 to 12.9 mm

6) PC board terminal type should be used if the products are to be soldered on the PC board. (Solder terminal type is not for soldering on PC board.)

- Cautions regarding the circuit

1) In order to prevent malfunction in set devices caused by bounce and chattering during the ON-OFF switch operation, please verify the validity of the circuit under actual operating conditions and temperature range.
2) When switching inductive loads (relays, solenoids, buzzers, etc.), an arc absorbing circuit is recommended to protect the contacts.

Please verify under actual

 conditions.Please be sure to conduct quality verification under actual operating conditions in order to increase reliability during actual use.

Switch selection

Please make your selection so that there will be no problems even if the operating characteristics vary up to $\pm 20 \%$ from the standard values.

- Other

1) Keep away from environments where silicon based adhesives, oil or grease are present as faulty contacts may result from silicon oxide. Do not use in areas where flammable or explosive gases from gasoline and thinner, etc., may be present.
2) When using the lever type, please be careful not to apply unreasonable load from the reverse or lateral directions of operation.
3) Do not exceed the total travel position (TTP) and press the actuator. This could cause operation failure. Also, when switching at high speed or under shock even within the operation limit, the working life may decrease. Therefore, please be sure to verify the quality under actual conditions of use.
4) Please make considerations so that the switch does not become the stopper for the operating part. The switch could break.

Panasonic ideas for life

FS

FS-T

NEW SUBMINIATURE SWITCHES WITH HIGH PRECISION

FEATURES

- Consistent quality and high precision through sophisticated automatic fabrication system -O.P.: $8.4 \pm 0.3 \mathrm{~mm}$ (O.P.of conventional subminiature switches: 8.4 ± 0.5) - Flux-resistant construction with integrally molded terminals - Solder terminal; Self-standing, internationally common pitch, right angle, left angle terminals for PC board; Quick connect . 110 terminals for easy mounting
- Insulation guard available for safety mounting

- 2 lever pivot positions available for applications where low operating force is required

TYPICAL

 APPLICATIONS- Communication equipment
- Vending machines
- Security systems
- Data systems
- Medical equipment
- VCR

CONSTRUCTION (example: AV3/AVM3 type)
Standard version

Remark: As for FS-T switches, the terminals are the different shape.

CONTACT ARRANGEMENT Long life version

ORDERING INFORMATION

1.FS switches (in-line terminal type)

2.FS-T switches (cross-line terminal type)

[^8]

APPLICABLE CURRENT RANGE

Remark: For high capacity contact rating up to 10.1 A , please refer to PS (AVM3O○○P) switches catalog.

PRODUCT TYPES

1. FS switches (in-line terminal type)

Standard version

				Part no.	
	Actuator	max.	Solder terminal without guard	Self-standing PC board terminal	Internationally common pitch PC board terminal
AgNi alloy contact type	Pin plunger	0.49 N	AV32023	AV34023	AV35023
		0.98 N	AV32043	AV34043	AV35043
	Short hinge lever	0.20 N	AV32123	AV34123	AV35123
		0.39 N	AV32143	AV34143	AV35143
	Hinge lever	0.16 N	AV32223	AV34223	AV35223
		0.34 N	AV32243	AV34243	AV35243
	Long hinge lever	0.12 N	AV32323	AV34323	AV35323
		0.25 N	AV32343	AV34343	AV35343
	Simulated roller lever	0.16 N	AV32423	AV34423	AV35423
		0.34 N	AV32443	AV34443	AV35443
	Roller lever	0.20 N	AV32523	AV34523	AV35523
		0.39 N	AV32543	AV34543	AV35543
Au-clad triple layer contact type	Pin plunger	0.25 N	AV3200613	AV3400613	AV3500613
		0.49 N	AV3202613	AV3402613	AV3502613
		0.98 N	AV3204613	AV3404613	AV3504613
	Short hinge lever	0.098 N	AV3210613	AV3410613	AV3510613
		0.20 N	AV3212613	AV3412613	AV3512613
		0.39 N	AV3214613	AV3414613	AV3514613
	Hinge lever	0.078 N	AV3220613	AV3420613	AV3520613
		0.16 N	AV3222613	AV3422613	AV3522613
		0.34 N	AV3224613	AV3424613	AV3524613
	Long hinge lever	0.12 N	AV3232613	AV3432613	AV3532613
		0.25N	AV3234613	AV3434613	AV3534613
	Simulated roller lever	0.16 N	AV3242613	AV3442613	AV3542613
		0.34 N	AV3244613	AV3444613	AV3544613
	Roller lever	0.20 N	AV3252613	AV3452613	AV3552613
		0.39 N	AV3254613	AV3454613	AV3554613

Standard version

	Actuator	Operating force, max.	Part no.		
			Right angle terminal	Left angle terminal	.110 Quick-connect
AgNi alloy contact type	Pin plunger	0.49 N	AV36023	AV37023	AV38023
		0.98 N	AV36043	AV37043	AV38043
	Short hinge lever	0.20 N	AV36123	AV37123	AV38123
		0.39 N	AV36143	AV37143	AV38143
	Hinge lever	0.16 N	AV36223	AV37223	AV38223
		0.34 N	AV36243	AV37243	AV38243
	Long hinge lever	0.12 N	AV36323	AV37323	AV38323
		0.25 N	AV36343	AV37343	AV38343
	Simulated roller lever	0.16 N	AV36423	AV37423	AV38423
		0.34 N	AV36443	AV37443	AV38443
	Roller lever	0.20 N	AV36523	AV37523	AV38523
		0.39 N	AV36543	AV37543	AV38543
Au-clad triple layer contact type	Pin plunger	0.25 N	AV3600613	AV3700613	AV3800613
		0.49 N	AV3602613	AV3702613	AV3802613
		0.98 N	AV3604613	AV3704613	AV3804613
	Short hinge lever	0.098 N	AV3610613	AV3710613	AV3810613
		0.20 N	AV3612613	AV3712613	AV3812613
		0.39 N	AV3614613	AV3714613	AV3814613
	Hinge lever	0.078 N	AV3620613	AV3720613	AV3820613
		0.16 N	AV3622613	AV3722613	AV3822613
		0.34 N	AV3624613	AV3724613	AV3824613
	Long hinge lever	0.12 N	AV3632613	AV3732613	AV3832613
		0.25N	AV3634613	AV3734613	AV3834613
	Simulated roller lever	0.16 N	AV3642613	AV3742613	AV3842613
		0.34 N	AV3644613	AV3744613	AV3844613
	Roller lever	0.20 N	AV3652613	AV3752613	AV3852613
		0.39 N	AV3654613	AV3754613	AV3854613

[^9]
2. FS-T switches (cross-line terminal type)

Standard version

	Actuator	Operating force, max.	Part no.		
			Solder terminal without guard	PC board terminal	. 110 Quick-connect terminal
AgNi alloy contact type	Pin plunger	0.49 N	AVT32023	AVT34023	AVT38023
		0.98 N	AVT32043	AVT34043	AVT38043
	Short hinge lever	0.20 N	AVT32123	AVT34123	AVT38123
		0.39 N	AVT32143	AVT34143	AVT38143
	Hinge lever	0.16 N	AVT32223	AVT34223	AVT38223
		0.34 N	AVT32243	AVT34243	AVT38243
	Long hinge lever	0.12 N	AVT32323	AVT34323	AVT38323
		0.25 N	AVT32343	AVT34343	AVT38343
	Simulated roller lever	0.16 N	AVT32423	AVT34423	AVT38423
		0.34 N	AVT32443	AVT34443	AVT38443
	Roller lever	0.20 N	AVT32523	AVT34523	AVT38523
		0.39 N	AVT32543	AVT34543	AVT38543
Au-clad triple layer contact type	Pin plunger	0.25N	AVT3200613	AVT3400613	AVT3800613
		0.49 N	AVT3202613	AVT3402613	AVT3802613
		0.98 N	AVT3204613	AVT3404613	AVT3804613
	Short hinge lever	0.098 N	AVT3210613	AVT3410613	AVT3810613
		0.20 N	AVT3212613	AVT3412613	AVT3812613
		0.39 N	AVT3214613	AVT3414613	AVT3814613
	Hinge lever	0.078 N	AVT3220613	AVT3420613	AVT3820613
		0.16 N	AVT3222613	AVT3422613	AVT3822613
		0.34 N	AVT3224613	AVT3424613	AVT3824613
	Long hinge lever	0.12 N	AVT3232613	AVT3432613	AVT3832613
		0.25 N	AVT3234613	AVT3434613	AVT3834613
	Simulated roller lever	0.16 N	AVT3242613	AVT3442613	AVT3842613
		0.34 N	AVT3244613	AVT3444613	AVT3844613
	Roller lever	0.20 N	AVT3252613	AVT3452613	AVT3852613
		0.39 N	AVT3254613	AVT3454613	AVT3854613

3. FS switches (in-line terminal type)

Long life version

	Actuator	Operating force, max.	Part no.		
			Solder terminal without guard	Self-standing PC board terminal	Internationally common pitch PC board terminal
AgNi alloy contact type	Pin plunger	1.47 N	AVM32053	AVM34053	AVM35053
	Short hinge lever	0.59 N	AVM32153	AVM34153	AVM35153
	Hinge lever	0.54 N	AVM32253	AVM34253	AVM35253
	Long hinge lever	0.44 N	AVM32353	AVM34353	AVM35353
	Simulated roller lever	0.54 N	AVM32453	AVM34453	AVM35453
	Roller lever	0.59 N	AVM32553	AVM34553	AVM35553
Au-clad triple layer contact type	Pin plunger	1.47 N	AVM3205613	AVM3405613	AVM3505613
	Short hinge lever	0.59 N	AVM3215613	AVM3415613	AVM3515613
	Hinge lever	0.54 N	AVM3225613	AVM3425613	AVM3525613
	Long hinge lever	0.44 N	AVM3235613	AVM3435613	AVM3535613
	Simulated roller lever	0.54 N	AVM3245613	AVM3445613	AVM3545613
	Roller lever	0.59 N	AVM3255613	AVM3455613	AVM3555613

Long life version

	Actuator	Operating force, max.	Part no.		
			Right angle terminal	Left angle terminal	. 110 Quick-connect
			Without guard	With guard	With opposite side guard
AgNi alloy contact type	Pin plunger	1.47 N	AVM36053	AVM37053	AVM38053
	Short hinge lever	0.59 N	AVM36153	AVM37153	AVM38153
	Hinge lever	0.54 N	AVM36253	AVM37253	AVM38253
	Long hinge lever	0.44 N	AVM36353	AVM37353	AVM38353
	Simulated roller lever	0.54 N	AVM36453	AVM37453	AVM38453
	Roller lever	0.59 N	AVM36553	AVM37553	AVM38553
Au-clad triple layer contact type	Pin plunger	1.47 N	AVM3605613	AVM3705613	AVM3805613
	Short hinge lever	0.59 N	AVM3615613	AVM3715613	AVM3815613
	Hinge lever	0.54 N	AVM3625613	AVM3725613	AVM3825613
	Long hinge lever	0.44 N	AVM3635613	AVM3735613	AVM3835613
	Simulated roller lever	0.54 N	AVM3645613	AVM3745613	AVM3845613
	Roller lever	0.59 N	AVM3655613	AVM3755613	AVM3855613

Remark: When ordering, please refer to "Remarks" of ordering information.
4. FS-T switches (cross-line terminal type)

Long life version

| Actuator | Operating force,
 max. | Part no. | | |
| :--- | :--- | :---: | :---: | :---: | :---: |
| | | Solder terminal without
 guard | PC board terminal | .110 Quick-connect |
| | | | | |

Remark: When ordering, please refer to "Remarks" of ordering information.

AV3,AVM3/AVT3,AVL3

SPECIFICATIONS

Remark: Time constant shall be less than 7 ms for DC inductive loads.
2. Characteristics

Item	Standard version		Long life version	
	AgNi alloy contact type	Au-clad contact type	AgNi alloy contact type	Au-clad contact type
Electrical life at rated load (O.T.max.)	5×10^{4} at 20 cpm	2×10^{5} at 20 cpm	5×10^{4} at 20 cpm	2×10^{5} at 20 cpm
Mechanical life	5×10^{5} at 60 cpm (O.T.max.)		3×10^{7} (O.T.: Specified value) 10^{7} (O.T.max.) at 60 cpm	
Insulation resistance	Min. $100 \mathrm{M} \Omega$ at 500 V DC			
Dielectric strength Between non-continuous terminals Between each terminal and other exposed metal parts Between each terminal and ground		1,00 1,50 1,50	Vrms Vrms Vrms	
Vibration resistance (pin plunger type)	10 to 55 Hz at single amplitude of 0.75 mm (contact opening: 1 ms max .)			
Shock resistance (pin plunger type) (contact opening: 1 ms max.)	$294 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~min}$. (O.F. 0.98 N) $147 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~min}$. (O.F. 0.49 N)	$294 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~min}$. (O.F. 0.98 N) $147 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~min}$. (O.F. 0.49 N) $49 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~min}$. (O.F. 0.25 N)	$294 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~min}$.	
Contact resistance (initial)	$50 \mathrm{~m} \Omega \mathrm{max}$. (by voltage drop 1 A 6 to 8V DC)	$100 \mathrm{~m} \Omega$ max. (by voltage drop 0.1 A 6 to 8 V DC)	$50 \mathrm{~m} \Omega \mathrm{max}$. (by voltage drop 1 A 6 to 8 V DC)	$50 \mathrm{~m} \Omega \mathrm{max}$. (by voltage drop 0.1 A 6 to 8V DC)

Allowable operating speed	0.1 to $1,000 \mathrm{~mm} / \mathrm{s}$
Max.operating cycle rate	300 cpm
Ambient temperature	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (no freezing below $0^{\circ} \mathrm{C}$)
Unit weight	Approx.2g

3. Operating characteristics

1) Pin plunger

4th digit number of part no.	Operating force, max.	Release force, min.	Pretravel, max. mm	Movement differential, max., mm	Overtravel, min. mm	Operating position, mm
0	0.25 N	0.020 N				
2	0.49 N	0.074 N			0.4	Distance from mounting holes: 8.4 ± 0.3 Distance from stand-off: FS 11.8 ± 0.4 FS-T 11.7 ± 0.4
4	0.98 N	0.15 N		0.1		
5	1.47 N	0.20 N				

2) Short hinge lever

4th digit number of part no.	Operating force, max.	Release force, min.	Pretravel, max. mm	Movement differential, max., mm	Overtravel, min. mm	Operating position, mm
0	0.098 N	0.004 N				
2	0.20 N	0.017 N				
4	0.39 N	0.034 N		0.5	0.8	Distance from mounting holes: 8.8 ± 0.8 Distance from stand-off: FS 12.2 ± 0.9
5	0.59 N	0.039 N				

3) Hinge lever

4th digit number of part no.	Operating force, max.	Release force, min.	Pretravel, max. mm	Movement differential, max., mm	Overtravel, min. mm	Operating position, mm
0	0.078 N	0.003 N				
2	0.16 N	0.015 N		2.8	0.8	1.2
4	0.34 N	0.029 N			Distance from mounting holes: 8.8 ± 0.8 Distance from stand-off: FS 12.2 ± 0.9 FS-T 12.1 ± 0.9	
5	0.54 N	0.034 N				

4) Long hinge lever

4th digit number of part no.	Operating force, max.	Release force, min..	Pretravel, max. mm	Movement differential, max., mm	Overtravel, min. mm	Operating position, mm
0	-	-				
2	0.12 N	0.012 N	3.5	1.0	1.6	Distance from mounting holes: 8.8 ± 1.2 Distance from stand-off: FS 12.2 ± 1.3 FS-T 12.1 ± 1.3
4	0.25 N	0.025 N				
5	0.44 N	0.029 N				

5) Simulated roller lever

4th digit number of part no.	Operating force, max.	Release force, min.	Pretravel, max. mm	Movement differential, max., mm	Overtravel, $\mathrm{min} . \mathrm{mm}$	Operating position, mm
0	-	-				
2	0.16 N	0.015 N	2.8	0.8	1.2	Distance from mounting holes: 11.65 ± 0.8 Distance from stand-off: FS 15.05 ± 0.9 FS-T 14.95 ± 0.9
4	0.34 N	0.029 N				
5	0.54 N	0.034 N				

6) Roller lever

4th digit number of part no.	Operating force, max.	Release force, min.	Pretravel, max. mm	Movement differential, max., mm	Overtravel, min. mm	Operating position, mm
0	-	-				
2	0.20 N	0.017 N	2.5	0.5	0.8	Distance from mounting holes: 14.5 ± 0.8 Distance from stand-off: FS FS-T 17.9 ± 0.9
4	0.39 N	0.034 N				
5	0.59 N	0.039 N				

DIMENSIONS

1. FS switches (In-line terminal type)

Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

1-(1) Solder terminal (without guard)

CAD Data

Dimensions other than drawn above is same as self-standing PC board terminal.

AV3,AVM3/AVT3,AVL3

1-(2) Self-standing PC board terminal
Pin plunger

mm General tolerance: ± 0.25 PC board pattern

Pretravel, max. mm	0.6	
Movement differential, max. mm	0.1	
Overtravel, min. mm	0.4	
Operating position	Distance from mounting hole, mm	8.4 ± 0.3
	Distance from standoff, mm	11.8 ± 0.4

Short hinge lever

CAD Data

Pretravel, max. mm	2.5	
Movement differential, max. mm	0.5	
Overtravel, min. mm	0.8	
Operating position	Distance from mounting hole, mm	8.8 ± 0.8
	Distance from standoff, mm	12.2 ± 0.9

Hinge lever

CAD Data

Pretravel, max. mm		2.8
Movement differential, max. mm	0.8	
Overtravel, min. mm	1.2	
Operating position	Distance from mounting hole, mm	8.8 ± 0.8
	Distance from standoff, mm	12.2 ± 0.9

Long hinge lever

CAD Data

Simulated roller lever

CAD Data

Pretravel, max. mm	2.8	
Movement differential, max. mm	0.8	
Overtravel, min. mm	1.2	
Operating position	Distance from mounting hole, mm	11.65 ± 0.8
	Distance from standoff, mm	15.05 ± 0.9

CAD Data

Pretravel, max. mm	2.5	
Movement differential, max. mm	0.5	
Overtravel, min. mm	0.8	
Operating position	Distance from mounting hole, mm	14.5 ± 0.8
	Distance from standoff, mm	17.9 ± 0.9

1-(3) Internationally common pitch PC board terminal

CAD Data

PC board pattern

1-(4) Right angle terminal

1-(6) Left angle terminal

CAD Data

PC board pattern

AV3,AVM3/AVT3,AVL3

1-(6) . 110 Quick-connect terminal

CAD Data

Dimensions other than drawn above is same as self-standing PC board terminal

2.FS-T switches (cross-line terminal type)

2-(1) PC board termina

Pin plunger

Pretravel, max. mm	0.6	
Movement differential, max. mm	0.1	
Overtravel, min. mm	0.4	
Operating position	Distance from mounting hole, mm	Distance from standoff, mm

Short hinge lever

CAD Data

Pretravel, max. mm	2.5	
Movement differential, max. mm	0.5	
Overtravel, min. mm	0.8	
Operating position	Distance from mounting hole, mm	8.8 ± 0.8
	Distance from standoff, mm	12.1 ± 0.9

CAD Data

Pretravel, max. mm	2.8	
Movement differential, max. mm	0.8	
Overtravel, min. mm	1.2	
Operating position	Distance from mounting hole, mm	Distance from standoff, mm

CAD Data

Simulated roller lever

CAD Data

Pretravel, max. mm	3.5	
Movement differential, max. mm	1.0	
Overtravel, min. mm	1.6	
Operating position	Distance from mounting hole, mm	8.8 ± 1.2
	Distance from standoff, mm	12.1 ± 1.3

Pretravel, max. mm	2.8	
Movement differential, max. mm	0.8	
Overtravel, min. mm	1.2	
Operating position	Distance from mounting hole, mm	11.65 ± 0.8
	Distance from standoff, mm	14.95 ± 0.9

Roller lever

CAD Data

Pretravel, max. mm	2.5	
Movement differential, max. mm	0.5	
Overtravel, min. mm	0.8	
Operating position	Distance from mounting hole, mm	14.5 ± 0.8
	Distance from standoff, mm	17.8 ± 0.9

2-(2) Solder terminal

CAD Data

As for the dimensions of lever types, dimensions other than terminals are same as self-standing solder terminal

CAD Data

As for the dimensions of lever types, dimensions other than terminals are same as self-standing solder terminal.

NOTES

1. Regarding fastening of switch body
1) In fastening the switch body, use flat filister head M2.3 screws, with tightening torque of not more than $0.29 \mathrm{~N} \cdot \mathrm{~m}$. To prevent loosening of the screws, it is recommended that spring washers be used with the screws and adhesive be applied to lock the screws.
After mounting the switch and making wiring connections, the insulation distance between ground and each terminal should be confirmed as sufficient.
2) The positioning of the switch should be such that the push-button or actuator for the switch should not directly apply force to the operating section in the free condition.For a push-button, the force from the push-button should be applied in a perpendicular direction.
3) In setting the movement after operation, the over-travel should be set not less than 70% as a standard.Setting the movement at less than 70% of O.T. may cause troubles such as mis-contact and welding due to small contact force of the switch.

2. Soldering operation

1) Manual soldering should be accomplished within 3 seconds with max. $350^{\circ} \mathrm{C}$ iron.
2) Care should be taken not to apply force to the terminals during soldering. Terminal portions must not be moved in min. 1 minute after soldering.Also no tensile strength of lead wires should be applied to terminals.

3. Regarding connector connections

 (. 110 quick connect terminals) For making connections, a dedicated receptacle for .110 quick connect terminals should be used, and the terminals should be inserted parallel to the receptacle.Consideration should be given to mounting so that no tensile load is applied to the lead wires.
4. In making the switch selection

Consideration should be given to provide for no interference up to $+20 \%$ variation of the standard characteristics values.

5. Environment

Locations where corrosive gases having a bad influence on contacts are present, and locations where there is an excessive amount of siliceous or other abrasive dust should be avoided.

6. Cautions regarding use

This subminiature switch has been designed as a dedicated switch for AC use, but it can be used for low capacity DC circuits.
Please select gold-clad contact types when loads are in the low-level area of 1 mA up to 100 mA and 5 V up to 30 V .

For switching of inductive loads (relays, solenoids, buzzers, etc.), in order to prevent damage to contacts due to the occurrence of arcing, an arc absorbing circuit should be applied
7. Quality check under Actual Loading Condition
To assure reliability, check the switch under actual loading conditions.Avoid any situation that may adversely affect switching performance.
8. When using lever type switch, care should be taken not to apply undue force on the body from the opposite side or side ways to its operating direction.

Panasonic ideas for life

SUBMINIATURE SWITCHES $A V B \bigcirc \bigcirc \bigcirc($ FS) (CONTACT GAP: MORE THAN 1MM TYPE) SWITCHES

FEATURES

\author{

- Conforming to IEC60950-1
 - Contact gap of greater than 1mm
 - ULICSA/VDE/SEMKO under application
 - Protection grade: IP40
 \section*{TYPICAL APPLICATIONS

 - Office equiment (printers, copiers)}
}

ORDERING INFORMATION

PRODUCT TYPES

Actuator	Operating force max.	Solder terminal without guard	Self-standing PC board terminal	.110 Quick- connect terminal
Pin plunger	1.47 N	AV3205G3	AV3405G3	AV3805G3
Short hinge lever	0.59 N	AV3215G3	AV3415G3	AV3815G3
Hinge lever	0.54 N	AV3225G3	AV3425G3	AV3825G3
Long hinge lever	0.44 N	AV3235G3	AV3435G3	AV3835G3
Simulated roller lever	0.54 N	AV3245G3	AV3445G3	AV3845G3
Roller lever	0.59 N	AV3255G3	AV3455G3	AV3855G3

Remark: Unless you request otherwise, the switch comes with a stamp indicating its conformance to standards.

CONTACT ARRANGEMENT

SPECIFICATIONS

1. Contact rating

- AgNi alloy contact type

Voltage	Resistive road $(\cos \phi \approx 1)$
30 V DC	3 A

AV3OOOG
2. Characteristics

	Item		Characteristics
	Expected life	Mechanical (O.T.: Specified value)	Min. 5×10^{5} (at 60cpm)
		Electrical (O.T. max.)	Min. 10^{4} (at 20cpm)
	Dielectric strength	Between non-continuous terminals	1,000 Vrms for 1 min . (at detection current of 10 mA)
		Between each terminal and other exposed metal parts	2,000 Vrms for 1 min . (at detection current of 10mA)
		Between each terminal and ground	2,000 Vrms for 1 min . (at detection current of 10mA)
	Insulation resistance		Min. 100M (at 500 V DC)
	Contact resistance (initial)		Max. $50 \mathrm{~m} \Omega$ (by voltage drop 6 to 8 V DC 1A)
	Vibration resistance		10 to 55 Hz at single amplitude of 0.75 mm (contact opening: Max. 1ms)
	Shock resistance	Pin plunger type	$294 \mathrm{~m} / \mathrm{s}^{2}$ (contact distance: Max. 1 ms)
		Lever type	$147 \mathrm{~m} / \mathrm{s}^{2}$ (contact distance: Max. 1ms)
	Allowable operation speed (no load)		0.1 to $1,000 \mathrm{~mm} / \mathrm{s}$
	Max. switching frequency (no load)		300 cpm .
	Ambient temperature		$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (not freezing below $0^{\circ} \mathrm{C}$)
	Contact material		AgNi alloy

Remark: Test conditions are in accordance with JIS C 4505.

3. Operating characteristics

Actuator	Operating force, max.	Release force, min.	Pretravel, max. mm	Movement differential, max. mm	Overtravel, $\mathrm{min} . \mathrm{mm}$	Operating position, mm
Pin plunger	1.47 N	0.064 N	0.7	0.2	0.3	8.4 ± 0.3
Short hinge lever	0.59 N	0.015 N	2.5	0.8	0.6	0.8
Hinge lever	0.54 N	0.013 N	2.8	1.0	0.8	8.8 ± 0.8
Long hinge lever	0.44 N	0.0098 N	3.5	1.2	1.2	0.8 ± 1.2
Simulated roller lever	0.54 N	0.013 N	2.8	1.0	0.8	11.65 ± 0.8
Roller lever	0.59 N	0.015 N	2.5	0.8	14.5 ± 0.8	

DIMENSIONS
The same size as the standard FS/FS-T switches (see data sheet which begins on page 86.)

Panasonic ideas for life

FEATURES

- Using a connector for connections significantly improves operation effectiveness.
Applicable connector:
XA connector produced by JST Mfg. Co., Ltd.
- Contact: SXA-001T-P0. 6
- Housing: XAP-02V-1

- Contact reliability is achived by simple dust prevension guard and Au-clad double layer contacts

- The contact arrangement is available in two types, the SPST-NC and the SPST-NO.

S MODEL SWITCH

 CONNECTOR TYPE
AV6 (CS) SWITCHES

TYPICAL APPLICATIONS

- Detection of vending machine condition whether cans are out of stock
- Ball detection of pinball game machine
- PPC (plain paper copier)
- LBP (laser beam printer)
- The lever position is available in two types.
Standard lever position
"Standard lever position" refers to a position in which the lever is installed with the plunger close to the reference.

Backward lever position
"Backward lever position" refers to a position in which the lever is installed with the plunger far away from the reference.

ORDERING INFORMATION

Remarks: 1. Standard packing Inner carton: 100 pcs. Outer carton: 1,000 pcs.
2. When ordering UL, CSA and TÜV approved types, please attach suffix " 3 " to the part no.

CONTACT ARRANGEMENT

1) SPST-NC
2) SPST-NO

CURRENT CAPACITY (reference)

PRODUCT TYPES

1. Lever position: Standard

Actuator	Operating force, max.	Contact arrangement	
		SPST-NC	SPST-NO
Pin plunger	0.50 N	AV620264	AV630264
	1.50 N	AV620564	AV630564
	0.20 N	AV622264	AV632264
Simulated roller lever	0.50 N	AV622564	AV632564
	0.20 N	AV624264	AV634264
	0.50 N	AV624564	AV634564

Remarks: 1. When ordering UL, CSA and TÜV approved (under application) types, please attach suffix " 3 " to the part no.

2. Lever position: Backward

Actuator	Contact arrangement		
		SPST-NC	SPST-NO
Hinge lever	0.35 N	AV62221264	AV63221264
	1.00 N	AV62251264	AV63251264
	Roller lever	0.35 N	AV62421264

Remarks: 1. When ordering UL, CSA and TÜV approved (under application) types, please attach suffix " 3 " to the part no.

SPECIFICATIONS

1. Contact rating

Contact	Voltage	Resistive load $(\cos \phi \approx 1)$
	Au-clad double layer	30 V DC
		0.1 A

2. Characteristics

Expected life	Mechanical	Min. 5×10^{5} (at 60 cpm$)$ (O.T. max.)
	Electrical (rated load)	Min. 2×10^{5} (at 20 cpm) (O.T. max.)
Insulation resistance		Min. $100 \mathrm{M} \Omega$
Dielectric strength	Between terminals	1,000 Vrms for 1 min .
	Between terminals and other exposed metal parts	1,500 Vrms for 1 min.
	Between terminals and ground	1,500 Vrms for 1 min.
Contact resistance (initial)		$100 \mathrm{M} \Omega$ max. (by voltage drop 0.1 A 6 to 8 VDC) Value includes the resistance between the connector and the lead (\#AWG28, length: 50 mm)
Viblation resistance		10 to 55 Hz at single amplitude of 0.75 mm (contact opening: max. 1 ms)
Shock resistance		Applied shock 1.50 N type: Min. $300 \mathrm{~m} / \mathrm{s}^{2}$ (contact opening: max. 1 ms) 0.50 N type: $\mathrm{Min} .150 \mathrm{~m} / \mathrm{s}^{2}$ (contact opening: max. 1 ms)
Connector insertion force		Max. 20N (inserted in removal direction)
Connector holding force		Min. 20N (extracted by static load, in removal direction)
Connector removal operating times		Max. 5 times (in removal direction)
Allowable operating speed (no load)		0.1 to $1,000 \mathrm{~mm} / \mathrm{s}$ (at pin plunger)
Max. operating cycle rate (no load)		300 cpm
Ambient temperature		-25 to $+85^{\circ} \mathrm{C}$ (no freezing and condensing)
Unit weight		Approx. 2.5 g (pin plunger type)
Contact material		Au-clad double layer (CuNi alloy + Au-clad)

3. Operating characteristics
1) Lever position: Standard

Type of actuator	Operating force, max.	Release force, min.	Pretravel, max. mm	Movement differential, max., mm	Overtravel, min. mm	Operating position, mm
Pin plunger	0.50 N	0.04 N	0.6	0.1	0.4	8.4 ± 0.3
	1.50 N	0.25N				
Hinge lever	0.20 N	0.02N	2.6	0.8	1.2	10.0 ± 0.8
	0.50 N	0.06 N				
Simulated roller lever	0.20 N	0.02N	2.6	0.8	1.2	12.2 ± 0.8
	0.50 N	0.06N				
Roller lever	0.20 N	0.02 N	2.6	0.8	1.2	15.7 ± 0.8
	0.50 N	0.06N				

2) Lever position: Backward

Type of actuator	Operating force, max.	Release force, min.	Pretravel, max. mm	Movement differential, max., mm	Overtravel, min. mm	Operating position, mm
Hinge lever	0.35 N	0.03 N	1.4	0.6	0.7	9.2 ± 0.6
	1.00 N	0.10 N	0.35 N	0.03 N	1.4	0.6
Roller lever	0.35 N	0.10 N	1.0 N	0.7	11.3 ± 0.6	
	1.00 N	0.10 N	1.4	0.6	0.7	14.9 ± 0.6

DIMENSIONS

1. Pin plunger CAD Data

Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

2. Hinge lever

Lever position: Standard

CAD Data

Pretravel, max. mm	0.6
Movement differential, max. mm	0.1
Overtravel, Min. mm	0.4
Operating position	Distance from mounting hole, mm

Pretravel, max. mm	2.6
Movement differential, max. mm	0.8
Overtravel, min. mm	1.2
Operating position	Distance from mounting hole, mm

Lever position: Backward

CAD Data

Pretravel, max. mm	1.4
Movement differential, max. mm	0.6
Overtravel, min. mm	0.7
Operating position	Distance from mounting hole, mm

Lever position: Standard

CAD Data

Pretravel, max. mm	2.6
Movement differential, max. mm	0.8
Overtravel, min. mm	1.2
Operating position	Distance from mounting hole, mm

Lever position: Backward

CAD Data

Pretravel, max. mm	
Movement differential, max. mm	0.6
Overtravel, min. mm Operating positionDistance from mounting hole, mm	0.7

4. Roller lever

Lever position: Standard

CAD Data

Pretravel, max. mm	2.6
Movement differential, max. mm	0.8
Overtravel, min. mm	1.2
Operating position	Distance from mounting hole, mm

Lever position: Backward

CAD Data

Pretravel, max. mm	1.4
Movement differential, max. mm	0.6
Overtravel, min. mm	0.7
Operating position	Distance from mounting hole, mm

NOTES

1. Fastening of the switch body
1) Use flat filister head M2.3 screws to mount switches with less than a $0.29 \mathrm{~N} \cdot \mathrm{~m}$ torque. Use of screws washers or adhesive lock is recommended to prevent loosening of the screws.
2) Check insulation distance between ground and each terminal.
3) When the operation object is in the free position, force should not be applied directly to the actuator or pin plunger. Also force should be applied to the pin plunger from vertical direction to the switch.
4) In setting the movement after operation, the over-travel should be set more than 70% as a standard. With the lever type, do not apply excessive force in the direction opposite to the movement, or from the horizontal direction.
5) For a lever type, the force from the reverse to the operation direction should not be applied.

2. About the connector

1) The connector on the AV6 switch is designed to fit with the XA connector produced by JST Mfg. Co., Ltd. Do not use any connector other than the specified connector, or solder the terminals directly.
2) Make sure leads are arranged so that no constant force is applied to them when the connectors are mated.
3) Keep the connector straight when inserting it. If it is inserted at an angle, it may snag near the entrance, or it may be inserted too forcefully.
4) Problems thought to be caused by the XA connector, which is specified as conforming to the AV6 switch connector, are not covered by the warranty. Please contact JST Mfg., Co., Ltd. and request cooperation in resolving the problem.

3. Selection of the switch

When specifying the switch, allow $\pm 20 \%$ to the listed operating characteristics.

4. Environment

Avoid using the switches in the following conditions;

- In corrosive gases, such as silicon gas
- In a dusty environment

When cleaning the switch, use a diluted form of a neutral cleaning agent. Using acidic or alkali solvents can adversely affect the performance of the switch.
5. Precautions concerning circuits The AV6 switch is designed specifically for low-voltage, low-current loads. Avoid using it at loads that exceed the resistive load.
6. Quality check under actual loading conditions
To assure reliability, check the switch under actual loading conditions. Avoid any situation that may adversely affect switching performance.

ORDERING INFORMATION

Product Name	Terminal	Operating force by pin plunger (max.)	Actuator	Contact	Agency standard
FJ	4: 2.0 mm Self-standing PC board terminal with stand off 5: Straight PC board terminal with stand off 6: 2.0 mm Solder terminal with stand off 7: 2.0 mm PC board right angle terminal 8: 2.0 mm PC board left angle terminal	$\begin{aligned} & \text { 6: } 1.47 \mathrm{~N} \\ & \text { with stand off } \\ & \text { 8: } 0.74 \mathrm{~N} \\ & \text { with stand off } \end{aligned}$	0: Pin plunger 2: Hinge lever 4: Simulated roller lever	Nil: AgNi alloy 61: AgNi alloy + Au-clad	9: UL/CSA

Remark: 2.0 mm PC board terminal straight type is available. For details, please consult us.

PRODUCT TYPES

The color of:

	Color	Body	Cap
Type	Plunger		
Standard	Black	Black	White
Low-level circuit	Black	Red	

1. Self-standing PC board terminal

| Actuators | $\begin{array}{c}\text { Operating force, } \\ \text { max. }\end{array}$ | $\begin{array}{c}\text { Standard } \\ \text { (AgNi alloy contact) }\end{array}$ | SPDT |
| :--- | :---: | :---: | :---: | \(\left.\begin{array}{c}Low-level circuit

(AgNi alloy + Au-clad contact)\end{array}\right]\) SPDT | AH1480619 |
| :--- |
| |
| Pin plunger |

2. Straight PC board termina

Actuators	Operating force max.	Standard (AgNi alloy contact)	Low-level circuit (AgNi alloy + Au-clad contact)
		SPDT	SPDT

4. PC board right angle terminal

Actuators	Operating force, max.	Standard (AgNi alloy contact)	Low-level circuit (AgNi alloy + Au-clad contact)
		SPDT	SPDT
Pin plunger	0.74 N	AH17809	AH1780619
	1.47 N	AH17609	AH1760619
Hinge lever	0.25 N	AH17829	AH1782619
	0.49 N	AH17629	AH1762619
Simulated roller lever	0.26 N	AH17849	AH1784619
	0.54 N	AH17649	AH1764619
5. PC board left angle terminal			
Actuators	Operating force, max.	Standard (AgNi alloy contact)	Low-level circuit (AgNi alloy + Au-clad contact)
		SPDT	SPDT
Pin plunger	0.74 N	AH18809	AH1880619
	1.47 N	AH18609	AH1860619
Hinge lever	0.25 N	AH18829	AH1882619
	0.49 N	AH18629	AH1862619
Simulated roller lever	0.26 N	AH18849	AH1884619
	0.54 N	AH18649	AH1864619

Remarks: 1. The appearance of right and left angle types are as below.
Right angle
Left angle

2. Standard packing: 50 pcs./tube
3. Please consult us for the delivery schedule of PC board terminal SPST-NO type

APPLICABLE CURRENT RANGE

Contact	Applicable current range				Max. operating force for operation (at pin plunger)	
	1 mA	0.1 A	1 A	3 A	0.74 N	1.47 N
Standard type (AgNi alloy)			\geqslant		\bigcirc	
						-
Low-level circuit type (AgNi alloy + Au-clad)		,			-	
						-

AH1

SPECIFICATIONS

		Standard rating	Minimum rating
Standard type (AgNi alloy contact)	OF 0.74 N	1A 125V AC, 1A 30V DC	-
	OF 1.47N	3 A 125 V AC, 2A 30V DC	-
Low-level circuit type (AgNi alloy + Au-clad contact)		0.1A 125V AC, 0.1A 30V DC	5 mA 6 V DC, 2 mA 12 V DC, 1mA 24V DC
2. Characteristics			
Contact arrangement		Standard type (AgNi alloy contact)	Low-level circuit type (AgNi alloy + Au-clad contact)
$\begin{aligned} & \text { Expected life (min. operations) } \\ & \quad \text { Electrical (at rated load, } 20 \mathrm{cpm} \text {) (O.T.: Max.) } \\ & \hline \end{aligned}$		3×10^{4}	10^{5}
Expected life (min. operations)Mechanical (at 60 cpm) (O.T.: Specified value)		$\begin{gathered} \text { O.F. } 0.74 \mathrm{~N}: 10^{6} \\ \text { O.F. } 1.47 \mathrm{~N}: 5 \times 10^{5} \end{gathered}$	
Dielectric strength (initial) Between terminals Between terminals and other exposed parts Between terminals and ground		600 Vrms for 1 min . 1,500 Vrms for 1 min . $1,500 \mathrm{Vrms}$ for 1 min .	
Insulation resistance (min. at 500V DC)		$100 \mathrm{M} \Omega$	
Contact resistance (initial)		Max. $30 \mathrm{~m} \Omega$ (by voltage drop, 1A 6 to 8 V DC)	Max. $100 \mathrm{~m} \Omega$ (by voltage drop, 0.1A 6 to 8 V DC)
Allowable operating speed (no load)		1 to $500 \mathrm{~mm} / \mathrm{s}$	
Max. operating cycle rate (no load)		120 cpm	
Ambient temperature		-25 to $+85^{\circ} \mathrm{C}$ (not freezing below $0^{\circ} \mathrm{C}$)	
Shock resistance (pin plunger type)		Min. $294 \mathrm{~m} / \mathrm{s}^{2}$ (contact opening: Max. 1ms)	
Vibration resistance (pin pluger type)		10 to 55 Hz at single amplitude of 0.75 mm (contact opening: max. 1 ms)	
Unit weight		Approx. 0.5 g	

Remarks: 1. Test conditions and judgement are in accordance with NECA C 4505.
2. OF: Value of pin plunger type

3. Operating characteristics

1) Pin plunger

3th digit of part no.	Operating force, max.	Release force, min.	Pretravel, max. mm	Movement differential, max. mm	Overtravel, min. mm	Operating position mm
6	1.47 N	0.20 N	0.5	0.12	0.25	7 ± 0.3 (distance from stand off) 5.5 ± 0.2 (distance from mounting hole)
8	0.74 N	0.098 N				7 ± 0.3 (distance from stand off) 5.5 ± 0.2 (distance from mounting hole)

2) Hinge lever

3th digit of part no.	Operating force, max.	Release force, min.	Pretravel, max. mm	Movement differential, max. mm	Overtravel, min. mm	Operating position mm
6	0.49 N	0.049 N				
8					0.5	8.3 ± 1.2 (distance from stand off) 6.8 ± 1.0 (distance from mounting hole)
8	0.25 N	0.025 N		0.55	8.3 ± 1.2	

3) Simulated roller lever
$\left.\begin{array}{c|c|c|c|c|c|c}\hline \begin{array}{c}\text { 3th digit of } \\ \text { part no. }\end{array} & \begin{array}{c}\text { Operating force, } \\ \text { max. }\end{array} & \begin{array}{c}\text { Release force, } \\ \text { min. }\end{array} & \begin{array}{c}\text { Pretravel, max. } \\ \mathrm{mm}\end{array} & \begin{array}{c}\text { Movement } \\ \text { differential, max. } \\ \mathrm{mm}\end{array} & \begin{array}{c}\text { Overtravel, } \\ \mathrm{min} . \mathrm{mm}\end{array} & \text { Operating position } \mathrm{mm} \\ \hline 6 & 0.54 \mathrm{~N} & 0.039 \mathrm{~N} & & & & \\ \hline 8 & 0.26 \mathrm{~N} & 0.020 \mathrm{~N} & & & 0.5 & \begin{array}{c}11.0 \pm 1.2 \\ \text { (distance from stand off) } \\ \text { 9.5 }\end{array} \\ \text { (distance from mounting hole) }\end{array}\right]$

DATA

Low-level circuit type
Range of low-level current and voltage (reference only)

DIMENSIONS

Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

1. Self-standing PC board terminal (standard type)
Hinge lever
CAD Data

PC board pattern

Pretravel, max. mm	2.1	
Movement differential, max. mm	0.5	
Overtravel, min. mm	0.55	
Operating position	Distance from mounting hole, mm	Distance from standoff, mm

Simulated roller lever

CAD Data

PC board pattern

Pretravel, max. mm	2.1	
Movement differential, max. mm	0.5	
Overtravel, min. mm	0.5	
Operating position	Distance from mounting hole, mm	9.5 ± 1.0
	Distance from standoff, mm	11.0 ± 1.2

Remark: As for other actuator types, dimensions are the same as those of corresponding self-standing PC board terminal (standard type).
3. PC board right/left angle terminal

Pin plunger
CAD Data

Recommended PC board pattern (top view)

Remark: As for other actuator types, dimensions are the same as those of corresponding self-standing PC board terminal (standard type).

NOTES

1. Fastening of the switch body
1) Use M2 screws to attach switches with max. $0.098 \mathrm{~N} \cdot \mathrm{~m}$ torque. Use of screw washers or adhesive lock is recommended.
2) When the operation object is in the free position, force should not be applied directly to the actuator or to the pin plunger. Also force should be applied to the pin plunger from vertical direction to the switch.
3) In setting the movement after operation, the over-travel should be set from 70% to 100%. Setting the movement less than 70% may cause degrading of the electrical mechanical performance.

2. When specifying AH1 switches,

 allow $\pm 20 \%$ to the listed operating and release forces.3. Soldering operation

Manual soldering should be accomplished within 3 seconds with max. $350^{\circ} \mathrm{C}$ iron.
Terminal portions must not be moved in min. 1 minute after soldering. Also no tensile strength of lead wires should be applied to terminals.
4. When switching low-level circuits, AH1 low-level circuit type (Au-clad contact) is recommended.

5. Environment

Avoid using the switches in the following conditions;

- In corrosive gases, such as silicon gas
- In a dusty environment

When cleaning the switch, use a diluted form of a neutral cleaning agent. Using acidic or alkali solvents can adversely affect the performance of the switch.

Panasonic ideas for life

FEATURES

- Superminiature type, light-weight snap action switch PC board terminal type (0.2g)

Solder terminal type with mounting holes (0.3g)

AV4 SWITCHES

SNAP-ACTION SWITCHES IN THE WORLD

ONE OF THE SMALLEST

TYPICAL
 APPLICATIONS

- Compact visual equipment

Camera, portable VCR

- Small-sized audio equipment Cassette tape recorder, Car stereo
- Office automation equipment

Light pen for personal computer, floppy disc apparatus, printer, computer

ORDERING INFORMATION

Ex. AV			61	
\square				
Product Name	Terminals	Actuators	Operating force, max. (by pin plunger)	Contacts
FU	0 : Solder terminal with mounting holes (1.65 mm dia.) 4: PC board straight terminal 5: PC board angle terminal 6: PC board reverse angle terminal	0 : Pin plunger 2: Hinge lever 4: Simulated roller lever	4: 0.98 N	Nil: Ag plated contact 61: Au plated contact

CONSTRUCTION

PC board straight terminal type

CONTACT ARRANGEMENT

AV4

PRODUCT TYPES

Type of contacts	Actuator	Operating force, max.	Part no.			
			PC board terminal			Solder terminal with mounting holes
			Straight terminal	Angle terminal	Reverse angle terminal	
Ag plated contact type	Pin plunger	0.98 N	AV4404	AV4504	AV4604	AV4004
	Hinge lever	0.25 N	AV4424	AV4524	AV4624	AV4024
	Simulated roller lever	0.29 N	AV4444	AV4544	AV4644	AV4044
Au plated contact type	Pin plunger	0.98 N	AV440461	AV450461	AV460461	AV400461
	Hinge lever	0.25 N	AV442461	AV452461	AV462461	AV402461
	Simulated roller lever	0.29 N	AV444461	AV454461	AV464461	AV404461

SPECIFICATIONS

1. Contact rating

Type of contact	Resistive load $(\cos \phi \approx 1)$
Ag plated contact	$0.5 \mathrm{~A} \mathrm{30V} \mathrm{DC}$
Au plated contact	$0.1 \mathrm{~A} \mathrm{30V} \mathrm{DC}$

The color of:

Type	Body	Cap	Plunger
Ag plated contact	Black	Black	Black
Au plated contact	Black	Black	Red

2. Characteristics

Vibration resistance

Shock resistance	Levelype
	Pin plunger type
	Lever type

Allowable operation speed
Mechanical max. switching frequency

Ambient temperature

Unit weight

3. Operating characteristics

1) PC board terminal

Actuators	Operating force, max.	Release force, min.	Pretravel, max. mm	Movement differential, max. mm	Overtravel, min. mm	Operating position mm
Pin plunger	0.98 N	0.098 N	0.3	0.1	0.1	4.8 ± 0.15
Hinge lever	0.25 N	0.010 N	2.4	0.7	0.4	5.8 ± 0.7
Simulated roller lever	0.29 N	0.010 N	2.2	0.7	0.3	6.1 ± 0.7

2) Solder terminal

Actuators	Operating force, max.	Release force, min.	Pretravel, max. mm	Movement differential, max. mm	Overtravel, min. mm	Operating position mm
Pin plunger	0.98 N	0.098 N	0.3	0.1	0.1	5.4 ± 0.15
Hinge lever	0.25 N	0.020 N	2.4	0.7	0.4	6.4 ± 0.6
Simulated roller lever	0.29 N	0.020 N	2.2	0.7	0.3	6.7 ± 0.5

DATA

Au plated contact type

Range of low-level current and voltage (reference only)

\longrightarrow DC voltage (V)

DIMENSIONS

Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

1. PC board terminal

mm General tolerance: ± 0.15
Straight terminal
Pin plunger type

CAD Data

Pretravel, max. mm	0.3
Movement differential, max. mm	0.1
Overtravel, min. mm	0.1
Operating position, mm	4.8 ± 0.15
Free position, mm	5.2

Hinge lever type

CAD Data

Pretravel, max. mm	2.4
Movement differential, max. mm	0.7
Overtravel, min. mm	0.4
Operating position, mm	5.8 ± 0.7
Free position, mm	7.5

Remark: All other dimensions are the same as those of pin plunger type.

CAD Data

Pretravel, max. mm	2.2
Movement differential, max. mm	0.7
Overtravel, min. mm	0.3
Operating position, mm	6.1 ± 0.7
Free position, mm	8.0

Remark: All other dimensions are the same as those of pin plunger type.

2. Angle terminal

Right angle terminal
Pin plunger type

CAD Data

Pretravel, max. mm	0.3
Movement differential, max. mm	0.1
Overtravel, min. mm	0.1
Operating position, mm	4.8 ± 0.15
Free position, mm	5.2

Remark: All other dimensions of hinge lever type and simulated roller lever type are the same as those of straight terminal types.

Left angle terminal
Pin plunger type

CAD Data

Remark: All other dimensions of hinge lever type and simulated roller lever type are the same as those of straight terminal types.

3. Solder terminal with mounting holes

Pin plunger type

CAD Data

Hinge lever type

CAD Data

Remark: All other dimensions are the same as those of pin plunger type.

Simulated roller lever type

CAD Data

Pretravel, max. mm	2.2
Movement differential, max. mm	0.7
Overtravel, min. mm	0.3
Operating position, mm	6.7 ± 0.5
Free position, mm	9.4

Remark: All other dimensions are the same as those of pin plunger type.

NOTES

1. Mounting

1) After mounting and wiring, the insulation distance between ground and each terminal should be confirmed as sufficient.
2) When the operation object is in the free position, force should not be applied to the actuator or to the pin plunger. Also force should be applied to the pin plunger from vertical direction to the switch.
3) In setting the movement after operation, the over-travel should be set within the range of the specified O.T. value.
3) In fastening the switch body, use the M1.4 screw, with tightening torque of not more than $0.098 \mathrm{~N} \cdot \mathrm{~m}$.

2. Soldering

1) Manual soldering should be accomplished within 5 seconds with max. $320^{\circ} \mathrm{C}$ iron.
Care should be taken not to apply force to the terminals during soldering.
2) Terminal portion must not be moved within 1 minute after soldering. Also no tensile strength of lead wires should be applied to the terminals.
3) When using the angle terminal type, insert an insulation separator between the switch body and the printed circuit board (insulation separator 0.2 to 0.4 mm thick) to prevent the soldering flux from flowing under the PC board.

3. Cleaning

As AV4 switch is not completely sealed construction, avoid cleaning.

4. Selection of switch

When specifying AV4 switches, allow $\pm 20 \%$ to the listed operating characteristics.
5. Avoid using and keeping switches in the following conditions:

- In corrosive gases
- In a dusty environment
- Where silicon atmosphere prevails

6. When switching low-level circuits (max. 100 mA), Au plated contact types are recommended.
7. When using the lever type, avoid applying force from the reverse and side direction of actuating.

Panasonic ideas for life

SAFETY INTERLOCK SWITCH SMALL SIZE \& LIGHT FORCE

FEATURES

- Constructed with dual restoration springs and double cut-off for safety
- Contact gap of greater than 4 mm (conforming to IEC60950-1)
- As for 3 Form A type, combination of power contact and signal contact is available
- ULIC-UL/ENEC/VDE approved

TYPICAL APPLICATIONS

- Door interlock of copiers, printers, facsimiles
- Door interlock of other compact appliances

ORDERING INFORMATION

Product Name	Contact arrangement	Capacity and mounting method	Terminals	Contact
GX	1: 1 Form A Power switching contact 2: 2 Form A Power switching contact 3: 3 Form A Power switching contact 6: 1 Form A Power switching contact and 2 Form A Signal switching contact 7: 2 Form A Power switching contact and 1 Form A Signal switching contact	0: Standard type 10.1 A (Snap-in mounting)	5: . 250 Quick-connect terminal (O.T. 2 mm) 6: . 250 Quick-connect terminal (O.T. 4 mm)	F: Cadmium free

PRODUCT TYPES

Rating	Overtravel (O.T.) Min. mm	Contact arrangement		Switching timing		Part number
				1st ON	2nd ON	
Standard type 10.1A 250 V AC	2	1 Form A Power switching contact		-	-	AGX105F
		2 Form A Power switching contact		-	-	AGX205F
	4	1 Form A Power switching contact		-	-	AGX106F
		2 Form A Power switching contact		-	-	AGX206F
			3 Form A Power switching contact	3 Form A power	-	AGX306F
		3 Form A	1 Form A Power switching contact 2 Form A Signal switching contact	1 Form A power	2 Form A signal	AGX606F
			2 Form A Power switching contact 1 Form A Signal switching contact	2 Form A power	1 Form A signal	AGX706F

AGX

SPECIFICATIONS

I
 Char
 2 3 3 0 0 0 3 3 3 3

Contact type	Resistive load $(\cos \square \approx 1)$	$\begin{gathered} \text { Motor load* (EN61058-1) } \\ (\cos \phi \approx 0.6) \\ \hline \end{gathered}$
Standard type power switching contact	$10.1 \mathrm{~A} \mathrm{125V} \mathrm{AC}$ 10.1 A 250 V AC 6 A 30 V DC 3 A 48 V DC (3 Form A type only)	$\begin{aligned} & 3 \mathrm{~A} 125 \mathrm{~V} \text { AC } \\ & 3 \mathrm{~A} 250 \mathrm{~V} \end{aligned}$
Signal switching contact (3 Form A only)	$\begin{gathered} \text { 0.1A 48V DC } \\ \text { Contact Low-level circuit: } 1 \mathrm{~mA} 5 \mathrm{~V} \text { DC } \end{gathered}$	-

Remark: Motor load designates an inrush current switching capability of 6 times the indicated rating

2. Characteristics

Type		Standard type
Expected life	Mechanical (at 60 cpm)	$10^{6} \mathrm{~min}$.
	Electrical (at 20 cpm , operating speed: $10 \mathrm{~mm} / \mathrm{s}$)	$\begin{gathered} 10^{5} \\ \text { (at } 10.1 \mathrm{~A} 250 \mathrm{~V} \mathrm{AC} \end{gathered}$
Insulation resistance		$100 \mathrm{M} \Omega$ at 500 V DC
Dielectric strength	Between terminals	2,000Vrms for 1 minute
	Between terminals and other exposed metal parts	2,500Vrms for 1 minute
	Between terminals and ground	2,000Vrms for 1 minute
Initial contact resistance		$100 \mathrm{~m} \Omega$ max. (by voltage drop at $1 \mathrm{~A}, 6$ to 8 V DC)
Temperature rise (terminal portion)		Initial $45^{\circ} \mathrm{C}$ max., After test $55^{\circ} \mathrm{C}$ max.
Vibration resistance		10 to 55 Hz at single amplitude of 0.75 mm (contact opening: 1 ms max.)
Shock resistance		Min. 294m/s ${ }^{2}$ (contact opening: $1 \mathrm{~ms} \mathrm{max)}$.
Actuator strength		49N for 1 minute (for operating direction)
Tensile terminal strength		Min. 147N (pulling for operating direction)
Allowable operating speed		Min. 10 to $300 \mathrm{~mm} / \mathrm{s}$
Allowable operating cycle rate		60 cpm
Temperature resistance		$-40^{\circ} \mathrm{C}$ to $-45^{\circ} \mathrm{C}$: 48 hours, $+80^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$: 48 hours
Ambient temperature		$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (not freezing nor condensing)
Flame retardancy		Min. UL 94V-0
Tracking resistance (CTI)		Min. 175
Contact material		AgCuO alloy

*Remark: Test condition and judgement are complying with "JIS C4505", "EN61058" and "UL1054",

3. Operating characteristics

Contact arrangement		Part number	Operating force (O.F.) max.	Total operating force (T.F) max. Push button position: 2.4 mm	Free position (F.P.) max. mm	$\begin{gathered} \text { Operating } \\ \text { position(O.P.) } \\ \mathrm{mm} \end{gathered}$	Total travel position (T.T.P.) mm	Over travel (O.T.) min. mm
Standard type 10.1A 250V AC	1 Form A	AGX105F	3.92 N	4.90 N	8	4.8 ± 0.4	2.4	2.0
	2 Form A	AGX205F	3.92 N	4.90 N	8	4.8 ± 0.4	2.4	2.0
	1 Form A	AGX106F	3.92 N	6.86 N	10	7.0 ± 0.4	2.4	4.0
	2 Form A	AGX206F	3.92 N	6.86 N	10	7.0 ± 0.4	2.4	4.0
	3 Form A	AGX306F	2.94 N	5.88 N	10	7.0 ± 0.4	2.4	4.0

[^10] the specifications for the contact where the operation position turns ON later are delayed by approximatery 0.8 mm compared with the above table.

CONSTRUCTION

Dual safety construction

- Dual restoration spring
- Double cut-off type

DIMENSIONS
Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

1 Form A
mm General tolerance: ± 0.4

CAD Data

2 Form A
CAD Data

3 Form A

CAD Data

Signal switching contact

Power switching contact

Hole cutting dimension

Panel thickness	0.8 to 1.75	1.75 to 2.5
Dimension A	$30.2_{-0}^{+0.1}$	$30.5_{-0}^{+0.1}$

(Copper is standard as panel material.)

- Signal switching contact

Remark: Power switching contact type has .250
Quick-connect terminal and signal switching contact type has . 110 Quick-connect terminal.

NOTES

1. Switch mounting

Mount the switch with the hole cutting dimensions shown in the drawing.
2. Adjustment of the operating device: With respect to the position of the operating device and the switch body, set the position as indicated in the condition on the right. If this condition is exceeded, the mechanical and electrical performance will be impaired. In addition, the force applied by the operating device should be in a perpendicular direction. Even if the push-button is used in the full total travel position, there will be no influence on the life of the switch.

Free condition
3. Confirming insulating distance Before mounting and wiring, the insulating distance between terminals and between the terminals and ground should be checked for assurance of proper distance. With respect to the terminal connections, it is recommended that receptacles with insulating sleeves or "Positive Lock Connector*" be used. Also consideration should be given to the wiring not to apply force to the terminal section normally.
*Registered by AMP, Ltd.
4. Regarding fastening lead wires to terminals
Use .250 receptacle (terminal thickness 0.8 mm) or .110 receptacle (terminal thickness 0.5 mm) should be used for connection. Make sure the sockets are straight. If they are skewed, the terminals will require excessive insertion force. The insertion force varies according to manufacturer's specifications. Check it
for the sockets you are using.
5. Material of the panel

Steel sheet is recommended as the panel material. When using soft material, confirm the condition for actual use.
6. Quality check under actual loading conditions
To improve reliability, check the switch under actual loading conditions. Avoid any situation that may adversely affect switching performance.
7. Avoid using and keeping switches in the following conditions.

- In corrosive gases
- In a dusty environment
-Where silicon atomosphere prevails

REFERENCE

1. Outline of UL1054 test

Overload test
Standard type: 12.625A 250V AC
(power factor 0.75 to 0.8)
Endurance test
Standard type: 10.1A 250V AC
(power factor 0.75 to 0.8)
After testing, temperature rise of terminals should be less than $30^{\circ} \mathrm{C}$ and no abnormality should be observed in characteristics.

2. Outline of EN61058-1 test

After switching 25,000 times on the above load condition at both $85^{+5}{ }^{\circ} \mathrm{C}$ and $25 \pm 10^{\circ} \mathrm{C}$, temperature rise of terminals should be less than $55^{\circ} \mathrm{C}$ and no abnormality should be observed in characteristics.

INTRODUCTION OF CONNECTORS (made by Nippon Tanshi Co., Ltd)

1. For 2 Form A power switching contact type

Applicable AGX switch part no.:
AGX205F, AGX206F

* Housing

Model number: N1620-4204

* Receptacle

Model numbers
17168-2 (for narrow wires, post-plated product)
17168-M2 (for narrow wires, wood veneer plated product)
172131-M2 (for thick wires)
2. For 2 Form A power switching contact type of 2 Form A power switching contact + 1 Form A signal switching contact

For 2 Form A power switching contact type switching contact type
of 2 Form A power switching contact type

Applicable AGX switch part no.:
AGX706F

* Housing

Model number: N3220-4204

* Receptacle

Model numbers
17901-M2, 17902-M2, 17903-M2 (wire size differences)

Remark: Please consult us if you need above connectors.

SAFETY INTERLOCK SWITCH CONSTRUCTED WITH DUAL RESTORATION SPRINGS

FEATURES

- 8 mm or more is assured as insulation distance between contacts (snap-in mounting 2 Form A and 3 Form A type)
- Durability of $\mathbf{1 0 0 , 0 0 0}$ times (10.1A 250V AC) is assured for UL interlock circuit
- Constructed with easy-to-connect terminals
Terminal specifications is 250 Quick-Connect (based on DIN standards) Connection can be made with insulating sleeve on connecting lug
- UL/C-UL, ENEC (VDE) approved

TYPICAL

APPLICATIONS

1. Office equipment

- Copiers
- Facsimiles
- Projectors

2. Home appliances

- Microwave ovens
- Refrigerators

ORDERING INFORMATION

PRODUCT TYPES

Type				Part number
Mounting method	Button guard	Contact arrangement	Contact gap mm	
Screw mounting	Without	1 Form A	Min. 6	AV16653F
		1 Form B	Min. 3	AV15653F
		1 Form A 1 Form B	Max. 3	AV14653F
		2 Form A	Min. 6	AV13653F
Snap-in mounting	Without	2 Form A	Min. 8	AV12753F
		3 Form A	Min. 8	AV11753F
	With	2 Form A	Min. 8	AV12853F
		3 Form A	Min. 8	AV11853F

SPECIFICATIONS

1. Contact rating

Voltage	Resistive load $(\cos \phi \approx 1)$	VDE motor load $(\cos \phi \approx 0.6)$
125 V AC	10.1 A	3 A

[^11]
2. Characteristics

Expected life	Mechanical (at 60 cpm)	10^{6}
	Electrical (at 20 cpm , operating speed: $10 \mathrm{~mm} / \mathrm{s}$)	$\begin{gathered} 10^{5}(10.1 \mathrm{~A} 250 \mathrm{~V} \text { AC) } \\ 5 \times 10^{4}(10(3) \mathrm{A} 250 \mathrm{~V} \sim) \end{gathered}$
Insulation resistance		Min. $100 \mathrm{M} \Omega$ at 500 V DC
Dielectric strength	Between terminals	2,000 Vrms for 1 min .
	Between terminals and other exposed metal parts	2,500 Vrms for 1 min .
	Between terminals and ground	2,000 Vrms for 1 min .
Initial contact resistance		Max. $100 \mathrm{~m} \Omega$ (by voltage drop at 1 A 6 to 8 V DC)
Temperature rise		Initial $45^{\circ} \mathrm{C}$ max., After test $55^{\circ} \mathrm{C}$ max.
Vibration resistance		10 to 55 Hz at double amplitude of 1.5 mm (contact opening max. 1 ms)
Shock resistance		Min. $294 \mathrm{~m} / \mathrm{s}^{2}$ (contact opening max. 1 ms)
Actuator strength		49 N for 1 minute (for operating direction)
Tensile terminal strength		Min. 147 N (pulling for operating direction)
Allowable operating speed		10 to $300 \mathrm{~mm} / \mathrm{s}$
Allowable operating cycle rate		60 cpm
Temperature resistance		$-40^{\circ} \mathrm{C}$ to $-45^{\circ} \mathrm{C}$: 48 hours, $+80^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$: 48 hours
Ambient temperature		-25 to $+85^{\circ} \mathrm{C}$ (not freezing below $0^{\circ} \mathrm{C}$)
Flame retardancy		Min. UL 94V-1
Tracking resistance (CTI)		Min. 175
Contact material		AgCuO alloy

*Remark:Test condition and judgement are complying with "NECA C4505", "EN61058" and "UL1054".

3. Operating characteristics

1) Screw mounting type

Contact arrangement	Operating force (O.F.) max.	Total operating force (T.F) max. Push-button position: 10 mm	Free position (F.P.) max. mm	Operating position (O.P.) mm	Total travel position (T.T.P.) mm	Over travel (O.T.) min. mm
1 Form A	$\begin{gathered} \text { (N.O. contact to ON) } \\ 4.90 \mathrm{~N} \end{gathered}$	6.37 N	16.6	$\begin{aligned} & \text { (N.O. contact to ON) } \\ & 12.7 \pm 0.4 \end{aligned}$	10	2.1
1 Form B	$\begin{gathered} \text { (N.C. contact to OFF) } \\ 2.94 \mathrm{~N} \end{gathered}$	7.35N	15.3	$\begin{gathered} \text { (N.C. contact to OFF) } \\ 14.9 \pm 0.4 \end{gathered}$	10	4.3
1 Form A 1 Form B	$\begin{gathered} \text { (N.O. contact to ON) } \\ 5.88 \mathrm{~N} \end{gathered}$	7.35N	15.3	$\begin{gathered} \text { (N.O. contact to ON) } \\ 12.7 \pm 0.4 \end{gathered}$	10	2.1
1 Form A 1 Form B	$\begin{aligned} & \text { (N.C. contact to OFF) } \\ & 2.94 \mathrm{~N} \end{aligned}$	7.35N	15.3	$\begin{gathered} \text { (N.C. contact to OFF) } \\ 14.9 \pm 0.4 \end{gathered}$	10	2.1
2 Form A	$\begin{gathered} \text { (N.O. contact to ON) } \\ 7.85 \mathrm{~N} \end{gathered}$	9.81 N	16.6	$\begin{aligned} & \text { (N.O. contact to ON) } \\ & 12.7 \pm 0.4 \end{aligned}$	10	2.1

2) Snap-in mounting type

Contact arrangement	Operating force (O.F.) max.	Total operating force (T.F) max. Push-button position: 10 mm	Free position (F.P.) max. mm	Operating position (O.P.) mm	Total travel position (T.T.P.) mm	Over travel (O.T.) $\mathrm{min} . \mathrm{mm}$
2 Form A	$\begin{gathered} \text { (N.O. contact to ON) } \\ 7.85 \mathrm{~N} \end{gathered}$	9.81 N	14	$\begin{gathered} \text { (N.O. contact to ON) } \\ 9.3 \pm 0.4 \end{gathered}$	7.5	2.1
3 Form A	$\begin{gathered} \text { (N.O. contact to ON) } \\ 9.81 \mathrm{~N} \end{gathered}$	14.7 N	14	$\begin{gathered} \text { (N.O. contact to ON) } \\ 9.3 \pm 0.4 \end{gathered}$	7.5	2.1

CONSTRUCTION

Screw mounting type (1 Form A 1 Form B)

Snap-in mounting type (3 Form A)

CONTACT OPERATION CHART

- 1 Form A

DIMENSIONS

Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

1. Screw mounting type

mm General tolerance: ± 0.4
1 Form A, 1 Form B, 1 Form A 1 Form B
CAD Data

Contact gap
1 Form A: Min. 6 mm
1 Form B: Min. 3mm
1 Form A 1 Form B: Max. 3mm
Remarks: Terminal no. $3 \& 4$ are for 1 Form A. Terminal no. $1 \& 2$ are for 1 Form B.

2 Form A CAD Data

Contact gap

2 Form A: Min. 6mm

2. Snap-in mounting type

2 Form A type without button guard
2 Form A CAD Data

Tolerance: ± 0.1
2 Form A type with button guard

Recommended panel opening dimensions (common)

2 Form A: Min. 8mm

Panel thickness	1.0	2.5
Dimension A	36.7	37.7

3 Form A CAD Data 3 Form A type without button guard

3 Form A type with button guard

Recommended panel opening dimensions (common)

Contact gap
3 Form A: Min. 8mm

NOTES

1. Switch mounting

Mount the switch to a smooth surface using M4 screws. Tighten the screws with 0.3 to $0.5 \mathrm{~N} \cdot \mathrm{~m}\{3$ to $5 \mathrm{~kg} \cdot \mathrm{~cm}\}$ torque. To prevent loosening of the mounting screws, it is recommended that spring washers be used in combination with adhesive material for locking the screws.
2. Adjustment of the operating device: With respect to the position of the operating device and the switch body, set the position as indicated in the condition on the right. If this condition is exceeded, the mechanical and electrical performance will be impaired. In addition, the force applied by the operating device should be in a perpendicular direction. Even if the push-button is used in the full total travel position, there will be no influence on the life of the switch. Screw mounting type

Snap-in mounting type

3. Confirming insulating distance: Before mounting and wiring, the insulating distance between terminals and between terminals and ground should be checked for assurance of proper distance. With respect to the terminal connections, it is recommended that receptacles with insulating sleeves be used.
Also, consideration should be given to the wiring not to apply force to the terminal section normally.

4. Avoid using AV1 switches in the following conditions:

- Locations where hydrogen sulfide gas or other corrosive gases exist.
- Locations where gasoline, thinner, or other inflammable or explosive gases exist.
- Locations where there is dust and refuse.
- For operation where the perpendicular operating speed is less than $10 \mathrm{~mm} / \mathrm{s}$
- For operation frequency of make/break exceeding 60 cpm .
- For ambient temperatures exceeding the range of $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
- For ambient humidity exceeding 85% R.H.
- For use in a silicon atmosphere.

5. For use of AV14653F
(1 Form A 1 Form B type):
For the AV14653F, the air distance between the N.O. and N.C. contacts is less than the required value of VDE. The N.O. and the N.C. contacts can carry only the same electric potential.

SMALL, HIGHLY RELIABLE TIP SENSOR CONTAINING A PHOTO SENSOR

FEATURES

- Realizes miniaturization of equipment and spaces saving. Size of body: $9.5 \times 9.5 \times 9.3 \mathrm{~mm}$
- The contact type is equivalent to normally closed contacts, which satisfies the PL Act.
- The internal sphere can be used over an operation angle of 360 degrees in the circumferential direction.
- There are three standard terminal profiles which can be selected according to the mounting direction of the PCB.
- The terminals are tin-plated for longterm solderability.

TYPICAL
 APPLICATIONS

- Gas heaters
- Electric fans
- Water vallet
- Infrared treatment device
- Electric pots with warming function

ORDERING INFORMATION

Mounting direction	Vertical mounting	Horizontal mounting	Reverse mounting
Part no.	AHF21	AHF22	AHF23
PC board mounting condition	A		An

Remark: Standard Packaging: Tube 50 pcs.

CONTACT TYPE

Normally closed type (The photo transistor is ON when the sensor is being used.)

APPLICABLE CIRCUIT

Refer to the dimensional diagram for the terminal nos.

- $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$
- $\mathrm{R}_{2}=100 \mathrm{k} \Omega$
- Forward current,

IF, of the LED: 19 mA
$\left(\mathrm{Vcc}=5 \mathrm{~V}, \mathrm{R}_{1}=200 \Omega\right.$)

- Forward voltage,
V_{F}, of the LED: $\operatorname{Typ}=1.2 \mathrm{~V}$

BASIC CHARACTERISTICS

For $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and applicable circuit conditions

1) Operation characteristics
(operation speed 6 degrees/second)

- Operation angle (output: $\mathrm{VoL}_{\mathrm{L}} \rightarrow \mathrm{V}$ он): 25 to 60 degrees
- Return angle (output: Vон \rightarrow Vol): Min. 20 degrees

2) Output (Vo) characteristics (The sphere must be stationary.)

- Vol (photo transistor ON): Max. 1.0 V (horizontal)
- Vон (photo transistor OFF): Min. 4.0 V (inclined at an angle of at least 60 degrees)

SPECIFICATIONS

Item	Specificaitons
Electrical and mechanical life	Min. 10^{5} (using the applicable circuit) At 6 cpm ; Opening and closing position: 0 deg. $\leftrightarrow 90$ deg. (The internal shpere must be stationary for at least 500 ms at angles of 0 and 90 deg. respectively.)
Vibration resistance	10 to 400 Hz acceleration $2.9 \mathrm{~m} / \mathrm{s}^{2}$ applied for 7 days
	5 to 10 Hz at single amplitude of $5 \mathrm{~mm}, 5 \times 10^{5}$ cycles
Shock resistance	$588 \mathrm{~m} / \mathrm{s}^{2}$ applied 3 times in each of 6 directions
Terminal strength	Min. 9.8 N (each direction)
Dropping individual part	Three times from height of 100 cm
High temperature, high humidity storage ability	Leave for 500 hours at $85^{\circ} \mathrm{C}$ and $85 \% \mathrm{RH}$ (no freezing at low temperature)
High temperature storage ability	Leave for 500 hours at $85^{\circ} \mathrm{C}$
Low temperature storage ability	Leave for 500 hours at $-25^{\circ} \mathrm{C}$ (no freezing at low temperature)
Shock and heat resistance	Subject to 100 cycles each consisting of 30 minutes at $-25^{\circ} \mathrm{C}$ and 30 minutes at $85^{\circ} \mathrm{C}$.
Resistance to hydrogen sulfide	Leave for 500 hours in an atmosphere containing 3 ppm of hydrogen sulfide at $40^{\circ} \mathrm{C}$ and $75 \% \mathrm{RH}$.
Resistance to sulfur dioxide gas	Leave for 500 hours in an atmosphere containing 10 ppm of sulfur dioxide at $40^{\circ} \mathrm{C}$ and $95 \% \mathrm{RH}$
Resistance to ammonia gas	Leave for 96 hours in an atmosphere containing 3\% of ammonia gas at normal temperature and humidity.
Resistance to dust	Mix with $2 \mathrm{~kg} / \mathrm{m}^{3}$ talcum powder or fly ash and leave to stand for 8 hours
Ambient temperature	-20 to $+80^{\circ} \mathrm{C}$ (no freezing nor condensation at low temperature)

1) Operation characteristics (operation speed 6 degrees/s)

- Operation angle (output: Vol \rightarrow Vон): 25 to 60 degrees
- Return angle (output: $\mathrm{V}_{\mathrm{oH}} \rightarrow \mathrm{V}$ о) : 20 degrees min.

2) Output (Vo) characteristics (The sphere must be stationary.)

- Vol (photo transistor ON): 1.2 V max. (horizontal)
- Voн (photo transistor OFF): 3.8 V min. (inclined at an angle of at least 60 degrees)
1.Without any indications, specifications are measured at following conditions
- Temperature: 15 to $35^{\circ} \mathrm{C}$
- Humidity: 25 to 85% RH
- Atmospheric pressure: 86 to 106 kpa .
2.The evaluation criteria for performance are as follows:

Basic characteristics $-\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and applicable circuit conditions

- Horizontal mounting type (AHF22) mark from your local Panasonic Electric Works representative.

PC board pattern (bottom view)

- Vertical mounting type (AHF23)

CAD Data

PC board pattern (bottom view)

PC board pattern (bottom view)

[Internal circuit and applicable circuit]

NOTES

1. Handling
1) In the enent that a voltage or current that exceeds the maximum rating is applied to, or passed between the terminals, the photo-transistor will no longer function normally. In such a case, do not reuse the photo-transistor but discard it.
2) Be careful not to apply an excessively large load to the terminals because this may damage the photo-transistor.

2. Soldering

1) When soldering by hand, use a 18 W soldering iron that has a temperature regulator (iron tip temperature must be no more than $350^{\circ} \mathrm{C}$) and apply the tip to the joint for no more than 3 seconds.
2) When performing automatic soldering, ensure that the board does not remain in the solder bath for more than 10 seconds at $260^{\circ} \mathrm{C}$, or more than 3 seconds at $350^{\circ} \mathrm{C}$.
3) Be careful not to move the terminals for one minute after soldering them.

3. Environment

This product is a non-contact type tip detection switch containing a photointerrupter. It is intended for installation in equipment. Because of the nature of a semiconductor, if this product is used continuously for a long period in a high temperature, low temperature and/or humid environment, according to the
optic quantities decrease of luminescent diode output characteristics may be significantly affected. In such a case, take suitable measures, such as inserting a comparator at the output side, to provide a greater degree of margin with respect to change in the output characteristics, and thereby improve the reliability of the product.

4. Preventing a malfunction

1) The tip sensor uses an internal sphere, hence chattering occurs if it is subjected to vibration or shock. To prevent chattering, continuously read pulses of 30 ms max. using a microprocessor, and set the microprocessor so that the switch goes L (ON) or H (OFF) if the output level exceeds 500 ms continuously. Also, take steps to keep induction and RF noise away from the sensor.

2) The switch should be mounted keeping away from the vibration generator such as motor. Fix the PC board firmly in order to prevent resonance with the vibration generator, or the contact chattering of a switch may
occur by the movement of a ball inside. The allowable vibration level which the chattering does not occur would be less than $2.94 \mathrm{~m} / \mathrm{s}^{2}\{0.3 \mathrm{G}\}$ at 10 to 260 Hz and 320 to 400 Hz . The range 260 to 320 Hz may have a resonance point and the level should be less than $0.98 \mathrm{~m} / \mathrm{s}^{2}$ \{0.1G\}.

5. Others

1) Depending on the circuitry and the environmental conditions, solder migration may occur and short a circuit. Please confirm that the insulation distance is large enough in the actual application.
2) To prevent a malfunction, the switch should be kept away from the direct sunlight and any other light sources. 3) The noises caused by electrostatics, surge voltage and inductives may break the photo-interruptor.
3) The reflow soldering and cleaning are not allowed.
4) The switch should be mounted with the tolerance ± 3 degree.

6. Confirmations in the actual use.

Each items in this spec sheet was tested and confirmed independently at a certain duration. To get a higher reliability of the equipment, please confirm the switch quality with the actual load and environmental conditions before using.

Technical Terminology \& Cautions for Use

TECHNICAL TERMINOLOGY

1. Rated values

Values indicating the characteristics and performance guarantee standards of the snap-action switches. The rated current and rated voltage, for instance, assume specific conditions (type of load, current, voltage, frequency, etc.).

2. Mechanical life

The service life when operated at a preset operating frequency without passing electricity through the contacts. (The life test is performed at a switching frequency of 60 times/minute and operating speed of $100 \mathrm{~mm} /$ second at the regular cam.)

3. Electrical life

The service life when the rated load is connected to the contact and switching operations are performed. (The life test is performed at a switching frequency of 20 times/minute and operating speed of 100 $\mathrm{mm} /$ second at the regular cam.)

4. Contact form

This refers to the components determining the type of application which make up the electrical input/output circuits in the contact.

Switching type	COM NO
Normally closed type	Terminal symbols
Normally open type	
COM: Common terminal	
NO: Normally closed terminal	
NO: Normally open terminal	

5. Insulation resistance

Resistance between noncontinuous terminals, terminals and metal parts not carrying current, and between terminals and the ground.

6. Withstand voltage

Threshold limit value that a high voltage can be applied to a predetermined measuring location for one minute without causing damage to the insulation.

7. Contact resistance

This indicates the electrical resistance at the contact part. Generally, this resistance includes the conductor resistance of the spring and terminal portions.

8. Vibration resistance

Malfunction vibration ... Vibration range where a closed contact does not open for longer than a specified time due to vibrations during use of the snap-action switches.

9. Shock resistance

Shock durability ... Shock range where the mechanical shocks received during snap-action switches transport and installation do not damage the parts or harm the operating characteristics. Malfunction shock ... Shock range where a closed contact does not open for longer than a specified time due to shocks during use of the snap-action switches.

10. Operating Force (O.F.)

The force required to cause contact snap-action. It is expressed terms of force applied to the plunger or the actuator.
11. Release Force (R.F.)

The force to be applied to the plunger or the actuator at the moment contact snaps back from operated position to unoperated position.

12. Pretravel (P.T.)

Distance of the plunger or the actuator movement from free position to operating position.

13. Overtravel (O.T.)

The distance which the plunger or the actuator is permitted to travel after actuation without any damage to the switching mechanism.
14. Movement Differential (M.D.)

The distance from operating to release position of the plunger or the actuator. 15. Operating Position (O.P.)

The position of the plunger or the actuator when the traveling contacts snaps with the fixed contact.

16. Free Position (F.P.)

Position of the switch plunger or the actuator when no force is applied to.

17. Overtravel Position (O.T.P.)

The stopping position of the plunger or the actuator after total travel.

18. Release Position (R.P.)

The position of the plunger or the actuator when the traveling contact snaps back from operating position to its original position.
The following terminologies are applied to all our switches.

CAUTIONS FOR USE

- Technical Notes on Mechanical Characteristics

1. Actuation Force and Stroke

Adequate stroke setting is the key to high reliability. It is also important that adequate contact force be 'maintained to ensure high reliability. For a normally closed circuit, the driving mechanism should be set so that the actuator is normally in the free position. For a normally open circuit, the actuator should be pressed to 70% to 100% of the specified stroke to absorb possible errors.
If the stroke is set too close to the operating point (O.P.), this may cause unstable contact, and in the worst case
may cause actuator damage due to inertia of the drive mechanism. It is advisable that the stroke be adjusted with the mounting plate or driving mechanism. The figure at right shows a typical example of activation and contact forces varying with stroke. In the vicinity of the O.P. and R.P., the contact force is diminished, causing chatter and contact bounce immediately before or after reversal. For this reason, use the switch while giving due consideration to this. This also causes the snap action switch to be sensitive to vibration or physical impact.

TECHNICAL TERMINOLOGY \& CAUTIONS FOR USE

2. Changes in Operation
 Characteristics

Exercise design care so that malfunctions will not occur if the snap action switch characteristics vary by as much as 20% from, rated values.
3. Mechanical Conditions for Type Selection
Actuator type should be selected according to activation method, activation
speed, activation rate, and activation frequency.

1) An extremely slow activation speed may cause unstable contact transfer, possibly resulting in contact failures or contact fusion.
2) An extremely high activation speed may cause damage to contacts or contact response failure.

4. Driving Mechanism

Use of a driving mechanism which will cause physical impact to the actuator should be avoided.
<Example>

- Technical Notes on Electrical Characteristics

1. The snap-action switch is designed for AC operations. While it has small contact gaps and no arc absorber, it may be used for low-capacity DC operations.
(However, a DC magnetic blow-out switch is available in the NZ Basic switches.)
2. For applications with very small switching voltage or current, choose the dry circuit type

Small current and voltage Application Range Dry Circuit type)

3. Application to Electronic Circuits

1) The snap-action switch contacts can sustain bounce or chatter when closed. Bounce or chatter can cause noise or pulse count errors when the snap action switch is used in electronic circuits.
2) If contact bounce or chatter poses problems in the vicinity of the O.P. and R.P., use a suitable absorption network, such as a C/R network.
4. Check the surge current, normal current and surge duration.
5. Contact resistance given in performance specifications is measured with a voltage drop method using 6 to 8 V DC, 1 A (except for low-level load type). Contact resistance across COM and NC terminals is measured in the open position, while contact resistance across COM and NO terminals is measured in the closed position.
6. Ratings are measured under the following conditions: Inductive load:
Power factor $=0.6$ to 0.7
Time constant $=7 \mathrm{~ms}$ or less (DC)
7. To prevent contact fusion failure, be sure to use a serial resistance for each capacitive load.
8. If snap action switch operation is synchronized with the AC supply phase, this may cause: shortened electrical life, contact fusion failure, contact transfer, or other reliability problems.

Cautions in a circuit

1. Contact protection is recommended when snap-action switches are used in an inductive load circuit. (except for NZ Basic Switches magnetic blow-out types for DC)

2. Do not connect the contacts on individual switches to different type or different poles of the power supply.
Examples of power supply connections (connection to different poles)

Example of wrong power supply connection (connection to different poles of power supply)
This may lead to mixed DC and AC.

3. Avoid circuits which apply voltage between contacts. (This may lead to mixed deposition.)

- Mounting state and environment

1. Checking the insulation distance After mounting and wiring, check the insulation distance between terminals and the ground. If the insulation distance is inadequate, mount insulating material between as required.

2. Fastening the snap-action switch body

See the Section "NOTES" for the individual switch.

3. Position adjustment with effector

The effector should be positioned so that direct force is not applied to the pushbutton or actuator in its free position. The operating force to the push-button should only be applied in a perpendicular direction.

4. Soldering precautions

1) For manual soldering, lay the terminals flat (horizontal with the ground) and quickly perform the soldering operation using a soldering iron with the appropriate heat capacity and the proper amount of solder. Take care that the flux does not flow into the switch interior by using a ventilation fan to discharge flux gas and to prevent contact of the switch body with the soldering iron tip. Be careful not to apply force to the lead wires or the terminal portions immediately after soldering.
The temperature setting and time conditions vary depending on the product. See the Section "NOTES" for each product.
2) For automatic soldering also, see the Section "NOTES" for each product.

5. Avoid using in a silicon atmosphere Avoid using organic silicon rubber, adhesives, sealing compounds, oil, grease, and wires in a silicon atmosphere.

6. Please consult us when using under the following conditions:

1) Environments where hydrogen sulfide or other corrosive gases are present.
2) Environments where gasoline, thinner or other flammable, explosive gases are present.
3) Dusty environments (for non-seal type
snap action switches).
4) The perpendicular operating speed exceeds the allowable operating speed.
5) Switching between different poles.
6) Use in environments not in the prescribed temperature or humidity range.

7. Storage precautions

To prevent discoloration due to sulfurization of the terminals (silverplated), store the switches in a polyethylene bag or other suitable airtight container.

8. Usage, storage, and transport

 conditions1) During usage, storage, or transportation, avoid locations subject to direct sunlight and maintain normal temperature, humidity, and pressure conditions. The allowable specifications for environments suitable for usage, storage, and transportation are given below.

- Temperature: The allowable temperature range differs for each switch, so refer to the switch's individual specifications. In addition, when transporting or storing switches while they are tube packaged, there are cases when the temperature may differ from the allowable range. In this situation, be sure to consult the individual specifications.
- Humidity: 5 to 85% R.H.

- Pressure: 86 to 106 kPa

The humidity range varies with the temperature. Use within the range indicated in the graph below.
2) Condensation

Condensation forms when there is a sudden change in temperature under high temperature, high humidity conditions Condensation will cause deterioration of the switch insulation. 3) Freezing

Condensation or other moisture may freeze on the switch when the temperatures is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$.

This causes problems such as sticking of movable parts or operational time lags.
4) Low temperature, low humidity environments
The plastic becomes brittle if the switch is exposed to a low temperature, low humidity environment for long periods of time.
5) Storage for extended periods of time (including transportation periods) at high temperatures or high humidity levels or in atmospheres with organic gases or sulfide gases may cause a sulfide film or oxide film to form on the surfaces of the contacts and/or it may interfere with the functions. Check out the atmosphere in which the units are to be stored and transported.
6) In terms of the packing format used, make every effort to keep the effects of moisture, organic gases and sulfide gases to the absolute minimum.
9. We reserve the right to modify without notice the materials, internal components, and other parts to improve product quality.
10. Handling precautions

When handling the switches, be careful not to drop them on the floor since this may damage them.
For items 5. and 6., select contact sulfurization (clipping) prevention products (FS and Au clad 2-layer contacts) for use with extremely small loads or an environment-resistant Turquoise switch.
11. Others

1) Failure modes of switches include short-circuiting, open-circuiting and temperature rises. If this switch is to be used in equipment where safety is a prime consideration, examine the possible effects of these failures on the equipment concerned, and ensure safety by providing protection circuits or protection devices. In terms of the systems involved, make provision for redundancy in the design and take steps to achieve safety design.
2) The ambient operating temperature (and humidity) range quoted is the range in which the switch can be operated on a continuous basis: it does not mean that using the switch within the rating guarantees the durability performance and environment withstanding performance of the switch. For details on the performance guarantee, check the specifications of each product concerned.

TECHNICAL TERMINOLOGY \& CAUTIONS FOR USE

- Types of actuators

Shape	Class.	Pretravel (P.T.)	Overtravel (О. T.)	Operating Force (O. F.)	Vibration Shock	Features	
$\underline{\square}$	Pin plunger	Small	Small	Large	Outstanding	Appropriate for linear short-stroke action. Pin plunger acts directly on snap action mechanism, enabling high-precision positioning. Amount of movement after operation is smallest among all of the actuators, however, so reliable stopper is required.	
0	Spring small plunger	Small	Medium	Large	Excellent	Used in much the same way as the pin plunger, but is easier to use because the amount of movement after operation is larger.	
\bigcirc	Spring short plunger	Small	Medium	Large	Good	Pin plunger is short, with large plunger diameter that makes centering easier. Like small spring plunger, amount of movement after operation is large.	
	Panel attachment plunger	Small	Large	Large	Good	Secured to panel with hex or lock nut; used as manual or mechanical plunger. Amount of movement after operation is extremely large and operation point can be adjusted by changing attachment position. Can be used in combination with low-speed cam.	
\square	Panel attachment roller plunger	Small	Large	Large	Possible	This is the panel attachment type with a roller, and can be used with fastmoving cams and dogs..	
1	Hinge lever	Large	Medium	Small	Possible	Little force required for operation. Appropriate for use with low-speed cams and dogs; has large stroke. Lever available in various shapes to fit operating unit.	
	Simulated roller lever	Large	Medium	Small	Possible	Tip of hinge lever is bent into a semi-circle, enabling use as a simple roller type.	
	Leaf lever	Large	Large	Small	Excellent	Play in lever is used to assure maximum stroke. Construction provides for space where lever is attached, for outstanding resistance to freezing.	
	Hinge roller lever	Large	Medium	Small	Possible	This is a hinge lever with a roller, and can be used with high-speed cams and dogs. The force required for pin plunger action is lighter than that of the lever, and the stroke is longer.	
	One way action hinge roller lever	Medium	Medium	Medium	Possible	This is hinge roller lever type, and can operate in relation to an operating unit from a one way direction, but the roller is bent from the opposite direction and cannot move. This can be used to prevent reverse-direction action.	
	Leaf spring	Medium	Medium	Medium	Good	This has a leaf spring with offset yield force and has a large stroke. Ideal for driving low-speed cams and cylinders. Fulcrum is fixed for high precision. To prevent leaf damage, movement after operation must be within specified value.	
9	Roller leaf spring	Medium	Medium	Medium	Good	This is a leaf spring with a roller, and can be use	d with high-speed cams.
-	(O.C. reversed action groove type) Reverse-action hinge lever	Large	Small	Medium	Excellent	This is used for low-speed, low-torque cams. The lever comes in various shapes to fit the operating body.	The plunger is constantly pressed down by a coiled spring, and operating the
9	(O.C. reversed action groove type) Reverse-action hinge roller lever	Medium	Medium	Medium	Excellent	This is a reverse-action hinge lever with a roller and is appropriate for cam operation. Excellent resistance to vibration and impact when not engaged.	Because the plunger is depressed when not engaged, vibration and shock resistance are excellent. Pressing the plunger too far
(R)	(O.C. reversed action groove type) Reverse-action hinge roller short lever	Small	Medium	Large	Excellent	This is a shorter version of the reverse-action hinge lever with a roller and has a larger action force, but is appropriate for cam operation with a short stroke. Excellent resistance to vibration and impact when not engaged.	does not cause abnormal force to be applied to the switch mechanism, so a stable service life is assured.
	Rotating-action type	Large	Large	Small	Possible	This is a rotating, light-action type that is ideal for detecting paper, coins, and similar objects.	

Operation Switches

Panasonic ideas for life

15A HIGH SNAP SWITCHES TOGGLE, ROCKER AND PUSH-BUTTON TYPES

T-15 SERIES SWITCHES

FEATURES

1. Series now includes rocker and push-button switches.
Based on the well-established T-15 Series switch, the mechanism is kept as is and a rocker type and push-button type have been added to the series. (Note that the push-button type is rated at 10 A .)

2. Sealed type added for use in

 different environments.Packing is used where parts join and an O-ring is used to seal moving parts. New to the series, this type can be used in harsh environments such as those with water, oil, dust, and gas.

- Panel-sealed type

Entry of water, oil, dust and gas from the front of the panel is prevented.
(Panel front: IP67*; Inside of panel: IP40)

Prevention of water, oil,
dust, and gases from entering through the panel with O-rings

- Terminal-sealed type

Both switch body and terminals have been sealed to protect from dust and gas that enters from the panel.
(panel front: IP67*; inside of panel: IP60)

- Wire lead type

Furthermore, a cover is provided for the terminals to keep out water and oil that enters from the panel.
(panel front: IP67*; inside of panel: IP67)

Remark: The asterisk in "Panel front: IP67*" means this only applies to toggle and push-button types.
The panel surface for the rocker type is IP64. Please see NOTES 1 and 2 regarding use of the sealed type.
3. Rubber cap also available in silicon type for excellent weather resistance.

- 5 colors available so you can distinguish switches by purpose.
<Example>
Black: For main power supply
Gray: For setting and switching
Red: For resetting
- With a usable ambient temperature range of $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, use is possible in environments that require resistance against heat and cold.

ASSORTMENT

Kind of actuator	Standardtype	Sealed type			Number of pole				Shape of terminal			
		Panelsealed type	Terminalsealed type	Wire leads type	1P	2P	3P	4P	Solder terminal	Screw terminal	.250 Quickconnect terminal	Wire lead
Toggle type	Available	Available	Available	Available	Available	Available	Available*1	Available*1	Available	Available	Available* ${ }^{* 1}$	Available*2
Rocker type	Available	Available	Available	Available	Available	Available	-	-	Available	Available	-	Available*2
Push-button type	Available	Available	-	-	Available	Available	-	-	Available	Available	-	-

[^12]*2: Only wire leads type

TOGGLE PRODUCT TYPES

!

1. Standard type
1) Solder terminal and .250 Quick-connect terminal

Number of poles	Kind of operation	Solder terminal	. 250 Quick-connect terminal
	< >: Momentary position	Product no.	Product no.
1-pole	ON-OFF	T115A-F	T115A-AF
	ON-ON	T115D-F	T115D-AF
	ON-OFF-ON	T115E-F	T115E-AF
	ON -<ON>	T115F-F	T115F-AF
	<ON>-OFF-<ON>	T115G-F	T115G-AF
	ON-OFF-<ON>	T115H-F	T115H-AF
2-pole	ON-OFF	T215K-F	T215K-AF
	ON-ON	T215N-F	T215N-AF
	ON-OFF-ON	T215P-F	T215P-AF
	ON -<ON>	T215R-F	T215R-AF
	<ON>-OFF-<ON>	T215S-F	T215S-AF
	ON-OFF-<ON>	T215T-F	T215T-AF
3 -pole	ON-OFF	T315K-F	T315K-AF
	ON-ON	T315N-F	T315N-AF
	ON-OFF-ON	T315P-F	T315P-AF
4-pole	ON-OFF	T415K-F	T415K-AF
	ON-ON	T415N-F	T415N-AF
	ON-OFF-ON	T415P-F	T415P-AF
2) Screw terminal			
Number of poles	Kind of operation	Screw terminal	
	< >: Momentary position	Product no.	
1-pole	ON-OFF	T115A-SF	
	ON-ON	T115D-SF	
	ON-OFF-ON	T115E-SF	
	ON-<ON>	T115F-SF	
	<ON>-OFF-<ON>	T115G-SF	
	ON-OFF-<ON>	T115H-SF	
2-pole	ON-OFF	T215K-SF	
	ON-ON	T215N-SF	
	ON-OFF-ON	T215P-SF	
	ON -<ON>	T215R-SF	
	<ON>-OFF-<ON>	T215S-SF	
	ON-OFF-<ON>	T215T-SF	
3 -pole	ON-OFF	T315K-SF	
	ON-ON	T315N-SF	
	ON-OFF-ON	T315P-SF	
4-pole	ON-OFF	T415K-SF	
	ON-ON	T415N-SF	
	ON-OFF-ON	T415P-SF	

[^13]2. For UL/C-UL certified products, please add "UL" before " F " at the end of part number when ordering.

2. Panel-sealed type

1) Solder terminal

Number of poles	Kind of operation < >: Momentary position	Solder terminal
		Product no.
1-pole	ON-OFF	TP115A-F
	ON-ON	TP115D-F
	ON-OFF-ON	TP115E-F
	ON -<ON>	TP115F-F
	<ON>-OFF-<ON>	TP115G-F
	ON-OFF-<ON>	TP115H-F
2-pole	ON-OFF	TP215K-F
	ON-ON	TP215N-F
	ON-OFF-ON	TP215P-F
	ON -<ON>	TP215R-F
	<ON>-OFF-<ON>	TP215S-F
	ON-OFF-<ON>	TP215T-F

2) Screw terminal

Number of poles	Kind of operation < >: Momentary position	Screw terminal
		Product no.
1-pole	ON-OFF	TP115A-SF
	ON-ON	TP115D-SF
	ON-OFF-ON	TP115E-SF
	ON -<ON>	TP115F-SF
	<ON>-OFF-<ON>	TP115G-SF
	ON-OFF-<ON>	TP115H-SF
2-pole	ON-OFF	TP215K-SF
	ON-ON	TP215N-SF
	ON-OFF-ON	TP215P-SF
	ON -<ON>	TP215R-SF
	<ON>-OFF-<ON>	TP215S-SF
	ON-OFF-<ON>	TP215T-SF

Remarks: 1. Of the standard installation accessories that come with the product, the front hex nut and lock washer are included.
2. For UL/C-UL certified products, please add "UL" before " F " at the end of part number when ordering.

3. Terminal-sealed type

1) Solder terminal

Number of poles	Kind of operation < >: Momentary position	Solder terminal
		Product no.
1-pole	ON-OFF	TD115A-F
	ON-ON	TD115D-F
	ON-OFF-ON	TD115E-F
	ON -<ON>	TD115F-F
	<ON>-OFF-<ON>	TD115G-F
	ON-OFF-<ON>	TD115H-F
2 -pole	ON-OFF	TD215K-F
	ON-ON	TD215N-F
	ON-OFF-ON	TD215P-F
	ON -<ON>	TD215R-F
	<ON>-OFF-<ON>	TD215S-F
	ON-OFF-<ON>	TD215T-F

Remarks: 1. Of the standard installation accessories that come with the product, the front hex nut and lock washer are included.
2. For UL/C-UL certified products, please add "UL" before " F " at the end of part number when ordering.

2) Screw terminal		
	Kind of operation	Screw terminal
Number of poles	< > : Momentary position	Product no.
1-pole	ON-OFF	TD115A-SF
	ON-ON	TD115D-SF
	ON-OFF-ON	TD115E-SF
	ON -<ON>	TD115F-SF
	<ON>-OFF-<ON>	TD115G-SF
	ON-OFF-<ON>	TD115H-SF
2-pole	ON-OFF	TD215K-SF
	ON-ON	TD215N-SF
	ON-OFF-ON	TD215P-SF
	ON-<ON>	TD215R-SF
	<ON>-OFF-<ON>	TD215S-SF
	ON-OFF-<ON>	TD215T-SF

Remarks: 1. Of the standard installation accessories that come with the product, the front hex nut and lock washer are included.
2. For UL/C-UL certified products, please add "UL" before "F" at the end of part number when ordering.

4. Wire lead type

Number of poles	Kind of operation < >: Momentary position	Wire lead type
		Product no.
1-pole	ON-OFF	TC115A-F
	ON-ON	TC115D-F
	ON-OFF-ON	TC115E-F
	ON-<ON>	TC115F-F
	<ON>-OFF-<ON>	TC115G-F
	ON-OFF-<ON>	TC115H-F
2-pole	ON-OFF	TC215K-F
	ON-ON	TC215N-F
	ON-OFF-ON	TC215P-F
	$\mathrm{ON}-<\mathrm{ON}>$	TC215R-F
	<ON>-OFF-<ON>	TC215S-F
	ON-OFF-<ON>	TC215T-F

Remarks: 1. Standard installation accessories are included with the product.
2. 600 V vinyl wire (VSF, thick: $2 \mathrm{~mm}^{2}$, length: 200 mm) is used. Please inquire about type and different length of lead wire.
5. Accessories

1) Installation accessories (repair parts)

Product name	Standard installation accessories				Optional installation accessories
	Front hex nut (nickel plated)	Back hex nut (uni-chrome plated)	Keying washer	Lock washer	Front Knurl nut (nickel plated)
Dimensions (mm)					
Part no.	AJ3081	AJ3082	AJ3083	AJ3084	AJ3080

Remark: A selling unit of each accessory is 10 pieces.

- Using the different rubber caps

We recommend silicon rubber and EP rubber caps for the following applications.

1) Silicon rubber caps

- When it is necessary to differentiate by color.
- When using in applications that require resistance to heat and cold. Ambient temperature: $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (EP rubber type is $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$.)
- When compactness is required.

2) EP rubber type

When cost is the primary consideration.

2) Accessories (option)

Product name	Indication plate (aluminum) ${ }^{* 3}$		Rubber cap*1, 2,4	
	ON-OFF	ON-ON	EP rubber type	Silicone rubber type
Dimensions (mm)				
Part no.	WD1901	WD1902	WD1911	WD1811*

Remarks: 1. The asterisk in the part number WD1811* for the silicon rubber type rubber cap is where the letter representing the color should be inserted. (standard models: B: black; R: red; Z: gray, Y: yellow; G: green.)
2. EP rubber cap is available in black only.
3. Letters on the display panel are aluminum colored and the area surrounding the letters is black.
4. Indication plate and rubber caps are compatible with the T-15 series switch, T-10 series switch, and T-03/T-06 series switches when plate thickness is 2.7 mm or less)

ROCKER PRODUCT TYPES

1. Standard type

1) Solder terminal, without indication on actuator

Number of poles	Kind of operation	Solder terminal
	< > : Momentary position	Product no.
1-pole	ON-OFF	TR115A-*F
	ON-ON	TR115D-*F
	ON-OFF-ON	TR115E-*F
	$\mathrm{ON}-<\mathrm{ON}>$	TR115F-*F
	<ON>-OFF-<ON>	TR115G-*F
	ON-OFF-<ON>	TR115H-*F
2-pole	ON-OFF	TR215K-*F
	ON-ON	TR215N-*F
	ON-OFF-ON	TR215P-*F
	$\mathrm{ON}-<\mathrm{ON}>$	TR215R-*F
	<ON>-OFF-<ON>	TR215S-*F
	ON-OFF-<ON>	TR215T-*F
2) Screw terminal, without indication on actuator		
Number of poles	Kind of operation	Screw terminal
	< > : Momentary position	Product no.
1-pole	ON-OFF	TR115A-S*F
	ON-ON	TR115D-S*F
	ON-OFF-ON	TR115E-S*F
	ON-<ON>	TR115F-S*F
	<ON>-OFF-<ON>	TR115G-S*F
	ON-OFF-<ON>	TR115H-S*F
2-pole	ON-OFF	TR215K-S*F
	ON-ON	TR215N-S*F
	ON-OFF-ON	TR215P-S*F
	ON-<ON>	TR215R-S*F
	<ON>-OFF-<ON>	TR215S-S*F
	ON-OFF-<ON>	TR215T-S*F
3) Solder terminal, with ON-OFF indication on actuator		
Number of poles	Kind of operation < >: Momentary position	Solder terminal
		Product no.
1-pole	ON-OFF	TR115A-*F
2-pole	ON-OFF	TR215K-*F

[^14] 2. For UL/C-UL certified products, please add "UL" before "F" at the end of part number when ordering.

4) Screw terminal, with ON-OFF indication on actuator		
Number of poles	Kind of operation < >: Momentary position	Screw terminal
	ON-OFF	Product no.
1-pole	ON-OFF	TR115A-S*F
2-pole	TR215K-S*F	

Remarks: 1. Please specify the actuator color by replacing the asterisk in the product number with appropriate letter. (B: black; W: white; R: red; Z : dark gray) 2. For UL/C-UL certified products, please add "UL" before " F " at the end of part number when ordering.
2. Panel-sealed type

1) Solder terminal, without indication on actuator

Number of poles	Kind of operation < >: Momentary position	Solder terminal
		Product no.
1-pole	ON-OFF	TRP115A-*F
	ON-ON	TRP115D-*F
	ON-OFF-ON	TRP115E-*F
	ON-<ON>	TRP115F-*F
	<ON>-OFF-<ON>	TRP115G-*F
	ON-OFF-<ON>	TRP115H-*F
2-pole	ON-OFF	TRP215K-*F
	ON-ON	TRP215N-*F
	ON-OFF-ON	TRP215P-*F
	ON -<ON>	TRP215R-*F
	<ON>-OFF-<ON>	TRP215S-*F
	ON-OFF-<ON>	TRP215T-*F
2) Screw terminal, without indication on actuator		
Number of poles	Kind of operation	Screw terminal
	< > Momentary position	Product no.
1-pole	ON-OFF	TRP115A-S*F
	ON-ON	TRP115D-S*F
	ON-OFF-ON	TRP115E-S*F
	ON -<ON>	TRP115F-S*F
	<ON>-OFF-<ON>	TRP115G-S*F
	ON-OFF-<ON>	TRP115H-S*F
2-pole	ON-OFF	TRP215K-S*F
	ON-ON	TRP215N-S*F
	ON-OFF-ON	TRP215P-S*F
	ON-<ON>	TRP215R-S*F
	<ON>-OFF-<ON>	TRP215S-S*F
	ON-OFF-<ON>	TRP215T-S*F

3) Solder terminal, with ON-OFF indication on actuator

Number of poles	Kind of operation < >: Momentary position	Solder terminal
	ON-OFF	Product no.
1-pole	ON-OFF	TRP115A-*1F
2-pole	TRP215K-*1F	

4) Screw terminal, with ON-OFF indication on actuator

Number of poles	Kind of operation < > Momentary position	Screw terminal
	ON-OFF	Product no.
1-pole	ON-OFF	TRP115A-S*1F
2-pole	TRP215K-S*1F	

Remarks: 1. Please specify the actuator color by replacing the asterisk in the product number with appropriate letter. (B: black; W: white; R: red; Z: dark gray) 2. For UL/C-UL certified products, please add "UL" before " F " at the end of part number when ordering.

3. Terminal-sealed type

1) Solder terminal, without indication on actuator

Number of poles	Kind of operation < >: Momentary position	Solder terminal
		Product no.
1-pole	ON-OFF	TRD115A-*F
	ON-ON	TRD115D-*F
	ON-OFF-ON	TRD115E-*F
	ON -<ON>	TRD115F-*F
	<ON>-OFF-<ON>	TRD115G-*F
	ON-OFF-<ON>	TRD115H-*F
2-pole	ON-OFF	TRD215K-*F
	ON-ON	TRD215N-*F
	ON-OFF-ON	TRD215P-*F
	ON -<ON>	TRD215R-*F
	<ON>-OFF-<ON>	TRD215S-*F
	ON-OFF-<ON>	TRD215T-*F

2) Screw terminal, without indication on actuator

Number of poles	Kind of operation < >: Momentary position	Screw terminal
		Product no.
1-pole	ON-OFF	TRD115A-S*F
	ON-ON	TRD115D-S*F
	ON-OFF-ON	TRD115E-S*F
	ON -<ON>	TRD115F-S*F
	<ON>-OFF-<ON>	TRD115G-S*F
	ON-OFF-<ON>	TRD115H-S*F
2-pole	ON-OFF	TRD215K-S*F
	ON-ON	TRD215N-S*F
	ON-OFF-ON	TRD215P-S*F
	ON -<ON>	TRD215R-S*F
	<ON>-OFF-<ON>	TRD215S-S*F
	ON-OFF-<ON>	TRD215T-S*F

3) Solder terminal, with ON-OFF indication on actuator

Number of poles	Kind of operation $<>:$ Momentary position	Solder terminal
	ON-OFF	Product no.
1-pole	ON-OFF	TRD115A-*1F
2-pole	TRD215K-*1F	

4) Screw terminal, with ON-OFF indication on actuator

Number of poles	Kind of operation < >: Momentary position	Screw terminal
	ON-OFF	Product no.
1-pole	ON-OFF	TRD115A-S*1F
2-pole	TRD215K-S*1F	

Remarks: 1. Please specify the actuator color by replacing the asterisk in the product number with appropriate letter. (B: black; W: white; R: red; Z: dark gray) 2. For UL/C-UL certified products, please add "UL" before "F" at the end of part number when ordering.

4. Wire lead type

1) Without indication on actuator

Remarks: 1. Please specify the actuator color by replacing the asterisk in the product number with appropriate letter. (B: black; W: white; R : red ; Z : dark gray)
2. 600 V vinyl wire (VSF, thick: $2 \mathrm{~mm}^{2}$, length: 200 mm) is used. Please inquire about type and different length of lead wire.

PUSH-BUTTON PRODUCT TYPES

1. Standard type
1) Solder terminal

Number of poles	Kind of operation	
		Momentary
	Alternate	Polder terminal
	2-pole	Momentary
	Alternate	TB110F-F
	TB115D-F	
2 Screw terminal	TB210R-F	

Number of poles	Kind of operation	Screw terminal
		Product no.
1-pole	Momentary	TB110F-SF
	Alternate	TB115D-SF
2 -pole	Momentary	TB210R-SF
	Alternate	TB215N-SF

Remarks: 1. Please use switch body with a color cap (sold separately).
2. Standard installation accessories are included with the product.
3. For UL/C-UL certified products, please add "UL" before "F" at the end of part number when ordering.

2. Panel-sealed type

1) Solder terminal

Number of poles	Kind of operation	Solder terminal
		Product no.
1-pole	Momentary	TBP110F-F
	Alternate	TBP115D-F
2-pole	Momentary	TBP210R-F
	Alternate	TBP215N-F

2) Screw terminal

Number of poles	Kind of operation	Screw terminal
		Product no.
1-pole	Momentary	TBP110F-SF
	Alternate	TBP115D-SF
2 2-pole	Momentary	TBP210R-SF
	Alternate	TBP215N-SF

Remarks: 1. Please use switch body with a color cap (sold separately).
2. Standard installation accessories are included with the product
3. For UL/C-UL certified products, please add "UL" before "F" at the end of part number when ordering.

3. Color cap for push-button (option)

Product name	Color cap (sold separately)
Dimensions (mm)	
Part no.	WDB1821*

Remark: Please specify the color cap color by replacing the asterisk in the part number with the appropriate letter
(B: black; W: white; R: red; Z: dark gray; H: light gray; Y: yellow; G: green; L: blue).

4. Installation accessories (repair parts)

Product name	Standard installation accessories				Optional installation accessories
	Front hex nut (nickel plated)	Back hex nut (uni-chrome plated)	Keying washer	Lock washer	Front Knurl nut (nickel plated)
Dimensions (mm)					
Part no.	AJ3081	AJ3082	AJ3083	AJ3084	AJ3080

Remark: Accessories are sold in units of 10 pieces.

SPECIFICATIONS

1. Contact rating

1) Toggle type and Rocker type

Kind of load	AC	DC
Resistive load	15A 250V	0.5A 250V, 0.9A 125V, 15A 30V
Inductive load	15A 250V (power factor: 0.6)	0.3 A 250 V (time constant: 8 ms), 0.5 A 125 V (time constant: 8 ms) 15A 30V (time constant: 8 ms)
Lamp load (incandescent)	400W 100V, 800W 200V, Inrush current: Max. 40 A	7A 30V
Motor load	400 W 125 V (single phase), 550 W 250 V (single phase), 750 W 250 V (three-phase)	-

2) Push-button type (momentary)

Kind of load	AC	DC
Resistive load	$10 \mathrm{~A} \mathrm{250V}$	$0.4 \mathrm{~A} 250 \mathrm{~V}, 0.8 \mathrm{~A} \mathrm{125V}, 8 \mathrm{~A} \mathrm{30V}$
3) Push-button type (alternate)		
Kind of load		AC

2. Characteristics

Shape of actuator	Toggle type		Rocker type	Push-button type
Protection grade *1: IP40 *2: IP64 *3: IP67	Standard type (*1)	Panel-sealed type (*3) Terminal-sealed type (*3) Wire leads type (*3)	```Standard type (*1) Panel-sealed type (*2) Terminal-sealed type (*2) Wire leads type (*2)```	Standard type (*1) Panel-sealed type (*3)
Mechanical expected life	1-pole and 2-pole: Min. 10^{5} 3 -pole and 4-pole: Min. 8.5×10^{4}	Min. 5×10^{4} (20 cpm) ON-OFF, ON-ON, ON-OFF-ON, Min. $3 \times 10^{4}(20 \mathrm{cpm})$ ON-(ON), (ON)-OFF-(ON), ON-OFF-(ON)	Min. $3 \times 10^{4}(20 \mathrm{cpm})$	
Electrical expected life (10 cpm)	Standard and pa Terminal-sealed and	aled types: Min. 3×10^{4} eads types: Min. 1.5×10^{4}	Standard type: Min. 3×10^{4} Panel-sealed, terminalsealed and wire leads types: Min. 10^{4}	Min. 10^{4}
Dielectric strength	1500 Vrms (at detection current: 10 mA)			
Insulation resistance	Min. $100 \mathrm{M} \Omega$ (at 500 V DC measured by insulation resistive meter)			
Contact resistance	Initial, max. $10 \mathrm{~m} \Omega$ (by voltage drop at $1 \mathrm{~A}, 2$ to 4 V DC) Wire leads type only: Initial, max. $30 \mathrm{~m} \Omega$ (by voltage drop at $1 \mathrm{~A}, 2$ to $4 \mathrm{~V} D C$)			
Actuator strength	112.7 N for 1 min . (for operating direction)			
Vibration resistance	10 to 55 Hz at double amplitude of 1.5 mm (contact opening: max. 10 ms)			
Terminal strength (static load)	24.5 N for 1 min .			
Ambient temperature	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (not freezing below $0^{\circ} \mathrm{C}$)			
Contact material	AgZnO alloy			

DATA (electrical life, for toggle standard type)

Tested condition: 250 V AC, Power factor: 0.6 and 10 cpm

Remark: ON-OFF type does not have terminal no. 2, 5, 8 and 11.

Remark: ON-OFF type does not have terminal no. 2, 5, 8 and 11.
3) .250 Quick-connect terminal 1 -pole

Remark: 1. ON-OFF type does not have terminal no. 2, 5, 8 and 11.
2. There is no through-hole on .250 Quick-connect terminals.
2. Panel-sealed type

1) Solder terminal

2) Screw terminal (M3.5)

Remark: ON-OFF type does not have terminal no. 2 and 5.
3. Terminal-sealed type

1) Solder terminal

CAD Data

Remark: ON-OFF type does not have terminal no. 2 and 5.

Color of wire leads

No.	Color
(1)	Brown
(2)	Red
(3)	Orange
(4)	Yellow
(5)	Green
(6)	Blue

4. Wire leads type

CAD Data

1. Standard type
1) Solder terminal

ROCKER TYPE DIMENSIONS (mm) (general tolerance: ± 0.5)

2) Screw terminal (M3.5)

Remarks: 1. ON-OFF type does not have terminal no. 2 and 5.
2. Dimensions of actuator: 13.4×27

2. Panel-sealed type

1) Solder terminal
2) Screw terminal (M3.5)

Remarks: 1. ON-OFF type does not have terminal no. 2 and 5.
2. Dimensions of actuator: 1-pole: 12.6×29, 2-pole: 17.4×29
3. Terminal-sealed type

1) Solder terminal

2) Screw terminal (M3.5)

Remarks: 1. ON-OFF type does not have terminal no. 2 and 5.
2. Dimensions of actuator: 1-pole: $12.6 \times 29,2$-pole: 17.4×29

Remarks: 1. ON-OFF type does not have terminal no. 2 and 5.
2. Dimensions of actuator: 1 -pole: $12.6 \times$ 29, 2-pole: 17.4×29
3. 600 V vinyl wire (VSF, thick: $2 \mathrm{~mm}^{2}$,
length: 200 mm) is used. Please inquire
about type and different length of lead wire.

Color of wire leads

No.	Color
(1)	Brown
(2)	Red
(3)	Orange
(4)	Yellow
(5)	Green
(6)	Blue

PUSH-BUTTON TYPE DIMENSIONS (mm) (general tolerance: ± 0.5)

MOUNTING DIMENSIONS

1. Toggle type

Type	Standard type		
Panel cutout (mm)		Max. 5.6 mm (without keying washer)	Max. 5.6 mm (without keying washer)
Panel thickness	Max. 4.6 mm		

Type	Panel-sealed, Terminal-sealed and Wire leads types	
Panel cutout (mm)	Max. 4 mm Panel thickness	Max. 4 mm
(without keying washer)		

[^15]
2. Rocker type

Type	Standard type	Panel-sealed, Term	and Wire leads types
Panel cutout (mm)			
Panel thickness	Max. 4.5 mm	1.2 to 3.2 mm	

3. Push-button type

Type	Standard type		Panel-sealed type		
Panel cutout (mm)					
Panel thickness	Momentary, 1-pole: Max. 10 mm Momentary, 2-pole: Max. 6.5 mm Alternate: Max. 6.5 mm	Momentary, 1-pole: Max. 10 mm Momentary, 2-pole: Max. 7.5 mm Alternate: Max. 7.5 mm (without keying washer)	Momentary, 1-pole: Max. 11 mm Momentary, 2-pole: Max. 7.5 mm Alternate: Max. 7.5 mm (without keying washer)	Max. 4 mm	Max. 4 mm (without keying washer)

Remark: For panel installations of standard type, be use to use the back hex nut.

ELECTRICAL CIRCUIT DIAGRAM

1. Toggle type and Rocker type

Number of pole				1-pole	2-pole	3-pole	4-pole
Toggle type				Available	Available	Available *3	Available *3
Rocker type				Available	Available	-	-
Terminal arrangement (as seen from terminal side)				Keyway	$\begin{array}{\|ll\|} \hline 1- & 4- \\ 2- & 5- \\ 3- & 6- \end{array}$	$1-4-7-$ $2-5-8-$ $3-6-9-$	$1-4-7-10-$ $2-5-8-11-$ $3-6-9-12-$
	Actuator shape	Toggle type	Rocker type				
	ON-OFF	\square^{P} Keyway	$\begin{aligned} & \text { Right } \\ & \text { Part No. } \end{aligned}$	1-3	1-3, 4-6	1-3, 4-6, 7-9	1-3, 4-6, 7-9, 10-12
		-	-	-	-	-	-
		$\square^{\text {Keyway }}$ (Left $\stackrel{n-\infty}{\square \Omega}$	-	-	-	-
	$\begin{gathered} \mathrm{ON}-\mathrm{ON} \\ \mathrm{ON}-<\mathrm{ON}> \\ * 1 \end{gathered}$	\square^{\sim} Keyway		2-3	2-3, 5-6	2-3, 5-6, 8-9	2-3, 5-6, 8-9, 11-12
		-	-	-	-	-	-
		$\square^{\text {Keyway }}$	Left	1-2	1-2, 4-5	1-2, 4-5, 7-8	1-2, 4-5, 7-8, 10-11
	$\begin{gathered} \text { ON-OFF-ON } \\ <\mathrm{ON}>-\mathrm{OFF}-<\mathrm{ON}> \\ \text { ON-OFF-<ON }> \\ { }^{1} 1 \end{gathered}$	\square^{P} Keyway	$\begin{aligned} & \text { Right } \\ & \text { Part No. } \end{aligned}$	2-3	2-3, 5-6	2-3, 5-6, 8-9	2-3, 5-6, 8-9, 11-12
		$\square_{\text {Keyway }}$	Center $\xrightarrow[T]{\text { To] }}$	-	-	-	-
		${ }^{\square}{ }^{\text {Keyway }}$		1-2	1-2, 4-5	1-2, 4-5, 7-8	1-2, 4-5, 7-8, 10-11
Remarks				ON-OFF type does not have a terminal no. 2.	ON-OFF type does not have terminal no. 2 and 5.	ON-OFF type does not have terminal no. 2, 5 and 8.	ON-OFF type does not have terminal no. 2, 5, 8 and 11.

Remarks: *1. For ON-<ON>, ON-OFF-<ON> type of toggle, if the lever turns to the keyway side, it takes momentary position.
*2. For the rocker type, if the actuator turns to the left side in view of the side where a part number is marked, it takes momentary position.
*3. Only standard type

2. Push-button type

		1-pole	2-pole
Terminal arrangement (as seen from terminal side)		$\underbrace{\begin{array}{\|l\|} 1- \\ 2- \\ 3- \end{array}}_{\text {Keyway }}$	$\begin{array}{ll} 1- & 4- \\ 2- & 5- \\ 3- & 6- \end{array}$ Keyway
Push-button position and contact terminal number	\square	2-3	2-3, 5-6
	Operated	1-2	1-2, 4-5

NOTES

1. Dustproof, waterproof, anticorrosive gas, and oil-proof designs

The panel-sealed type/terminal-sealed type/wire lead type switch has a protection level of IP67 on the outer side of the mounting panel and a level of IP40, IP60, or IP67 on the inner side of the panel.
For actual application, note the following points:

1) Avoid immersion in water or oil during installation
2) Avoid immersion in water or oil during operation.
3) Oils or gases impose varying degrees of impact on the switch's sealing performance depending on type or quantity.
4) While the switch has a immersion and dust-protected design, its sealing performance or operabillity may be adversely affected in an environment where in the switch's movable parts can be contaminated with dust, oil, or other foreign objects. For the toggle type, use of a rubber cap is recommended.
5) The standard toggle switch, when used with a rubber cap, provides a protection level of IP54.
It should be used in an environment where it will not be subject to frequent water splashes.
6) As the sealing performance of the rocker type switch is affected by the panel processing accuracy or mounted panel thickness, check the switch under actual loading conditions. (While water or dust will not enter the switch's internal structure, it may enter the panel.)
7) Do not operate the rocker type switch when water accumulates in the actuator.

2. Installation

1) For the toggle and push-button type
a. When installing the standard type switch, be sure to use a hex nut.
b. For the panel-sealed, terminal-sealed and wire lead types, use a lock washer on the front side of the panel, and an O-ring on the back side of it.
c. Do not install the switch by rotating it.
2) For the rocker type
a. In case the panel-sealed, terminalsealed or wire leads types are used in the condition where the water splash on, please install the switches tilt more than 25°. (90° recommended)

b. In case water inside the switch case may freeze, please install the switch vertically to avoid the water remain inside the switch.
3) Rubber cap installation
a. The washer should be used on the back side of the panel.

b. Enough screw pitch should be obtained being adjusted within 3 to 3.5 mm (see figure above).
c. Install a rubber cap on the switch knob before securing the switch with the hex nut.
d. The mounting hole in the panel should preferably be provided with an antirotation projection.

e. If the rubber cap is installed over the hex nut, the waterproof performance will be impaired although the dustproof performance will not be affected.

3. Soldering

1) By using $350^{\circ} \mathrm{C}$ soldering iron, soldering should be completed within 5 seconds.
2) Exercise care so as not to touch the switch body with a soldering iron.

4. Load type and ratings

1) When the switch is loaded with a lamp, motor or capacitive load, a surge current higher than the stationary current passes through the switch contacts.
Measure the surge with the actual load and, if needed, take necessory action so that the surge will not exceed the switch's rated current.
2) When the switch is loaded with an inductive load (relay, solenoid, buzzer, etc.), a contact failure may result from arc discharge caused by a counterelectromotive force. It is advisable that you use an adequate anti-spark circuit across the switch contacts.

5. Others

1) Do not apply an excessive static load exceeding $112.7 \mathrm{~N}\{11.5 \mathrm{~kg}\}$ perpendicular to the direction of operation.
2) Operate the switch knob by hand.
3) Take care not to drop the product as it may impair performance.

Panasonic ideas for life

TOGGLE SWITCH

T-10 SERIES SWITCHES

FEATURES

1. Capable of high capacity switching (10 A 250 V AC and 15 A 125 V AC) Ag alloy contacts are used to prevent temperature rises and allow high capacity switching.
2. Terminals constructed for easy implementation
A unique terminal construction facilitates soldering.

DATA (Life curve)

Tested condition: 250 V AC, Power factor: 0.6 and 10 cpm

PRODUCT TYPES

Number of poles	Kind of operation		Solder terminal
	Left	Right	Product no.
1-pole	ON	OFF	T110A-F
	ON	ON	T110D-F
2 2-pole	ON	OFF	T210K-F
	ON	ON	T210N-F

Remarks: 1. The product comes with standard installation accessories. However, keying washer is sold separately.
2. For UL/C-UL certified products, please add "UL" before the " F " at the end of the part number when ordering.

SPECIFICATIONS

1. Contact rating

Kind of load	AC	DC
Resistive load	$\begin{aligned} & 10 \mathrm{~A} 250 \mathrm{~V} \text { AC } \\ & 15 \mathrm{~A} 125 \mathrm{~V} \end{aligned}$	8A 30V DC 0.8 A 125 V DC 0.4 A 250 V DC
Inductive load	10A 250V AC (power factor: 0.6) 15A 125V AC (power factor: 0.6)	5A 30V DC (time constant: $7 \mathrm{~m} / \mathrm{s}$) 0.4A 125V DC (time constant: $7 \mathrm{~m} / \mathrm{s}$) 0.2A 250V DC (time constant: $7 \mathrm{~m} / \mathrm{s}$)
Lamp load (incandescent)	300W 100V AC 500 W 200 V AC Inrush current: Max. 30 A	-
Motor load (single phase)	200W 125V AC 300W 250V AC	-
2. Characteristics		
Mechanical expected life	Min. 10^{5}	
Electrical expected life	Min. $3 \times 10^{4}(10 \mathrm{cpm})$ at rated load	
Overload life	Min. 50 (5 cpm) (rated load $\times 1.5$)	
Insulation resistance	Min. $100 \mathrm{M} \Omega$ (at 500 V DC measured by insulation resistive meter)	
Dielectric strength	1500 Vrms (at detection current: 10 mA)	
Vibration resistance	10 to 55 Hz at double amplitude of 1.5 mm (contact opening: Max. 1 ms)	
Contact resistance	Initial, Max. $20 \mathrm{~m} \Omega$ (by voltage drop at $1 \mathrm{~A}, 2$ to 4 V DC)	
Actuator strength (static load)	112.7 N for 1 min .	
Terminal strength (static load)	24.5 N for 1 min .	
Ambient temperature	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (not freezing below $0^{\circ} \mathrm{C}$)	
Contact material	AgZnO alloy	

ELECTRICAL CIRCUIT DIAGRAM

			1-pole	2 pole
Terminal arrangement (as seen from terminal side)			$\begin{array}{\|l\|l} \begin{array}{\|l} 1- \\ 2- \\ 3- \end{array} \\ \text { Keyway } \end{array}$	$\begin{array}{\|ll\|} \hline 1- & 4- \\ 2- & 5- \\ 3- & 6- \\ \hline \end{array}$ Keyway
Actuator position and contact terminal number	ON-OFF	$\square^{(}$Keyway	1-3	1-3, 4-6
		-	-	-
		$\square_{\text {Keyway }}$	-	-
	ON-ON	\square^{P} Keyway	2-3	2-3, 5-6
		-	-	-
		$\square_{\text {Keyway }}$	1-2	1-2, 4-5
Remark			ON-OFF type does not have a terminal no. 2.	ON-OFF type does not have terminal no. 2 and 5.

DIMENSIONS

Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.
(mm) (general tolerance: ± 0.5)

MOUNTING DIMENSIONS

Panel cutout (mm)

Remarks: 1. For panel installations, use the back hex nut.
2. * Keying washer (separately sold) Part no.: AJ3083

Accessories (option)

Product name	Indication plate (aluminum)*3		Rubber cap*1, 2,4	
	ON-OFF	ON-ON	EP rubber type	Silicone rubber type
Dimensions (mm)				
Part no.	WD1901	WD1902	WD1911	WD1811*

Remarks: 1. The asterisk in the part number WD1811* for the silicon rubber type rubber cap is where the letter representing the color should be inserted
(B: black; R: red; Z: gray; Y: yellow; G: green.)
2. EP rubber cap is available in black only.
3. Letters on the display panel are aluminum colored and the area surrounding the letters is black.
4. Indication plate and rubber cap are compatible with the T-15 series switch, T-10 series switch, and T-03/T-06 series switches (when plate thickness is 2.7 mm or less).

- Using the different rubber caps

We recommend silicon rubber and EP rubber caps for the following applications.

1) Silicon rubber caps

- When it is necessary to differentiate by color.
- When using in applications that require resistance to heat and cold. Ambient temperature: $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (EP rubber type is $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$.)
- When compactness is required.

2) EP rubber type

When cost is the primary consideration.

Panasonic ideas for life

TOGGLE SWITCH

FEATURES

Depth of 18.6 mm saves space.
This space-saving switch has body dimensions of 25 (W) $\times 14.8$ (D) $\times 18.6$
(H). (63\% that of our previous T-15 series switch.)

DATA (life curve)

Tested sample: T-06 series
Tested condition: 125 V AC, 250 V AC, Power factor: 0.6 and 10 cpm

PRODUCT TYPES

1) T-06 series

Number of poles	Solder terminal	
	Kind of operation	Product no.
1-pole		T106A-F
	ON-ON	T106D-F
2-pole	ON-OFF	T206K-F
	ON-ON	T206N-F

Remark: The product comes with standard installation accessories. However, keying washer is sold separately.

2) T-03 series

Number of poles	Kind of operation	Solder terminal
		Product no.
1-pole	ON-OFF	T103A-F
	ON-ON	T103D-F
	$2-$ pole	ON-OFF

[^16]
SPECIFICATIONS

1. Contact rating

Kind of load	T-06 series	T-03 series
Resistive load	$6 \mathrm{~A} \mathrm{125V} \mathrm{AC,6A} \mathrm{30V} \mathrm{DC}, \mathrm{3A} \mathrm{250V} \mathrm{AC}$	3A 125V AC, 2A 250V AC
Inductive load	6 A 125 V AC (power factor: 0.6),	3 A 125 V AC (power factor: 0.6),
	3 A 250 V AC (power factor: 0.6)	2 A 250 V AC (power factor: 0.6)

2. Characteristics

Mechanical expected life	Min. 5×10^{4}
Electrical expected life	$\mathrm{T}-06$ series: $\mathrm{Min} .3 \times 10^{4}(10 \mathrm{cpm})$ at rated load, T-03 series: Min. $10^{4}(10 \mathrm{cpm})$ at rated load
Overload life	Min. $50(5 \mathrm{cpm})($ rated load $\times 1.5)$
Insulation resistance	Min. $100 \mathrm{M} \Omega$ (at $500 \mathrm{~V} \mathrm{DC} \mathrm{measured} \mathrm{by} \mathrm{insulation} \mathrm{resistive} \mathrm{meter)}$
Dielectric strength	$1500 \mathrm{Vrms}($ at detection current: 10 mA$)$
Vibration resistance	10 to 55 Hz at double amplitude of 1.5 mm (contact opening: Max. 1 ms$)$
Contact resistance	Initial, max. $20 \mathrm{~m} \Omega$ (by voltage drop at $1 \mathrm{~A}, 2$ to 4 V DC$)$
Actuator strength (static load)	112.7 N for 1 min.
Terminal strength (static load)	24.5 N for 1 min.
Ambient temperature	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Contact material	AgZnO alloy

ELECTRICAL CIRCUIT DIAGRAM (for T-06 and T-03 series)

Terminal arrangement (as seen from terminal side)			1-pole	2-pole
			$\begin{aligned} & 1- \\ & 2- \\ & 3- \end{aligned}$ Keyway	$\frac{\begin{array}{ll} \hline 1- & 4- \\ 2- & 5- \\ 3- & 6- \end{array}}{\text { Keyway }}$
Actuator position and contact terminal number	ON-OFF	$\square \mathcal{P}_{\text {Keyway }}$	2-3	2-3, 5-6
		-	-	-
		- Keyway	-	-
	ON-ON	$\square \rho_{\text {Keyway }}$	2-3	2-3, 5-6
		-	-	-
		- Keyway	1-2	1-2, 4-5
Remark			ON-OFF type does not have a terminal no. 1.	ON-OFF type does not have terminal no. 1 and 4.

DIMENSIONS (for T-06 and T-03 series)

Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

CAD Data

Remark: ON-OFF type does not have terminal no. 1 and 4

MOUNTING DIMENSIONS (for T-06 and T-03 series)

Panel cutout (mm)			
	(Use separately sold keying washer.)	Max. 3.5 mm	Max. 3.5 mm

Remarks: 1. For panel installations, use the back hex nut.
2. * Keying washer (separately sold) Part no.: AJ3083

Accessories (option)

Product name	Indication plate (aluminum)*3		Rubber cap*1, 2,4	
	ON-OFF	ON-ON	EP rubber type	Silicone rubber type
Dimensions (mm)				
Part no.	WD1901	WD1902	WD1911	WD1811*

Remarks: 1. The asterisk in the part number WD1811* for the silicon rubber type rubber cap is where the letter representing the color should be inserted.

> (B: black; R: red; Z: gray; Y: yellow; G: green.)
2. EP rubber cap is available in black only
3. Letters on the display panel are aluminum colored and the area surrounding the letters is black.
4. Indication plate and rubber cap are compatible with the T-15 series switch, T-10 series switch, and T-03/T-06 series switches (when plate thickness is 2.7 mm or less).

- Using the different rubber caps

We recommend silicon rubber and EP rubber caps for the following applications.

1) Silicon rubber caps

- When it is necessary to differentiate by color
- When using in applications that require resistance to heat and cold. Ambient temperature: $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (EP rubber type is $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$.)
- When compactness is required.

2) EP rubber type

When cost is the primary consideration.

Panasonic ideas for life

POWER ROCKER SWITCH WITH A CONTACT FOR LOW LEVEL CURRENT

FEATURES

1. Incorporates a contact for low level circuit for the HDD protection circuit. 2. Power rocker switches for safety requirements.
All versions comply with Classll EN61058-1 insulation grade. Insulation distance: 8 mm Min. (power contact section)
Contact gap: 3mm Min.
(power contact section)
International Standard-approved
Status
UL/C-UL, TÜV
2. High inrush current resistance is ideal for office automation equipment.

Type		Inrush current	Motor load (EN61058-1) $(\mathrm{ff}=0.6)$	Contact rating	Expected life
AJ8S (JBS)	Power section	160 A	4 A	16 A 250 V AC	Min.104

*The motor load is in accordance with EN61058-1.
Inrush current can be switched up to the value of 6 times the indicated rating.
4. Operation that only requires a light touch
5. Cadmium-free contact compatibility.

CONSTRUCTION

ORDERING INFORMATION

Remarks: 1. They come with a stamp indicating international standards without your request.
2. The color of indication on the actuator is white.

PRODUCT TYPES

1. Without indication on actuator (actuator color: dark gray)

Terminal	Number of pole	Operation	Frdering part number	
			Flange color: Dark gray	Flange color: Black
.250 Quick connect terminal	3 poles	ON - OFF	AJ8S700ZC	AJ8S700ZBC

2. With indication on actuator

1) With 10 indication (actuator color: dark gray)

Terminal	Number of pole	Operation	Frdering part number	
			Flange color: Dark gray	Flange color: Black
.250 Quick connect terminal	3 poles	ON - OFF	AJ8S701ZC	AJ8S701ZBC

3. With indication on actuator

1) With -0 indication (actuator color: dark gray)

Terminal	Number of pole	Operation	Ordering part number	
			Flange color: Dark gray	Flange color: Black
.250 Quick connect terminal	3 poles	ON - OFF	AJ8S702ZC	AJ8S702ZBC

Remarks: Standard actuator color is dark gray and black.
To order switches with a black actuator, replace the letter " Z " with "B" in the ordering part number above.
EX) AJ8S701ZC (actuator color: dark gray, flange color: dark gray)
\rightarrow AJ8S701BC (actuator color: black, flange color: dark gray)

SPECIFICATIONS

1. Contact rating

Type	Voltage	Resistive load (power factor = 1)	Motor load* (EN61058-1) (power factor = 0.6$)$	Inrush load
Power section	250 V AC	16 A	4 A	$160 \mathrm{~A}(8.3 \mathrm{~ms})$
Signal section	5 V DC	10 mA	-	-

[^17]
AJ8S (J8S)

2. Characteristics

Item		Specifications
Electrical life		Min. 10^{4} (at $7 \mathrm{cpm} .$, at rated load)
Mechanical life		Min. 5×10^{4} (at 20 cpm .)
Contact resistance (initial)	Power contact	Max. $100 \mathrm{~m} \Omega$ (by voltage drop at 1A, 2 to 4V DC)
	Signal contact	Max. 1Ω (measured by a milliohm meter)
Dielectric strength (initial)	Power contact	2,000 Vrms (detection current: 10 mA)
	Signal contact	100 Vrms (detection current: 10 mA)
Ambient temperature		$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (not freezing below $0^{\circ} \mathrm{C}$)
Vibration resistance		10 to 55 Hz at single amplitude of 0.75 mm , 2 hours each in X, Y and Z directions, (contact opening max. 1ms)
Shock resistance	Functional	Min. 294m/s ${ }^{2}$ \{30G\} (contact opening max. 1ms)
	Destructive	Min. 980m/s² $\{100 \mathrm{G}$ \}
Terminal strength		. 250 Quick-connect terminal Min. 98N\{10kgf\}/min. (pull \& push direction)
Actuator strength		$39.2 \mathrm{~N}\{4 \mathrm{kgf}$ for 1min. operating direction
Operating force (initial) *Reference value		4.9 N or less (max. 500gf or less)
Flame retardancy		UL94V-0
Tracking resistance		Min. 175
Unit weight		Approx. 13g
Contact material		AgSnO_{2} alloy (power section), Cu alloy and Au plating (signal section)

DIMENSIONS

CAD Data

Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

Wiring diagram
(3) (4) Power circuit
(250 VAC, 16A)

Diagram of recommended locations for panel mounting holes

Panel thickness	X	Y
1 to less than 1.8	$30.4_{-0.1}^{+0}$	$22.0_{-0}^{+0.1}$
1.8 to 2.3	$31.1_{-0.1}^{+0}$	$22.0_{-0}^{+0.1}$

Remark:Contact us if you are considering using a panel of other than the recommended size and shape.

Suitable connector: CT connector

NOTES

1. Switch mounting

Mount the switch with the hole cutting dimensions shown in the dimensions. Contact us if you are considering using a panel of other than the recommended size and shape.
2. Regarding fastening lead wires to terminals

1) When connecting the tab terminals, use a .250 Quick-connect and insert the terminals straight in. If they are skewed, the terminals will require excessive insertion force. In addition, there is some variation in the insertion force required for different receptacles from different manufacturers, so confirm how much force is needed under actual conditions. Do not solder wires onto tab terminals.
2) The terminals should be connected in such a way that they are not under constant stress from the connecting wires.
3) Terminal material is copper alloy which may discolor due to finger's oil or after a long time. But that discoloration does not effect actual performance.

3. Resistance to chemicals

To clean the switch unit, use a neutral detergent diluted with water. Do not use acidic or alkaline solvents as they may damage the switch. Furthermore, be careful not to get any of the detergent solution inside of the switch while cleaning it.

4. Environment

Avoid using and storing these switches in a location where they will be exposed to corrosive gases, silicon, or high dust levels, all of which can have an adverse effect on the contacts.
5. Take care not to drop the product as it may impair perfomance.
6. For general precautions for operation switches, please visit our website.

REFERENCE

1. Outline of UL1054 test

Overload test:
20A 250V AC
(power factor 0.75 to 0.8)
50 operation
Endurance test:
16A 250V AC
(power factor 0.75 to 0.8)
10,000 operation
After testing, temperature rise of terminals should be less than $30^{\circ} \mathrm{C}$ and no abnormality should be observed in characteristics.

2. Outline of EN61058-1 test

After switching 5×10^{3} times on the above load condition at both $85^{+5}{ }^{\circ} \mathrm{C}$ and $25 \pm 10^{\circ} \mathrm{C}$, temperature rise of terminals should be less than $55^{\circ} \mathrm{C}$ and no abnormality should be observed in characteristics.

COIL TERMINAL CONNECTOR

Because CT terminals are used for the coil terminals, AMP's CT connector can be used.
Remark: We do not sell this type of connector. Questions concerning this connector should be directed to the manufacturer.

AMP's CT connector

Pressure welding type:
173977-2: for AWG26, 28
2-179694-2: for AWG24
Crimping type:
179228-2

Panasonic ideas for life

FEATURES

1. Power switches with an electromagnetic reset function which meet the need for energy savings in equipment and for safety.
Applications for these switches include promoting energy savings in equipment (by reducing power consumption when OA equipment is in standby mode, for example), preventing fires caused by overheating of a heater inside equipment, preventing electrical leaks, and automatically turning off the power if the unit tips over or is shaken. These switches feature a built-in electromagnetic reset function that shuts off the main power supply in response to a signal that is received from an external sensor.
2. Improved feel of switch operation. These switches provide the same comfortable operation of our conventional AJ8 switches.
Comparison of force through operating stroke

3. CT terminals adopted for coil terminals

These switches can be used with AMP's CT connectors, which are widely used for wiring connections in OA equipment, making it possible to achieve greater efficiency in wiring work.
Receptacle socket
for AMP's CT connector

4. Prolonged electrical service life.

Coil operation provides an electrical life of at least 50,000 switching operations.
5. Approved under major international safety standards.
UL/C-UL, TÜV and SEMKO approved.

OPERATING PRINCIPLE

- Manual operation is a repetition of (A) and (B). This operation is independent of the electromagnetic reset function.
- The reset mechanism operates only when an electromagnetic reset has occurred. (C)

ORDERING INFORMATION

PRODUCT TYPES

Remarks: Standard actuator color is dark gray and black.
To order switches with a black actuator, replace the letter " Z " with " B " in the product numbers shown below when ordering. (ex.) AJ8R1001ZC (actuator color: dark gray flange color: dark gray)
\rightarrow AJ8R1001BC (actuator color: black flange color: dark gray)

1. Without indication on actuators (actuator color: dark gray)

Poles	Operation type	Coil voltage	Part no.	
			Flange color: dark gray	Flange color: black
1-pole	Single throw (ON-OFF)	5V DC	AJ8R1001ZCF	AJ8R1001ZBCF
		12V DC	AJ8R1003ZCF	AJ8R1003ZBCF
		24 V DC	AJ8R1004ZCF	AJ8R1004ZBCF
	Double throw (ON-ON)	5V DC	AJ8R5001ZCF	AJ8R5001ZBCF
		12 V DC	AJ8R5003ZCF	AJ8R5003ZBCF
		24V DC	AJ8R5004ZCF	AJ8R5004ZBCF
2-pole	Single throw (ON-OFF)	5V DC	AJ8R2001ZCF	AJ8R2001ZBCF
		12 V DC	AJ8R2003ZCF	AJ8R2003ZBCF
		24V DC	AJ8R2004ZCF	AJ8R2004ZBCF

2. With indication on actuator
1) With I O indication (actuator color: dark gray)

Poles	Operation type	Coil voltage	Part no.	
			Flange color: dark gray	Flange color: black
1-pole	Single throw (ON-OFF)	5V DC	AJ8R1011ZCF	AJ8R1011ZBCF
		12 V DC	AJ8R1013ZCF	AJ8R1013ZBCF
		24 V DC	AJ8R1014ZCF	AJ8R1014ZBCF
	Double throw (ON-ON)	5V DC	AJ8R5011ZCF	AJ8R5011ZBCF
		12 V DC	AJ8R5013ZCF	AJ8R5013ZBCF
		24 V DC	AJ8R5014ZCF	AJ8R5014ZBCF
2-pole	Single throw (ON-OFF)	5V DC	AJ8R2011ZCF	AJ8R2011ZBCF
		12 V DC	AJ8R2013ZCF	AJ8R2013ZBCF
		24 V DC	AJ8R2014ZCF	AJ8R2014ZBCF

AJ8R
2) With I O indication (actuator color: dark gray)

Poles	Operation type	Coil voltage	Part no.	
			Flange color: dark gray	Flange color: black
1-pole	Single throw (ON-OFF)	5V DC	AJ8R1021ZCF	AJ8R1021ZBCF
		12 V DC	AJ8R1023ZCF	AJ8R1023ZBCF
		24V DC	AJ8R1024ZCF	AJ8R1024ZBCF
	Double throw (ON-ON)	5V DC	AJ8R5021ZCF	AJ8R5021ZBCF
		12 V DC	AJ8R5023ZCF	AJ8R5023ZBCF
		24 V DC	AJ8R5024ZCF	AJ8R5024ZBCF
2-pole	Single throw (ON-OFF)	5V DC	AJ8R2021ZCF	AJ8R2021ZBCF
		12 V DC	AJ8R2023ZCF	AJ8R2023ZBCF
		24V DC	AJ8R2024ZCF	AJ8R2024ZBCF

SPECIFICATIONS

1. Contact rating

Voltage	Resistive load (power factor = 1)	Motor load $($ EN61058-1) (power factor $=0.6)$	Inrush load
125 V AC	16 A	-	$100 \mathrm{~A}(8.3 \mathrm{~ms})$
250 V AC	10 A	4 A	-

Remark: The motor load is in accordance with EN61058-1. Inrush current can be switched up to the value of 6 times the indicated rating.

2. Coil rating

Nominal Voltage ${ }^{*}(\mathrm{max} .10 \mathrm{sec})$	Drop-out voltage (at $\left.20^{\circ} \mathrm{C}\right)$	Nominal operating current $[\pm 10 \%]\left(\right.$ at $\left.20^{\circ} \mathrm{C}\right)$	Coil resistance $[\pm 10 \%]\left(\right.$ at $\left.20^{\circ} \mathrm{C}\right)$	Maximum voltage (max. 1 s$)$
5 V DC	Max.4.5V Min.0.5V	725 mA	6.9Ω	5.5 V
12 V DC	Max.10.8V Min.1.2V	300 mA	40Ω	13.2 V
24 V DC	Max.21.6V Min.2.4V	150 mA	160Ω	26.4 V

Remark: If the rated voltage is applied to the coil for more than ten seconds or the maximum voltage is applied for more than one second, coil performance will deteriorate.

3. Characteristics

Electrical life	Manual operation	Min. 10^{4} (at 7 cpm ., at rated load)
	Coil operation	Min. 10^{3} (at 7 cpm ., at rated load), Min. 5×10^{4} (at 7 cpm .5 A 125 V AC)
Mechanical life		Min. 5×10^{4} (at 20 cpm .)
Contact resistance (initial)		Max. $100 \mathrm{~m} \Omega$ (by voltage drop at 1A, 2 to 4V DC)
Insulation resistance (initial)		Min. 100M Ω (at 500V DC measured by insulation resistive meter)
Dielectric strength (initial)	Between contacts	2,000 Vrms (detection current: 10 mA)
	Between coil and contact	4,000 Vrms (detection current: 10 mA)
Ambient temperature		$0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ (not freezing below $0^{\circ} \mathrm{C}$)
Vibration resistance		10 to 55 Hz at single amplitude of $0.75 \mathrm{~mm}, 2$ hours each in X, Y and Z directions, (contact opening max. 1 ms)
Shock resistance	Functional	Min. $294 \mathrm{~m} / \mathrm{s}^{2}\{30 \mathrm{G}\}$ (contact opening max. 1ms)
	Destructive	Min.980m/s ${ }^{2}$ \{100G\}
Terminal strength		. 250 Quick-connect terminal: Min. 98N\{10kgf\}/min. (pull \& push direction)
Actuator strength		$39.2 \mathrm{~N}\{4 \mathrm{kgf}$ for 1 min . operating direction
Contact release time		Max. 100ms (at rated voltage)
Operating force (initial) * Reference value		4.9 N or less (max. 500 gf or less) Setting force after reset has been released: max. 6.86 N or less (max. 700 gf or less)
Flame retardancy		UL94V-0
Tracking resistance		Min. 175
Unit weight		1-pole, single throw: Approx. 17g; 1-pole, double throw: Approx. 19g; 2-pole, single throw: Approx. 20g
Contact material		AgSnO_{2} alloy

Remark: Test conditions are in accordance with EN61058-1, UL1054 and JIS C 6571.

Interested in CAD data? You can obtain CAD data for all products with CAD Data mark from your local Panasonic Electric Works representative.
mm General tolerance: ± 0.5

2-pole, single throw (ON-OFF)

Remarks: 1. The external dimensions and mounting dimensions for the 1-pole, single throw type and the 1-pole, double throw type are the same as those for the 2-pole, single throw type indicated above.
2. The figures show the 2-pole, single throw (ON-OFF) type as an example.

The contact terminals are 1, 2, 3, and 4
In the case of the 1-pole, single throw (ON-OFF) type, the contact terminals are 1 and 2 In the case of the 1-pole, double throw (ON-ON) type, the contact terminals are 1, 2, and 4 There are no other terminals. Refer to the internal wiring diagram.
3. The coil is a polarized coil; coil terminal 5 is positive and coil terminal 6 is negative.

Wiring diagram (bottom view)
1-pole, single throw (ON-OFF)

ON (set): 1-2 clc
1-pole, double throw (ON-ON)

Reset: 1-4 closed
Set: 1-2 closed
2-pole, single throw (ON-OFF)

ON (set): 1-2 closed
3-4 closed
Diagram of recommended locations for panel mounting holes

Panel thickness	X	Y
1 to less than 1.8	$30.4_{-0.1}^{+0}$	$22.0_{-0}^{+0.1}$
1.8 to 2.3	$31.1_{-0.1}^{+0}$	$22.0_{-0}^{+0.1}$

Remark: Contact us if you are considering using a panel of other than the recommended size and shape.

NOTES

1. Operating voltage application time If the rated voltage is applied to the coil for more than 10 seconds or the maximum voltage is applied for more than 1 second, coil performance may deteriorate.
2. The shape of the mounting panel should be as recommended in the dimensions diagram.
Contact us if you are considering using a panel of other than the recommended size and shape.
3. The mounting panel should be made of SPCC. If a different material is used, its adhesion to the switch unit may not be as strong. Check this on site if necessary.
4. Note that the actuator could pop out of the switch housing if 19.6 N (2 kgf) or more of force is applied to the side of the actuator.
5. Regarding fastening lead wires to terminals
(1) When connecting the . 250 Quickconnect terminals, use a .250 receptacle and insert the terminals straight in. If you insert them at an angle, the terminals could catch on the opening and will require greater insertion force.
(2) The coil terminals have specific polarities. Make sure you connect them correctly.
(3) Use a receptacle that is compliant with JIS C 2809.
In addition, there is some deviation regarding the insertion force depending on the model used from different manufacturers, so the insertion force should be checked under realistic conditions.
(4) Use AMP's CT connector for the coil terminals.
6. Because special receptacle terminals are used for the contact terminals and the common terminals, do not attempt to solder them. Doing so could melt plastic components and otherwise harm the performance of the switch
7. The terminals should be connected in such a way that they are not under constant stress from the connecting wires.
8. Take care not to drop the product as it may impair performance.
9. Resistance to chemicals

To clean the switch unit, use a neutral detergent diluted with water.
Do not use acidic or alkaline solvents as they may damage the switch.
Furthermore, be careful not to get any of the detergent solution inside of the switch while cleaning it.
10. This product is not hermetically sealed, so its performance could deteriorate under certain ambient conditions. Avoid using and storing these switches in a location where they will be exposed to corrosive gases, silicon, or high dust levels, all of which can have an adverse effect on the contacts. In addition, because these switches contain permanent magnets, avoid using and storing these switches in a location where metallic dust, etc., is present.
11. When these switches are used with weak currents of 500 mA or less, a layer of material on the surface of the contacts may cause contact instability. Check and evaluate this possibility before using these switches under such conditions. 12. When using an ON-OFF type switch with no (10) indication on the actuator, the "OFF" position should be indicated on the set in which the switch is installed.
13. To assure reliability, check the switch under actual loading conditions. Avoid any situation that may adversely affect switching performance.

COIL TERMINAL CONNECTOR

Because CT terminals are used for the coil terminals, AMP's CT connector can be used.
Remark: We do not sell this type of connector. Questions concerning this connector should be directed to the manufacturer.

AMP's CT connector

Pressure welding type:
173977-2: for AWG26, 28
2-179694-2: for AWG24
Crimping type:
179228-2

Panasonic ideas for life

Small size
AJ7 switch 10A type
Standard actuator

AJ7 switch 10A type Wide actuator

AJ7 switch 6A type

AJ7 (J7) SWITCHES

FEATURES

1. Power rocker switches for safety requirements.

- All versions comply with ClassII EN61058-1 insulation grade. Insulation distance: 8 mm Min.
Contact gap: 3mm Min.
- International Standard-approved status

		Already approved
AJ7 switchStandard actuator 10A type	Wide actuator type	UL/C-UL, ENEC/VDE
	Uid-UL, ENEC/VDE	
AJ7 switch 6A type	UL/C-UL, ENEC/VDE	

2. High inrush current resistance is ideal for office automation equipment.

Type	Inrush	Contact rating	Expected life
10A type	100 A	10A 250V AC	Min.104
6A type	60 A	6A 250V AC	

3. Operation that only requires a light touch
The best operation characteristics were sought by analyzing touch data gathered by monitoring 1,500 people.

- Power Rocker Switch touch curve

4. A broad product line

The AJ7 switches are available with five different types of terminals: quickconnect terminals, soldering terminals, PC board terminals, right angle terminals and left angle terminals.
5. Cadmium-free contact compatibility.
6. TV-5 rating type added to lineup

CONSTRUCTION

AJ7 (J7)

ORDERING INFORMATION

7: AJ7 switch

Rating \& size of actuator
Nil: 10A standard size
W: 10A wide size
6: 6A standard size
Number of poles and Operation
1: 1-pole, single throw (ON-OFF)
2: 2-pole, single throw (ON-OFF)
Terminal shape
0: . 187 Quick-connect terminal
1: Soldering terminal
2: PC board terminal
3: PC board right angle terminal (for standard actuator only)
4: PC board left angle terminal (for standard actuator only)
Actuator indication
0 : No indication
1: 10 indication (Indication on top)
2: -0 indication (Indication on top)
3: \qquad indication (Side indication)

Actuator color Remark 1)
W: White B: Black R: Red
Flange color
Nil: Black (standard color)
(Custom ordered color: W: White, H: Light gray) Remark 1, 5)
Insulation guard
Nil: Short guard type
T: Long guard type (. 187 Quick-connect terminal and soldering terminal only)
F: Cadmium-free product
Remarks: 1. The 10A type has indication on the actuator.
2. The correspondence between actuator colors and flange colors marked with an asterisk differs according to the type; refer to the remark for the PRODUCT TYPES.
3. "IO" is engraved on all flanges.
4. The color of indication on the actuator:

White actuator: black

- Others: white

5. The flange color of 6A type is black only
6. They come with a stamp indicating international standards without your request.

TV rating type

ACTUATOR INDICATIONS ON PRODUCTS MADE TO ORDER

With indication on top

With side indication
(When the "I" indication is visible on the side of the actuator, it indicates that the switch is in the "ON" state.)

With 10 indications:
The I and O symbols are located on each side, respectively.
With I Indications:
The I symbols is located on the side.

PRODUCT TYPES

1. 10 A type
1) Standard actuator type
(1) Without indication on actuators

Terminal shape	Poles	Operating types	Part no.
			Without indication
. 187 Quick-connect terminal	1-pole	ON-OFF	AJ7100*F
	2-pole		AJ7200*F
Soldering terminal	1-pole		AJ7110*F
	2-pole		AJ7210*F
PC board terminal	1-pole		AJ7120*F
	2-pole		AJ7220*F
PC board right angle terminal	1-pole		AJ7130*F
	2-pole		AJ7230*F
PC board left angle terminal	1-pole		AJ7140*F
	2-pole		AJ7240*F

Remarks: 1. A letter indicating the actuator color is entered in place of asterisk. (Regarding the color, please refer to ORDERING INFORMATION.)
Standard flange color is black. For other colors type, they are custom ordered. For requests of other flange color, please refer to ORDERING INFORMATION. 2. Long guard type is available for . 187 Quick-connect terminal and soldering terminal type. When ordering, please add a " T " befre the " F " at the end of the part number.
3. The color of indication on the actuator:

- For white actuator: black
- For others: white

4. They come with a stamp indicating international standards without your request.
5. Note that the position of the I mark on the flange is used as a reference for left angle and right angle terminals as shown in the diagram below. This also apies to the 6A type.

Right angle terminal

Left angle terminal

AJ7 (J7)
(2) With indication on actuators

Terminal shape	Poles	Operating types	Part no.	
			With I O indication	With - O indication
.187 Quick-connect terminal	1-pole	ON-OFF	AJ7101*F	AJ7102*F
	2-pole		AJ7201*F	AJ7202*F
Soldering terminal	1-pole		AJ7111*F	AJ7112*F
	2-pole		AJ7211*F	AJ7212*F
PC board terminal	1-pole		AJ7121*F	AJ7122*F
	2-pole		AJ7221*F	AJ7222*F
PC board right angle terminal	1-pole		AJ7131*F	AJ7132*F
	2-pole		AJ7231*F	AJ7232*F
PC board left angle terminal	1-pole		AJ7141*F	AJ7142*F
	2-pole		AJ7241*F	AJ7242*F

Remarks: 1. A letter indicating the actuator color is entered in place of asterisk. (Regarding the color, please refer to ORDERING INFORMATION.)
Standard flange color is black. For other colors type, they are custom ordered. For requests of other flange color, please refer to ORDERING INFORMATION.
2. Long guard type is available for .187 Quick-connect terminal and soldering terminal type. When ordering, please add a " T " bebre the " F " at the end of the part number
3. The color of indication on the actuator:

- For white actuator: black
- For others: white

4. They come with a stamp indicating international standards without your request.
5. Note that the position of the I mark on the flange is used as a reference for left angle and right angle terminals as shown in the diagram below. This also aplies to the 6A type.

Right angle terminal

Left angle terminal

2) Wide actuator type

(1) Without indication on actuators

Terminal shape	Poles	Operating types	Part no.
			Without indication
. 187 Quick-connect terminal	1-pole	ON-OFF	AJ7W100*F
	2-pole		AJ7W200*F
Soldering terminal	1-pole		AJ7W110*F
	2-pole		AJ7W210*F
PC board terminal	1-pole		AJ7W120*F
	2-pole		AJ7W220*F

(2) With indication on actuators

Terminal shape	Poles	Operating types	Part no.	
			With I O indication	With - O indication
. 187 Quick-connect terminal	1-pole	ON-OFF	AJ7W101*F	AJ7W102*F
	2-pole		AJ7W201*F	AJ7W202*F
Soldering terminal	1-pole		AJ7W111*F	AJ7W112*F
	2-pole		AJ7W211*F	AJ7W212*F
PC board terminal	1-pole		AJ7W121*F	AJ7W122*F
	2-pole		AJ7W221*F	AJ7W222*F

Remarks: 1. A letter indicating the actuator color is entered in place of asterisk. (Regarding the color, please refer to ORDERING INFORMATION.)
Standard flange color is black. For other colors type, they are custom ordered. For requests of other flange color, please refer to ORDERING INFORMATION.
2. The color of indication on the actuator

- For white actuator: black
- For others: white

3. They come with a stamp indicating international standards without your request.

2. 6 A type

1) Standard actuator type
(1) Without indication on actuators

Terminal shape	Poles	Operating types	Part no.
			Without indication
. 187 Quick-connect terminal	1-pole	ON-OFF	AJ76100*F
	2-pole		AJ76200*F
Soldering terminal	1-pole		AJ76110*F
	2-pole		AJ76210*F
PC board terminal	1-pole		AJ76120*F
	2-pole		AJ76220*F
PC board right angle terminal	1-pole		AJ76130*F
	2-pole		AJ76230*F
PC board left angle terminal	1-pole		AJ76140*F
	2-pole		AJ76240*F

(2) With indication on actuators

Terminal shape	Poles	Operating types	Part no.	
			With I O indication	With - O indication
. 187 Quick-connect terminal	1-pole	ON-OFF	AJ76101*F	AJ76102*F
	2-pole		AJ76201*F	AJ76202*F
Soldering terminal	1-pole		AJ76111*F	AJ76112*F
	2-pole		AJ76211*F	AJ76212*F
PC board terminal	1-pole		AJ76121*F	AJ76122*F
	2-pole		AJ76221*F	AJ76222*F
PC board right angle terminal	1-pole		AJ76131*F	AJ76132*F
	2-pole		AJ76231*F	AJ76232*F
PC board left angle terminal	1-pole		AJ76141*F	AJ76142*F
	2-pole		AJ76241*F	AJ76242*F

(Standard color is black. For other color type, they are custom ordered.)
Remarks: 1. Replace the asterisk with a code that indicates the actuator color
B: Black (standard), W: White (custom ordered), R: Red (custom ordered)
2. The color of I O indication on the actuator: White actuator: black Others: white
3. They come with a stamp indicating international standards without your request.
3. TV rating type

Terminal shape	Poles	Operating types	Part no.	
			Without indication	With -O indication
.187 Quick-connect terminal	2-pole	ON-OFF	AJ7200BTVF	-
			AJ7202BTVF	
Soldering terminal			AJ7210BTVF	-
			-	AJ7212BTVF

SPECIFICATIONS

1. Contact rating

Type	Voltage	Resistive load (power factor =1)	Motor load (EN61058-1) (power factor = 0.6)	Inrush load
10A type		10 A	4 A	$100 \mathrm{~A}(8.3 \mathrm{~ms})$
6A type	6 A	3 A	-	

Remark: The motor load is in accordance with EN61058-1. Inrush current can be switched up to the value of 6 times the indicated rating.

2. TV rating

Voltage	Resistive load	Motor load (EN6105801)	Capacitor load (EN61058-1)	Lamp load (UL1054)	Expected electrical life
	(power factor $=1$)	(power factor $=0.6$)	(inrush load)	(TV-5)	(at 7 cpm)
120 V AC	-	-	-	$5 / 78 \mathrm{~A}$	Min. 2.5×10^{4}
250 V AC	10 A	4 A	$100 \mathrm{~A}(8.3 \mathrm{~ms})$	-	Min. 10^{4}

AJ7 (J7)

3. Characteristics

Expected life (min. operations)	Mechanical	Min. 5×10^{4} (at 20 cpm .)
	Electrical*	Min. 10^{4} (at 7 cpm ., at rated load)
Insulation resistance (initial)		Min. $100 \mathrm{M} \Omega$ (at 500 V DC measured by insulation resistive meter) (between terminals)
Dielectric strength (initial)		2,000 Vrms (detection current: 10 mA) (between terminals)
Contact resistance (initial)		Max. $100 \mathrm{~m} \Omega$ (by voltage drop at 1A, 2 to 4V DC)
Temperature rise	at 6×10^{3} ope. or less	Max. $30^{\circ} \mathrm{C}$ (UL1054)
	from 6×10^{3} ope. to 10^{4}	Max. $55^{\circ} \mathrm{C}$ (EN61058-1)
Vibration resistance		10 to 55 Hz at double amplitude of 1.5 mm (contact opening max. 1 ms)
Shock resistance		Min. 490m/s ${ }^{2}$ \{50 G \}
Actuator strength		$40 \mathrm{~N}\{4.08 \mathrm{kgf}$ for 1 minute (operating direction)
Tensile terminal strength		$100 \mathrm{~N}\{10.2 \mathrm{kgf}$ for 1 minute or more (pull \& push direction)
Ambient temperature		$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (not freezing below $0^{\circ} \mathrm{C}$)
Flame retardancy		UL94V-0
Tracking resistance		Min. 175
Operating force (reference characteristics)	1-pole	$2.2 \pm 1.2 \mathrm{~N}\{0.22 \pm 0.12 \mathrm{~kg}\}$
	2-pole	$4 \pm 2.5 \mathrm{~N}\{0.41 \pm 0.25 \mathrm{kgf}\}$
Contact material		AgSnO_{2} alloy

Remark: Test conditions are in accordance with EN61058-1, UL1054 and JIS C 6571.

DIMENSIONS

Interested in CAD data? You can obtain CAD data for all products with a

 mark from your local Panasonic Electric Works representative.mm General tolerance: ± 0.5
The dimension diagram for the standard actuator types is common to both the 10A type and the 6A type.

1. . 187 Quick-connect terminal/Long guard type

CAD Data

Remark: As for soldering type, only terminal is different

Diagram of recommended locations for panel mounting holes

Panel thickness	X
0.75 to 1.25	$19.2_{-0.1}^{+0}$
1.25 to 2	$19.4_{-0.1}^{+0}$
2 to 3	$19.8_{-0.1}^{+0}$

2. Soldering terminal

Diagram of recommended locations for panel mounting holes

CAD Data

Panel thickness	X
0.75 to 1.25	$19.2_{-0.1}^{+0}$
1.25 to 2	$19.4_{-0.1}^{+0}$
2 to 3	$19.8_{-0.1}^{+0}$

3. PC board terminal

CAD Data

Diagram of recommended locations for panel mounting holes

PC board pattern

Panel thickness	X
0.75 to 1.25	$19.2_{-0.1}^{+0}$
1.25 to 2	$19.4_{-0.1}^{+0}$
2 to 3	$19.8_{-0.1}^{+0}$

4. PC board right angle terminal

CAD Data

Remark: A type left angle terminals is also available.

Diagram of recommended locations for panel mounting holes

Panel thickness	X
1 to less than 1.8	$19.2_{-0.1}^{+0}$
1.8 to 2.3	$19.9_{-0.1}^{+0}$

Remark: Dimensions for the terminals of soldering terminal type and PC board terminal type are the same as those of standard size type.

NOTES

1. Switch mounting

Mount the switch with the hole cutting dimensions shown in the dimensions. Contact us if you are considering using a panel of other than the recommended size and shape.
2. Regarding fastening lead wires to terminals

1) When connecting the tab terminals, use a . 187 Quick-connect and insert the terminals straight in.
If they are skewed, the terminals will require excessive insertion force. In addition, there is some variation in the insertion force required for different receptacles from different manufacturers, so confirm how much force is needed under actual conditions.
Do not solder wires onto tab terminals.
2) With manual soldering: Complete the soldering connection work within 3 seconds with the tip of the soldering iron (60 W soldering iron) at a temperature of $420^{\circ} \mathrm{C}$ or lower, and take care not to apply any force to the terminal area.

Avoid touching the switch with soldering iron.

Refer to the diagram above, "soldering position," for details on the position where a wire should be soldered to a terminal. When soldering PC board terminals, keep soldering time to within 5 s at 270 C soldering bath or within 3 s at $350^{\circ} \mathrm{C}$ soldering bath.
3) The terminals should be connected in such a way that they are not under constant stress from the connecting wires.
4) Terminal material is copper alloy which may discolor due to finger's oil or after a long time. But that discoloration does not effect actual performance.

3. Resistance to chemicals

To clean the switch unit, use a neutral detergent diluted with water. Do not use acidic or alkaline solvents as they may damage the switch.
Furthermore, be careful not to get any of the detergent solution inside of the switch while cleaning it.

4. Environment

Avoid using and storing these switches in a location where they will be exposed to corrosive gases, silicon, or high dust levels, all of which can have an adverse effect on the contacts.
5. Take care not to drop the product as it may impair perfomance.

REFERENCE

1. Outline of UL1054 test

Overload test AJ7: 12.5A 250V AC
(power factor 0.75 to 0.8)
50 operation
Endurance test AJ7: 10A 250V AC
(power factor 0.75 to 0.8)
6×10^{3} operation
After testing, temperature rise of terminals should be less than $30^{\circ} \mathrm{C}$ and no abnormality should be observed in characteristics.

2. Outline of EN61058-1 test

After switching 5×10^{3} times on the below load condition at both $85^{+5}{ }^{\circ} \mathrm{C}$ and $25 \pm 10^{\circ} \mathrm{C}$, temperature rise of terminals should be less than $55^{\circ} \mathrm{C}$ and no abnormality should be observed in characteristics.

INTRODUCTION TO 4P CONNECTORS FOR THE AJ7 SWITCH (produced by Nippon Tanshi Co., Ltd)

Remark: This AJ7 switch connector is not available from Panasonic.
Contact us for further details on this connector.

Suitable switches: AJ7 switch, . 187 Quick-connect terminal
(Note: Terminal guard long type switches are not suitable for this connector.)

Housing

Product number: 4120-4204

Receptacle

Product number: 171901-M2

Panasonic ideas for life

AJ8 switch Standard actuator

AJ8 switch Wide actuator

FEATURES

1. Power rocker switches for safety requirements.

- All versions comply with ClassII EN61058-1 insulation grade. Insulation distance: 8mm Min.
Contact gap: 3mm Min.
- International Standard-approved status

		Already approved
AJ8 switch	Standard actuator type	UL/C-UL, ENEC/VDE
	Wide actuator type	UL/C-UL, ENEC/VDE

2. High inrush current resistance is ideal for office automation equipment.

Type	Inrush	Contact rating	Expected life
AJ8	160 A	16 A 250 V AC	Min. 10^{4}

3. Operation that only requires a light touch
The best operation characteristics were sought by analyzing touch data gathered by monitoring 1,500 people.

- Power Rocker Switch touch curve

$\xrightarrow[\text { Stroke }]{ }$

4. A broad product line

The AJ8 switches are available with five different types of terminals:quick-connect terminals, soldering terminals, PC board terminals, right angle terminals and left angle terminals.
5. Cadmium-free contact compatibility.
6. TV-8 rating type added to lineup.

CONSTRUCTION

ORDERING INFORMATION

TV rating type

	B	TV	F
8: AJ8 switch			
Number of poles and Operation 2: 2-pole, single throw (ON-OFF)			
Terminal shape 0: . 250 Quick-connect terminal 1: Soldering terminal			
Actuator indication 0 : No indication 2: \square indication			
Actuator color B: Black			
Rating TV: TV rating			
F: Cadmium-free product			

PRODUCT TYPES

1. Standard actuator type

(1) Without indication on actuators

Terminal shape	Poles	Operating types	Part no.
			Without indication
. 250 Quick-connect terminal	1-pole	ON-OFF	AJ8100*F
	2-pole		AJ8200*F
Soldering terminal	1-pole		AJ8110*F
	2-pole		AJ8210*F
PC board terminal	1-pole		AJ8120*F
	2-pole		AJ8220*F
PC board right angle terminal	1-pole		AJ8130*F
	2-pole		AJ8230*F
PC board left angle terminal	1-pole		AJ8140*F
	2-pole		AJ8240*F

Remarks: 1. A letter indicating the actuator color is entered in place of asterisk. (Regarding the color, please refer to ORDERING INFORMATION.)
Standard flange color is black. For other colors type, they are custom ordered. For requests of other flange color, please refer to ORDERING INFORMATION.
2. Long guard type is available for . 250 Quick-connect terminal and soldering terminal type. When ordering, please add a " T " bebre the " F " at the end of the part number.
3. The color of indication on the actuator:

- For white actuator: black
- For others: white

4. They come with a stamp indicating international standards without your request.
5. Note that the position of the I mark on the flange is used as a reference for left angle and right angle terminals as shown in the diagram below.

Right angle terminal

Left angle terminal
(2) With indication on actuators

Terminal shape	Poles	Operating types	Part no.	
			With I O indication	With - O indication
. 250 Quick-connect terminal	1-pole	ON-OFF	AJ8101*F	AJ8102*F
	2-pole		AJ8201*F	AJ8202*F
Soldering terminal	1-pole		AJ8111*F	AJ8112*F
	2-pole		AJ8211*F	AJ8212*F
PC board terminal	1-pole		AJ8121*F	AJ8122*F
	2-pole		AJ8221*F	AJ8222*F
PC board right angle terminal	1-pole		AJ8131*F	AJ8132*F
	2-pole		AJ8231*F	AJ8232*F
PC board left angle terminal	1-pole		AJ8141*F	AJ8142*F
	2-pole		AJ8241*F	AJ8242*F

Remarks: 1. A letter indicating the actuator color is entered in place of asterisk. (Regarding the color, please refer to ORDERING INFORMATION.)
Standard flange color is black. For other colors type, they are custom ordered. For requests of other flange color, please refer to ORDERING INFORMATION.
2. Long guard type is available for .250 Quick-connect terminal and soldering terminal type. When ordering, please add a " T " bebre the " F " at the end of the part number.
3. The color of indication on the actuator:

- For white actuator: black
- For others: white

4. They come with a stamp indicating international standards without your request.
5. Note that the position of the I mark on the flange is used as a reference for left angle and right angle terminals as shown in the diagram below.

Right angle terminal

Left angle terminal
2.Wide actuator type
(1) Without indication on actuators

Terminal shape	Poles	Operating types	Part no.
			Without indication
. 250 Quick-connect terminal	1-pole	ON-OFF	AJ8W100*F
	2-pole		AJ8W200*F
Soldering terminal	1-pole		AJ8W110*F
	2-pole		AJ8W210*F
PC board terminal	1-pole		AJ8W120*F
	2-pole		AJ8W220*F

(2) With indication on actuators

Terminal shape	Poles	Operating types	Part no.	
			With I O indication	With - O indication
. 250 Quick-connect terminal	1-pole	ON-OFF	AJ8W101*F	AJ8W102*F
	2-pole		AJ8W201*F	AJ8W202*F
Soldering terminal	1-pole		AJ8W111*F	AJ8W112*F
	2-pole		AJ8W211*F	AJ8W212*F
PC board terminal	1-pole		AJ8W121*F	AJ8W122*F
	2-pole		AJ8W221*F	AJ8W222*F

Remarks: 1. A letter indicating the actuator color is entered in place of asterisk. (Regarding the color, please refer to ORDERING INFORMATION.)
Standard flange color is black. For other colors type, they are custom ordered. For requests of other flange color, please refer to ORDERING INFORMATION.
2. The color of indication on the actuator:

- For white actuator: black
- For others: white

3. They come with a stamp indicating international standards without your request.

3. TV rating type

Terminal shape	Poles	Operating types	Part no.	
			Without indication	With - O indication
. 250 Quick-connect terminal	2-pole	ON-OFF	AJ8200BTVF	-
			-	AJ8202BTVF
Soldering terminal			AJ8210BTVF	-
			-	AJ8212BTVF

SPECIFICATIONS

1. Contact rating

Type	Voltage	Resistive load (power factor = 1)	Motor load (EN61058-1) (power factor = 0.6)
AJ8 switch	250 V AC	16 A	4 A

Remark: The motor load is in accordance with EN61058-1. Inrush current can be switched up to the value of 6 times the indicated rating.

2. TV rating

Voltage	Resistive load	Motor load (EN6105801)	Capacitor load (EN61058-1)	Lamp load (UL1054)	Expected electrical life
	(power factor = 1)	(power factor =0.6)	(inrush load)	$($ TV-8)	$($ at 7 cpm$)$
120 V AC	-	-	-	$8 / 117 \mathrm{~A}$	Min. 2.5×10^{4}
250 V AC	16 A	4 A	$160 \mathrm{~A}(8.3 \mathrm{~ms})$	-	Min. 10^{4}

AJ8 (J8)

3. Characteristics

Expected life (min. operations)	Mechanical	Min. 5×10^{4} (at 20 cpm .)
	Electrical*	Min. 10^{4} (at 7 cpm. , at rated load)
Insulation resistance (initial)		Min. $100 \mathrm{M} \Omega$ (at 500 V DC measured by insulation resistive meter) (between terminals)
Dielectric strength (initial)		2,000 Vrms detection current: 10 mA (between terminals)
Contact resistance (initial)		Max. $100 \mathrm{~m} \Omega$ (by voltage drop at 1A, 2 to 4V DC)
Temperature rise	at 6×10^{3} ope. or less	Max. $30^{\circ} \mathrm{C}$ (UL1054)
	from 6×10^{3} ope. to 10^{4}	Max. $55^{\circ} \mathrm{C}$ (EN61058-1)
Vibration resistance		10 to 55 Hz at double amplitude of 1.5 mm (contact opening max. 1 ms)
Shock resistance		Min. 490m/s ${ }^{2}$ [50 G \}
Actuator strength		$40 \mathrm{~N}\{4.08 \mathrm{kgf}$ for 1 minute (operating direction)
Terminal strength (.250 Quick-connect terminal)		$100 \mathrm{~N}\{10.2 \mathrm{kgf}$ for 1 minute or more (pull \& push direction)
Ambient temperature		$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (not freezing below $0^{\circ} \mathrm{C}$)
Flame retardancy		UL94V-0
Tracking resistance		Min. 175
Operating force (reference characteristics)	1-pole	$2.45 \pm 1.47 \mathrm{~N}\{0.25 \pm 0.15 \mathrm{kgf}\}$
	2-pole	$4.5 \pm 2.5 \mathrm{~N}\{0.46 \pm 0.25 \mathrm{kgf}\}$
Contact material		AgSnO_{2} alloy

Remark: Test conditions are in accordance with EN61058-1, UL1054 and JIS C 6571.

DIMENSIONS

Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.
mm General tolerance: ± 0.5

1. . 250 Quick-connect terminal/Short guard type

Diagram of recommended locations for panel mounting holes

Panel thickness	X
0.75 to 1.25	$28.2_{-0.1}^{+0}$
1.25 to 2	$28.4_{-0.1}^{+0 .}$
2 to 3	$28.8_{-0.1}^{+0 .}$

2. Soldering terminal

CAD Data

mm General tolerance: ± 0.5 Diagram of recommended locations for panel mounting holes

Panel thickness	X
0.75 to 1.25	$28.2_{-0.1}^{+0}$
1.25 to 2	$28.4_{-0.1}^{+0}$
2 to 3	$28.8_{-0.1}^{+0}$

3. PC board terminal

Diagram of recommended locations for panel mounting holes

4. PC board right angle terminal

Remark: Left angle terminal type is also available.

5. Wide actuator type

CAD Data

mm General tolerance: ± 0.5
Diagram of recommended locations for panel mounting holes

Panel thickness	X
0.75 to 1.25	$28.2_{-0.1}^{+0}$
1.25 to 2	$28.4_{-0.1}^{+0}$
2 to 3	$28.8_{-0.1}^{+0}$

Diagram of recommended locations
for panel mounting holes

Panel thickness	X
1 to less than 1.8	$30.0_{-0.1}^{+0}$
1.8 to 2.3	$30.7_{-0.1}^{+0}$

Remark: Dimensions for the terminals of soldering terminal type and PC board terminal type are the same as those of standard actuator type.

NOTES

1．Switch mounting
Mount the switch with the hole cutting dimensions shown in the dimensions． Contact us if you are considering using a panel of other than the recommended size and shape．
2．Regarding fastening lead wires to terminals
1）When connecting the tab terminals， use a ． 250 Quick－connect and insert the terminals straight in．
If they are skewed，the terminals will require excessive insertion force． In addition，there is some variation in the insertion force required for different receptacles from different manufacturers， so confirm how much force is needed under actual conditions．
Do not solder wires onto tab terminals．
2）With manual soldering：Complete the soldering connection work within 3 seconds with the tip of the soldering iron （60W soldering iron）at a temperature of $420^{\circ} \mathrm{C}$ or lower，and take care not to apply any force to the terminal area．

Avoid touching the switch with soldering iron．

Refer to the diagram above，＂soldering position，＂for details on the position where a wire should be soldered to a terminal． When soldering PC board terminals， keep soldering time to within 5 s at 270 C soldering bath or within 3 s at $350^{\circ} \mathrm{C}$ soldering bath．
3）The terminals should be connected in such a way that they are not under constant stress from the connecting wires．
4）Terminal material is copper alloy which may discolor due to finger＇s oil or after a long time．But that discoloration does not effect actual performance．

3．Resistance to chemicals

To clean the switch unit，use a neutral detergent diluted with water．
Do not use acidic or alkaline solvents as they may damage the switch． Furthermore，be careful not to get any of the detergent solution inside of the switch while cleaning it．

4．Environment

Avoid using and storing these switches in a location where they will be exposed to corrosive gases，silicon，or high dust levels，all of which can have an adverse effect on the contacts．
5．Take care not to drop the product as it may impair perfomance．

REFERENCE

1．Outline of UL1054 test

Overload test AJ8：20A 250V AC
（power factor 0.75 to 0.8 ）
50 operation
Endurance test AJ8：16A 250V AC
（power factor 0.75 to 0.8 ）
6×10^{3} operation
After testing，temperature rise of terminals should be less than $30^{\circ} \mathrm{C}$ and no abnormality should be observed in characteristics．

2．Outline of EN61058－1 test

After switching 5×10^{3} times on the
above load condition at both $85{ }_{0}^{+5}{ }^{\circ} \mathrm{C}$ and $25 \pm 10^{\circ} \mathrm{C}$ ，temperature rise of terminals should be less than $55^{\circ} \mathrm{C}$ and no abnormality should be observed in characteristics．

INTRODUCTION TO 4P CONNECTORS FOR THE AJ8 SWITCH （produced by Nippon Tanshi Co．，Ltd）

Remark：This AJ8 switch connector is not available from Panasonic．
Contact us for further details on this connector．

Suitable switches：AJ8 switch，． 250 Quick－connect terminal
（Note：Terminal guard long type switches are not suitable for this connector．）
Housing
Product number：N1620－4204
Receptacle
Product number：17168－2（post－plated product for fine wires）
17168－M2（material plated product for fine wires）
172131－M2（for thick wires）

Technical terminology \& cautions for use

TECHNICAL TERMINOLOGY

\author{

1. Rated values
}

Values indicating the characteristics and performance guarantee standards of the switches. The rated current and rated voltage, for instance, assume specific conditions.

2. Electrical life

The service life when the rated load is connected to the contact and switching operations are performed.

3. Mechanical life

The service life when operated at a preset operating frequency without passing electricity through the contacts.

4. Withstand voltage

Threshold limit value that a high voltage can be applied to a predetermined measuring location for one minute without causing damage to the insulation. 5. Insulation resistance

This is the resistance value at the same place the withstand voltage is measured.

6. Contact resistance

This indicates the electrical resistance at the contact part. Generally, this resistance includes the conductor resistance of the spring and terminal portions.

7. Vibration resistance

Vibration range where a closed contact does not open for longer than a specified time due to vibrations during use of the snap-action switches.

8. Shock resistance

Max. shock value where a closed contact does not open for longer than a specified time due to shocks during use of the switches

9. Allowable switching frequency

This is the maximum switching frequency required to reach the end of mechanical life (or electrical life).

10. Temperature rise value

This is the maximum temperature rise value that heats the terminal portion when the rated current is flowing through the contacts.

11. Actuator strength

When applying a static load for a certain period on the actuator in the operation direction, this is the maximum load it can withstand before the switch loses functionality.

12. Terminal strength

When applying a static load for a certain period (in all directions if not stipulated) on a terminal, this is the maximum load it can withstand before the terminal loses functionality (except when the terminal is deformed).

TYPES OF LOAD

1. Resistance load

Resistance load is a power factor of 1 ($\cos \phi=1$) where the load is only for the resistance portion. The displayed switch rating indicates the current capacity when using alternating current.

2. DC load

Differing from AC, since the direction of current is fixed for DC, the continuous arc time lengthens when the same voltage is applied.

3. Incandescent lamp load

Since an inrush current of 10 to 15 times the rated current flows for an instant when the switch is turned on for the lamp, adhesion of the contacts may occur. Therefore, please take into consideration this transient current when selecting a switch.

4. Induction load

Since arc generation due to reverse voltage can cause contact failure to occur when there is an induction load (in relays, solenoids and buzzers, etc.), we recommend you insert a suitable spark quenching circuit (see figure below).

Technical terminology \& cautions for use

5. Motor load

Contacts may adhere due to the starting current at the start of motor operation which is three to eight times the steadystate current. Although it differs depending on the motor, since a current flows that is several times that of the nominal current, please select a switch taking into consideration the values in the table below. To make the motor rotate in reverse, use an ON-OFF-ON switch and take measures to prevent a multiplier current (starting current + reverse current) from flowing

A current that is approximately two times that of the starting current will flow when reverse rotation is caused during operation. Also, when using for a load that will cause transient phenomena such as when operating the motor in reverse rotation or switching the poles, an arc short (circuit short) may occur due to the time lag between poles when switching. Please be careful.

Motor type	Type	Starting current
Three-phase induction motor	Squirrel-cage	Approx. 5 to 8 times current listed on nameplate
Single-phase induction motor	Split-phase-start	Approx. 6 times current listed on nameplate
	Capacitor-start	Approx. 4 to 5 times current listed on nameplate
	Repulsion-start	Approx. 3 times current listed on nameplate

6. Capacitor load

In the case of mercury lamps, florescent lamps and the capacitor loads of capacitor circuits, since an extremely large inrush current flows when the switch is turned on, please measure that transient value with the actual load and then either use the product keeping within the range of the rated current or after verifying the actual load.

Technical terminology \& cautions for use

PRECAUTIONS WHEN USING

1. Environment of use
1) Please consult us when using under the following conditions:

- Environments where hydrogen sulfide or other corrosive gases are present.
- Environments where gasoline, thinner or other flammable, explosive gases are present.
- Dusty environments (for non-seal type snap action switches).
- Use in environments not in the prescribed temperature or humidity range.
- Places with low air pressure.

2) Unless specified the product will not be constructed to withstand water, oil or explosions. Please inquire if you intend to use the product in special applications.
2. Usage, storage, and transport conditions
1) During usage, storage, or transportation, avoid locations subject to direct sunlight and maintain normal temperature, humidity, and pressure conditions.
2) The allowable specifications for environments suitable for usage, storage, and transportation are given below.
(1) Temperature: The allowable temperature range differs for each switch, so refer to the switch's individual specifications.
(2) Humidity: 5 to 85% R.H.
(3) Pressure: 86 to 106 kPa

The humidity range varies with the temperature. Use within the range indicated in the graph below

(The allowable temperature depends on the switch.)

- Condensation will occur inside the switch if there is a sudden change in ambient temperature when used in an atmosphere of high temperature and high humidity. This is particularly likely to happen when being transported by ship, so please be careful of the atmosphere when shipping. Condensation is the phenomenon whereby steam condenses to cause water droplets that adhere to the switch when an atmosphere of high temperature and humidity rapidly changes from a high to low temperature or when the switch is quickly moved from a low humidity location to one of high temperature and humidity. Please be careful because condensation can cause adverse conditions such as deterioration of insulation, coil cutoff, and rust.
- Condensation or other moisture may freeze on the switch when the temperatures is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags.
- The plastic becomes brittle if the switch is exposed to a low temperature, low humidity environment for long periods of time.
- Storage for extended periods of time (including transportation periods) at high temperatures or high humidity levels or in atmospheres with organic gases or sulfide gases may cause a sulfide film or oxide film to form on the surfaces of the contacts and/or it may interfere with the functions. Check out the atmosphere in which the units are to be stored and transported.
- In terms of the packing format used, make every effort to keep the effects of moisture, organic gases and sulfide gases to the absolute minimum.

3. Wiring

1) When using a PC board terminal switch as soldering terminals, use thin lead wires and be sure to wind them on the terminals before soldering.
2) Cautions when soldering Perform soldering quickly in accordance with the specified conditions. Be careful not to let flux flow into the product. When no instruction is specified, use a 60 W soldering iron $\left(350^{\circ} \mathrm{C}\right)$ and complete soldering within five seconds. Do not pull on the lead wires immediately after soldering. Wait some time before verifying.

4. Others

1) Failure modes of switches include short-circuiting, open-circuiting and temperature rises. If this switch is to be used in equipment where safety is a prime consideration, examine the possible effects of these failures on the equipment concerned, and ensure safety by providing protection circuits or protection devices. In terms of the systems involved, make provision for redundancy in the design and take steps to achieve safety design.
2) The ambient operating temperature (and humidity) range quoted is the range in which the switch can be operated on a continuous basis: it does not mean that using the switch within the rating guarantees the durability performance and environment withstanding performance of the switch. For details on the performance guarantee, check the specifications of each product concerned.
3) Even if 2-pole, 3-pole or 4-pole switches are used as single-pole switches in order to increase contact reliability, please keep the maximum current no higher than the rated value.
4) If there is the possibility of a short between poles, please use an in-phase circuit as shown below or provide a spare pole.

Due to their super miniature size, please be particularly careful with AJ1 (J1) and AJ2 (J2) toggle and rocker switches since sufficient distance between poles cannot be achieved.
5) Be careful not to drop the product as this may cause loss of functionality.
6) Do not apply an unreasonable vertical force against the direction of operation of the product.
7) Use your hand to operate the actuator. (Operation using a tool such as a screwdriver or hammer can cause breakdown.)

Further Panasonic products

Panasonic Electric Works offers a wide product range from one source, from individual components to complete systems. Technology support for advice, design-in, installation and commissioning by our qualified application engineers round off the Panasonic service profile.

NaPiOn motion sensors

NaPiOn motion sensors are ideal for efficient lighting and energy management.

- Small size: $\varnothing 10 \times 13.5 \mathrm{~mm}$ (thimble size)
- Integrated amplifier
- 2 lens colors: white and black

Pressure sensors

Panasonic's pressure sensors contain built-in amplification and temperature compensation circuits. Users need not be concerned with circuit design or customization.
State-of-the-art technology allows us to achieve high-level precision and reliability, yet without compromising compactness.

- Footprint $7.0 \mathrm{~mm}(\mathrm{~W}) \times 7.2 \mathrm{~mm}(\mathrm{D})$
- $10.4 \mathrm{~mm}(\mathrm{~W}) \times 10.4 \mathrm{~mm}$ (D) (low pressure type)

Global Network

North America	Europe	Asia Pacific	China	Japan

Panasonic Electric Works

Please contact our Global Sales Companies in:

Europe	
- Headquarters	Panasonic Electric Works Europe AG
- Austria	Panasonic Electric Works Austria GmbH
	Panasonic Industrial Devices Materials Europe GmbH
- Benelux	Panasonic Electric Works Sales Western Europe B.V.
- Czech Republic	Panasonic Electric Works Czech s.r.o.
- France	Panasonic Electric Works Sales Western Europe B.V.
- Germany	Panasonic Electric Works Europe AG
- Hungary	Panasonic Electric Works Europe AG
- Ireland	Panasonic Electric Works UK Ltd.
- Italy	Panasonic Electric Works Italia srl
- Nordic Countries	Panasonic Electric Works Europe AG
	Panasonic Eco Solutions Nordic AB
- Poland	Panasonic Electric Works Polska sp. z 0.0
- Portugal	Panasonic Electric Works España S.A.
- Spain	Panasonic Electric Works España S.A.
- Switzerland	Panasonic Electric Works Schweiz AG
- United Kingdom	Panasonic Electric Works UK Ltd.

Rudolf-Diesel-Ring 2, 83607 Holzkirchen, Tel. +49 (0) 8024 648-0, Fax +49 (0) 8024 648-111, www.panasonic-electric-works.com Josef Madersperger Str. 2, 2362 Biedermannsdorf, Tel. +43 (0) 2236-26846, Fax +43 (0) 2236-46133 www.panasonic-electric-works.at
Ennshafenstraße 30, 4470 Enns, Tel. +43 (0) 7223883 , Fax +43 (0) 722388333 , www.panasonic-electronic-materials.com
De Rijn 4, (Postbus 211), 5684 PJ Best, (5680 AE Best), Netherlands, Tel. +31 (0) 499372727 , Fax +31 (0) 499372185 , www.panasonic-electric-works.nl
Sales Office Brno, Administrative centre PLATINIUM, Veveri 111, 61600 Brno, Tel. +420541217 001, Fax +420 541217 101, www.panasonic-electric-works.cz
Succursale française, 10, rue des petits ruisseaux, 91370 Verrières Le Buisson, Tél. +33 (0) 160135757 , Fax +33 (0) 160135758 , www.panasonic-electric-works.fr
Rudolf-Diesel-Ring 2, 83607 Holzkirchen, Tel. +49 (0) 8024 648-0, Fax +49 (0) 8024 648-111, www.panasonic-electric-works.de Magyarországi Közvetlen Kereskedelmi Képviselet, 1117 Budapest, Neumann János u. 1., Tel. +36 19998926 www.panasonic-electric-works.hu
Irish Branch Office, Dublin, Tel. +353 (0) 14600969, Fax +353 (0) 14601131, www.panasonic-electric-works.co.uk Via del Commercio 3-5 (Z.I. Ferlina), 37012 Bussolengo (VR), Tel. +390456752711 , Fax +390456700444 , www.panasonic-electric-works.it
Filial Nordic, Knarrarnäsgatan 15, 16440 Kista, Sweden, Tel. +46 859476680, Fax +46859476690 , www.panasonic-electric-works.se Jungmansgatan 12, 21119 Malmö, Tel. +46 40697 7000, Fax +4640697 7099, www.panasonic-fire-security.com ul. Wołoska 9A, 02-583 Warszawa, Tel. +48 (0) 22 338-11-33, Fax +48 (0) 22 338-12-00, www.panasonic-electric-works.pl Portuguese Branch Office, Avda Adelino Amaro da Costa 728 R/C J, 2750-277 Cascais, Tel. +351 214812520, Fax +351214812529 Barajas Park, San Severo 20, 28042 Madrid, Tel. +34913293875 , Fax +34913292976 , www.panasonic-electric-works.es Grundstrasse 8, 6343 Rotkreuz, Tel. +41 (0) 41 7997050, Fax +41 (0) 417997055 , www.panasonic-electric-works.ch Sunrise Parkway, Linford Wood, Milton Keynes, MK14 6LF, Tel. +44 (0) 1908 231555, Fax +44 (0) 1908 231599, www.panasonic-electric-works.co.uk

North \& South America

- USA Panasonic Industrial Devices Sales Company 629 Central Avenue, New Providence, N.J. 07974, Tel. 1-908-464-3550, Fax 1-908-464-8513, www.pewa.panasonic.com of America

Asia Pacific/China/Japan

China Panasonic Electric Works Sales (China) Co. Ltd.

- Hong Kong Panasonic Industrial Devices Automation Controls Sales (Hong Kong) Co., Ltd.
- Japan
- Singapore

Panasonic Corporation
Panasonic Industrial Devices
Automation Controls Sales Asia Pacific

Level 2, Tower W3, The Towers Oriental Plaza, No. 2, East Chang An Ave., Dong Cheng District, Beijing 100738, Tel. $+86-10-5925-5988$, Fax +86 -10-5925-5973
RM1205-9, 12/F, Tower 2, The Gateway, 25 Canton Road, Tsimshatsui, Kowloon, Hong Kong, Tel. +852-2956-3118, Fax +852-2956-0398

1048 Kadoma, Kadoma-shi, Osaka 571-8686, Japan, Tel. +81-6-6908-1050, Fax +81-6-6908-5781, www.panasonic.net 300 Beach Road, \#16-01 The Concourse, Singapore 199555, Tel. $+65-6390-3811$, Fax $+65-6390-3810$

[^0]: Remark: Not every combination is available. Please refer to the following table, "PRODUCT TYPES".

[^1]: Remarks: 1. Standard packing: Dust protected type 100 pcs./carton, 2,000 pcs./case; Immersion protected type 50 pcs./case.

[^2]: * Agency standard: Please refer to "Ordering information".

[^3]: * Agency standard: Please refer to "Ordering information".

[^4]: * Agency standard: Please refer to "Ordering information".

[^5]: Remark: Also . 187 Quick-connect/solder terminal is available. When ordering, change the eighth digit of part number C to A <ex.> . 187 Quick-connect terminal . 187 Quick-connect/solder terminal AM50010C33 $\rightarrow \quad$ AM50010A33

[^6]: Remarks: 1. Also 187 Quick-connect/solder terminal is available. When ordering, change the eighth digit of part number C to A.
 <ex.> . 187 Quick-connect terminal . 187 Quick-connect/solder terminal
 AM51610C53N $\rightarrow \quad$ AM51610A53N
 2. . 250 Quick-connect terminal is available. When ordering, change the eighth digit of part number C to D.
 <ex.> . 187 Quick-connect terminal .250 Quick-connect terminal

 $$
 \text { AM51610C53N } \rightarrow \quad \text { AM51610D53N }
 $$

[^7]: Remarks: 1. Test conditions and judgement are in accordance with NECA C 4505

[^8]: * Au-clad triple layer contact

[^9]: Remark: When ordering, please refer to "Remarks" of ordering information.

[^10]: Remark: With the 3 Form A type sequence operation type, the specifications for the contact where the operation position turns $\mathbb{\otimes}$ first are as per the above table. However,

[^11]: * The VDE motor load rating is in accordance with VDE 0630 motor load rating which designates an inrush current switching capability of 6 times the indicating rating.

[^12]: Remarks: *1: Only standard type

[^13]: Remarks: 1. Standard installation accessories are included with the product.

[^14]: Remarks: 1. Please specify the actuator color by replacing the asterisk in the product number with appropriate letter. (B: black; W: white; R: red; Z: dark gray)

[^15]: Remark: For panel installations of standard type, be use to use the back hex nut.

[^16]: Remark: The product comes with standard installation accessories. However, keying washer is sold separately.

[^17]: Remark: The motor load is in accordance with EN61058-1. Inrush current can be switched up to the value of 6 times the indicated rating.

